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Abstract. In this paper, we use variational iteration method (VIM) to solve some optimization problems.

Exact solutions for many of the problems discussed in this paper are found. The main idea is to use both

Euler’s equations together with Lagrange multiplier in solving correction functionals for the problems. We

use He’s VIM to handle many kinds of the variational problems, such as problems with fixed and moving

boundaries, also, we solve some variational problems with extremals having corner points. Moreover,

we found the solution of the variational problems involving conditional extremum such as, isoperimetric

problems, via the variational iteration method. In addition, we introduced the relation between the

conditional problems and the eigenvalue problems.
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1. Introduction

In a large number of problems arising in analysis, mechanics, geometry, etc., it is necessary to determine

the maximal and minimal of a certain functional [1]. Problems in which it is required to investigate a

function for maximum or minimum are called optimization problem. Calculus of variations (C.V) began to

develop in 1696, and became an independent mathematical branch with its own methods of investigation,

after the fundamental works of Euler’s (1707-1783), whom we may justifiably consider the founder of the
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calculus of variations [8]. Minimization problems that can be analyzed by the calculus of variation serve

to characterize the equilibrium configurations of almost all continuous physical systems [6, 7]. Finding

the solution of these problems needs to solve the corresponding ordinary (partial) differential equation

that are generally nonlinear and difficult to find exact solutions. In recent years, He’s variational iteration

method VIM, proposed by He [2], have received much attention of the researcher’s for solving nonlinear

problems [10, 11]. It has been applied to a wide class of deterministic and stochastic problems, linear

and nonlinear, in physics, biology and chemical reactions etc [15, 16]. Also, it is used for solving some

problems in calculus of variations [4, 5] and Computation of eigenvalues for Sturm-Liouville problems

[17]. The method gives rapidly convergent successive approximations of the exact solution, if a solution

exists.

The main concepts in the VIM are the general Lagrange multiplier, restricted variation, correction func-

tional [3]. In this method, general Lagrange multipliers are introduced to construct correction functional

for the variational problems. The multipliers in functionals can identified optimally via the variational

theory. The initial approximations can be freely chosen with possible unknown constant which can be

determined by imposing the boundary or initial conditions [4]. In this paper, the (VIM) will be used

to solve the optimization problems and try to find an exact solution for this kind of problems. Some

examples will be presented to test the efficiency of the proposed technique. For more details see [12].

The arrangement of this paper is as follows: In section two, we introduce the basic concepts of calculus

of variation and VIM. In section three, we handle some optimization problems with moving boundaries,

also, we solve some constructed problems in which their solutions have corner points in section four.

Finally, in section five, we solve some examples of the conditional problems, such as the isoperimetric

problems.

2. Calculus of variations with Fixed Boundaries

The (VIM) was proposed by He [2] initially with the aims to solve frontier physical problem. It has

been applied to a wide class of deterministic and stochastic problems, linear and nonlinear, in physics,

biology and chemical reactions etc., [13, 14, 15]. Also, it is used for solving some problems in calculus of

variations [5].

2.1. Functions of Single Derivatives

The main idea of VIM is to construct a correction functional form using general Lagrange multipliers.

These multipliers should be chosen such that its correction solution is superior to its initial approxima-

tion, called trial function. It is the best within the flexibility of trial functions. Accordingly, Lagrange

multipliers can be identified by the variational theory [5]. The initial approximation can be freely chosen
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with possible unknowns, which can be determined by imposing boundary/initial conditions, and end up

with finding the approximate solution [9]. In this paper, He’s VIM will be employed for solving some

problems in calculus of variation. The examples ranging through different applications in physics and

it will be presented to show the efficiency of the proposed technique. In the VIM, we will consider the

general problem as

Ly +Ny = g (s) ,

where L is a linear operator, N is a nonlinear operator, and g(s) is the non-homogeneous term. Using

variational iteration method, the following correct functional is considered

(1) yn+1 = yn +

x∫
x0

λ (Lyn (s) +Nỹn (s)− g (s)) ds,

where λ is Lagrange multiplier [5], which can be identified optimally via the variational theory, the

subscript n denotes the nth approximation, and ỹn is considered as a restricted variation, i.e. δỹn = 0.

The main idea of this paper is to replace λ in equation (1) by the result obtained from Euler’s equation.

Recall that the boundary-value problem

Fy −
d

dx
Fy′ = 0, y (x0) = y0, y (x1) = y1,

does not always have a solution, and if the solution exists, it may not be unique. Note that in many

variational problems the existence of a solution is obvious from the physical or geometrical meaning of

the problem, and if the solution of Euler’s equation satisfying the boundary conditions is unique, then

this unique extremal will be the solution of the given variational problem. Consider,

v[y1, y2, ..., yn] =

x1∫
x0

F (x, y1, y2, ..., yn, y
′
1, y
′
2y, ..., y

′
n)dx

with given boundary conditions

y1 (x0) = y10, y2 (x0) = y20, ... , yn (x0) = yn0

y1 (x1) = y11, y2 (x1) = y21, ... ,yn (x1) = yn1,

for the maximum or the minimum. In order to do that, we need to obtain the necessary conditions,

δv = 0.

Therefore, we can vary only one function yj (x) , (j = 1, 2, ..., n) , and holding the other functions

unchanged. Then the functional will reduce to a functional dependent only on a single function yj (x) .

v[y1, y2, ..., yn] = ṽ[yi],
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so, the extremizing function must satisfy Euler’s equation

Fyi −
d

dx
Fy′i = 0.

Since, we can do that for any function yi (x) , i = 1, 2, ..., n, we get a system of second-order differential

equations

Fyi −
d

dx
Fy′i = 0 i = 1, 2, ..., n.

In order to handle problems arising in the nature, specially in optics, we will display the Fermat’s

principle which discuss the least time that the ray of light taken to propagated from point A to another

B, with given speed. Now to solve the optics problem, we will convert it to form in calculus of variation.

Just to keep the reader with us, we illustrate it by the following example.

Example 1. Find the lines of propagation of light between A (0, 0, 0) , and B (1, 1, 1) , such that they

investigate the least time, where the velocity is given by v (x, y, z) = c, where c is constant.

Since we want the least time t of the propagation, we can say

dt =
ds

v
,

where ds is the distance between two close points, as we know ds2 = dx2 + dy2 + dz2 .

Simplify, we can get

ds =

√
1 +

(
dy

dx

)2

+

(
dz

dx

)2

dx.

Hence,

t =

x1∫
x0

√
1 + y′2 + z′2

c
dx

Now, we can solve this functional, by finding the curves that satisfy the system of Euler’s equations

Fy −
d

dx
Fy′ = z′′nz

′
ny
′
n − y′′nz′2n − y′′n = 0,

Fz −
d

dx
Fz′ = y′′ny

′
nz
′
n − z′′ny′2n − z′′n = 0.

Which are the differential equations of the lines of propagation of light between A, and B. Using He’s

variational iteration method, we have the following correctional functionals:

(2) yn+1(x) = yn(x) +

x∫
0

λ1 (t)
(
z′′n (t) z′n (t) y′n (t)− y′′n (t) z′2n (t)− y′′n (t)

)
dt,

(3) zn+1(x) = zn(x) +

x∫
0

λ2 (t)
(
y′′n (t) y′n (t) z′n (t)− z′′n (t) y′2n (t)− z′′n (t)

)
dt.
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Taking the variation of equations (2) and (3) with respect to yn , zn, respectively, noting that δyn+1 =

δzn+1 = 0, we get

δyn+1(x) = δyn(x) + δ

x∫
0

λ1 (t)
(
z′′n (t) z′n (t) y′n (t)− y′′n (t) z′2n (t)− y′′n (t)

)
dt,

δzn+1(x) = δzn(x) + δ

x∫
0

λ2 (t)
(
y′′n (t) y′n (t) z′n (t)− z′′n (t) y′2n (t)− z′′n (t)

)
dt.

Then we can get the following stationary conditions

1 + λ′1 (t) |t=x= 0, λ1 (t) |t=x= 0, λ′′1 (t) = 0,

1 + λ′2 (t) |t=x= 0, λ2 (t) |t=x= 0, λ′′2 (t) = 0.

these yield to

λ1 (t) = λ2 (t) = x− t,

Therefore, we have

yn+1(x) = yn(x) +

x∫
0

(x− t)
(
z′′n (t) z′n (t) y′n (t)− y′′n (t) z′2n (t)− y′′n (t)

)
dt,

zn+1(x) = zn(x) +

x∫
0

(x− t)
(
y′′n (t) y′n (t) z′n (t)− z′′n (t) y′2n (t)− z′′n (t)

)
dt.

Set,

y0 (x) = ax+ b, z0 (x) = cx+ d,

y1 and z1 are easy to find. By imposing the boundary conditions on the obtained y1 and z1, we have:

a = 1, b = 0, c = 1, d = 0,

thus,

y1 (x) = z1 (x) = x,

Where these are the lines of propagation of light between A (0, 0, 0) , and B (1, 1, 1) .

2.2. Functionals Depends on Higher-Order Derivatives

In order to obtain the necessary conditions for the extremum of the functional

v[y (x)] =

x1∫
x0

F
(
x, y (x) , y′ (x) , ..., y(n) (x)

)
dx,

with the boundary conditions

y (x0) = y0, y′ (x0) = y′0, ..., y
(n−1) (x0) = y

(n−1)
0 ;

y (x1) = y1, y′ (x1) = y′1, ..., y
(n−1) (x1) = y

(n−1)
1 .
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we need first to consider the function F which has (n+ 2) derivatives with respect to all arguments, and

the extremal curve y (x) which has 2n derivatives.

Now, we will reduce the functional v[y (x)] to a function of one-parameter α, by considering the value

of the functional v[y (x)] only on curves of the family with one parameter α

y (x, α) = y (x) + αδy,

where δy = ȳ (x)−y (x) , with ȳ (x) belongs to the admissible curves, which is also 2n times differentiable.

Note that, v[y (x)] has an extremum value at α = 0, hence δv = d
dαv [y (x, α)] |α=0= 0. This derivative is

called the variation of the functional, denoted by δv, and given by

δv =
d

dα
v [y (x, α)] |α=0=

x1∫
x0

(
Fyδy + Fy′δy

′ + Fy′′δy
′′ + Fy(n)δy(n)

)
dx.

Integrating by parts the second summand once, the third summand twice, and so forth; the last summand

n times, implies that:

x1∫
x0

Fy(n)δy
(n)

dx =
[
Fy(n)δy(n−1)

]x1

x0

−
[
d

dx
Fy(n)δy(n−1)

]x1

x0

+ ...+ (−1)
n

x1∫
x0

dn

dxn
Fy(n)δydx.

Now, taking the boundary conditions, for x = x0 and for x = x1, the variations δy = δy′ = δy′′ = ... =

δy(n−1) = 0, we finally get

δv =

x1∫
x0

(
Fy −

d

dx
Fy′ +

d2

dx2
Fy′′ + ...+ (−1)

n dn

dxn
Fy(n)

)
δydx,

on the extremizing curve we have

δv =

x1∫
x0

(
Fy −

d

dx
Fy′ +

d2

dx2
Fy′′ + ...+ (−1)

n dn

dxn
Fy(n)

)
δydx = 0.

because δy is arbitrary, and the first factor is continuous function of x on the same curve y = y (x) , then

by the fundamental Lemma, we have:

Fy −
d

dx
Fy′ +

d2

dx2
Fy′′ + ...+ (−1)

n dn

dxn
Fy(n) = 0.

Thus, the function y = y (x) , which extremizes the functional

v[y (x)] =

x1∫
x0

F
(
x, y (x) , y′ (x) , ..., y(n) (x)

)
dx,

must be a solution of the equation

Fy −
d

dx
Fy′ +

d2

dx2
Fy′′ + ...+ (−1)

n dn

dxn
Fy(n) = 0,
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which is called the Euler-poisson equation, and it is of order 2n. The general solution of this equation

contains 2n arbitrary constants that may be determined by the 2n boundary conditions:

y (x0) = y0, y
′ (x0) = y′0, ..., y

(n−1) (x0) = y
(n−1)
0 ;

y (x1) = y1, y
′ (x1) = y′1, ..., y

(n−1) (x1) = y
(n−1)
1 .
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2.3. Functionals of Several Independent Variables

In this section, we consider functions with two variables, as in the following form,

v [z (x, y)] =

∫∫
D

F

(
x, y, z (x, y) ,

∂z

∂x
,
∂z

∂y

)
dx, dy;

where we determine the value of the function z on the boundary C of the domain D. We consider a

function F that is three times differentiable and the extremizing surface z = z (x, y) twice differentiable.

Now, again as we did before, we reduce the functional v to function of one parameter α, by considering

the family of surfaces z (x, y, α) = z (x, y) +αδz, where δz = z̄ (x, y)− z (x, y) . Note that, the functional

v [z (x, y, α)] extremized at α = 0. So ∂
∂αv [z (x, y, α)]α=0 = 0, we call the derivative of v [z (x, y, α)] with

respect to α, for α = 0, the variation of the functional (δv) , just to simplify, put ∂z
∂x = p, ∂z∂y = q, we have,

δv = [
∂

∂α

∫∫
D

F (x, y, z (x, y, α) , p (x, y, α) , q (x, y, α)) dx, dy]α=0 =

∫∫
D

[Fzδz + Fpδp+ Fqδq]dxdy,

where,

p (x, y, α) =
∂z (x, y, α)

∂x
= p (x, y) + αδp, q (x, y, α) =

∂z (x, y, α)

∂y
= q (x, y) + αδq.

Using,

∂

∂x
[Fpδz] =

∂

∂x
[Fp] δz + Fpδp,

∂

∂y
[Fqδz] =

∂

∂y
[Fq] δz + Fqδq,

It follows that,∫∫
D

[Fpδp+ Fqδq]dxdy =

∫∫
D

[
∂

∂x
[Fpδz] +

∂

∂y
[Fqδz]]dxdy −

∫∫
D

[
∂

∂x
[Fp] +

∂

∂y
[Fq]]δzdxdy,

where,

∂

∂x
[Fp] = Fpx + Fpz

∂z

∂x
+ Fpp

∂p

∂x
+ Fpq

∂q

∂x

∂

∂x
[Fp] = Fqy + Fqz

∂z

∂y
+ Fqp

∂p

∂y
+ Fqq

∂q

∂y
.

Using Green’s theorem, we get,∫∫
D

[
∂

∂x
[Fpδz] +

∂

∂y
[Fqδz]]dxdy =

∫
C

(Fpdy − Fqdx) δz = 0.

Since on the contour C, δz = 0 because all permissible surfaces pass through the same path C̃. So,∫∫
D

[Fpδp+ Fqδq]dxdy = −
∫∫
D

[
∂

∂x
[Fp] +

∂

∂y
[Fq]]δzdxdy,

now the necessary condition δv = 0,∫∫
D

[Fzδz + Fpδp+ Fqδq]dxdy =

∫∫
D

[Fz −
∂

∂x
[Fp] +

∂

∂y
[Fq]]δzdxdy = 0.
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because δz is an arbitrary, continuous function and the first factor is continuous, it follows from the

fundamental lemma of calculus for variations that on the extremizing the curve z = z (x, y) , we have

(4) Fz −
∂

∂x
Fp −

∂

∂y
Fq = 0.

Which is called Ostrogradsky equation.

3. Problems with Moving-Boundaries

In this section, we investigate the extreme value of a functional with assumption that one or both of

the boundary points can move [8].

3.1. Moving-Boundary Problem of Single Function

we investigate the extreme value of the functional

v [y (x)] =

x1∫
x0

F (x, y, y′) dx,

with assumption that one or both of the boundary points can move, so we can note that, the class of

permissible curves is extended. Therefore, if on a curve y (x) an extremum is all the more attained relative

to a narrower class of curves having common boundary points with the curve y = y (x) and, hence, the

basic condition for achieving an extremum in a problem with fixed boundaries must be a solution of

Euler’s equation. For the purpose of simplification, we shall assume that one of the boundary points,

say (x0, y0) is fixed, and the other (x1, y1) can moved and passes to point (x1 + δx1, y1 + δy1) . We will

call the permissible curves y = y (x) and ỹ = y (x) + δy neighboring if the absolute values of δy and δy′

are small, and the absolute values of δx1 and δy1 are also small. Let us compute the variation of the

functional.

Now,

δv =

x1+δx1∫
x0

F (x, y + δy, y′ + δy′) dx−
x1∫
x0

F (x, y, y′) dx

=

x1+δx1∫
x1

F (x, y + δy, y′ + δy′) dx+

x1∫
x0

[F (x, y + δy, y′ + δy′)− F (x, y, y′)]dx.(5)

Using the Mean value theorem for integral, the first integral in the above equation can be reduced to:

x1+δx1∫
x1

F (x, y + δy, y′ + δy′) dx = F |x=x1+Θδx1
δx1, 0 ≺ Θ ≺ 1.

by the continuity of F, we have

F |x=x1+Θδx1
δx1 = F (x, y, y′) |x=x1

+ε1,
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where ε1 → 0 as δx1 → 0, and δy1 → 0. Thus,

x1+δx1∫
x1

F (x, y + δy, y′ + δy′) dx = F (x, y, y′) |x=x1
δx1 + ε1δx1.

Using the Taylor’s expansion of the integrand on the second term of equation (5) , we get:

x1∫
x0

[F (x, y + δy, y′ + δy′)− F (x, y, y′)]dx =

x1∫
x0

[Fy (x, y, y′) δy + Fy′ (x, y, y
′) δy′]dx+R1,

where R1 is an infinitesimal of higher order than δy or δy′, so the linear part is

x1∫
x0

[Fyδy + Fy′δy
′]dx,

integrating by parts the second summand of the integrand

x1∫
x0

[Fyδy + Fy′δy
′]dx = [Fy′δy]x1

x0
+

x1∫
x0

(
Fy −

d

dx
Fy′

)
δydx

but Fy − d
dxFy

′ = 0, since y is extremal and satisfy Euler’s equation, and the boundary point (x0, y0) is

fixed, it follows that δy |x=x0 . So,

x1∫
x0

[Fyδy + Fy′δy
′]dx = [Fy′δy]x=x1

note that, δy1: is the increment of y1 when the boundary point is displaced to (x1,+δx1, y1 + δy1) , and

δy1 |x=x1
is the increment of the ordinate at the point x1 when going from extremal passing through the

points (x0, y0) and (x1, y1) to the extremal passing through the points (x0, y0) and (x1,+δx1, y1 + δy1) .

Now, to determine the value of δy1 |x=x1
, and note that,

δy1 |x=x1
= bc, δy1 = fd,

ed ≈ y′ (x1) δx1, bc = fd− ed.

Therefore,

δy1 |x=x1≈ δy1 − y′ (x1) δx1.

hence, from equation (5) the basic necessary condition is

(6) δv = (F − y′Fy′) |x=x1
δx1 + Fy′ |x=x1

δy1 = 0.

In order to know how we can determine the extremal function y (x) using this condition and to handle

one of the basic problems in the calculus of variations via VIM, we construct the following example.

Example 2. (Brachistochrone problem) Find the line connecting two points A (0, 0) and B (x1, y1) , such

that the point B can move along the curve h (x) = x− 1, that satisfying the shortest time and the velocity

v (x, y) =
√

1− y (x).
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Since we want to satisfy the least time t of the propagation, it is easy to verify that

t =

x1∫
0

√
1 + y′2

v (x, y)
dx =

x1∫
0

√
1 + y′2

1− y
dx.

Now, for this functional to satisfy Euler’s equation, we have

y′′ − yy′′ − y′2

2
− 1

2
= 0.

which is nonlinear differential equation, therefore, we use the VIM. By construct the following correct

functional

yn+1(x) = yn(x) +

x∫
0

λ (s)

(
y′′n (s)− ỹn (s) ỹ′′n (s)− (ỹ′n (s))

2

2
− 1

2

)
ds,

taking variation with respect to the independent variable yn, we have

δyn+1(x) = δyn(x) + δ

x∫
0

λ (s)

(
y′′n (s)− ỹn (s) ỹ′′n (s)− (ỹ′n (s))

2

2
− 1

2

)
ds = δyn(x) + δ

x∫
0

λ (s) y′′n (s) .

So, we will get the stationary conditions

1− λ′ (s) |s=x= 0, λ (s) |s=x= 0, λ′′ (s) = 0.

These yield to

λ (s) = s− x.

Therefore, our iteration formula becomes

yn+1(x) = yn(x) +

x∫
0

(s− x)

(
y′′n (s)− ỹn (s) ỹ′′n (s)− ỹ′2n (s)

2
− 1

2

)
ds.

If we set

y0 = ax+ b,

and find y1, y2 we arrive at

y2 (x) = b+ ax+ 0.25x2 + 0.25a2x2 + (1.+ a2)x2(0.25b+ x(0.166667a+ 0.0208333x+ 0.0208333a2x))



1486 HANA’ SROUR ABDEL-SALAM, KAMEL AL-KHALED∗

Now, to obtain the constants a and b, we need to satisfy the necessary condition in equation (6), since

δx1 and δy1 are dependent, (x1, y1) move along the curve h (x) = x− 1, then δy1 = h′ (x1) δx1, and so

δv = (F − y′Fy′) |x=x1
δx1 + Fy′ |x=x1

δy1

= (F − y′Fy′) |x=x1
δx1 + Fy′ |x=x1

h′ (x) δx1

= (F − y′Fy′) |x=x1
δx1 + Fy′ |x=x1

δx1

= (F + (1− y′)Fy′) |x=x1 δx1

= 0,

since δx1 is arbitrary, therefore

(F + (1− y′)Fy′) |x=x1= 0,

can be reduced to

(F + (1− y′)Fy′) |x=x1
=

(√
1 + y′2

1− y
+ (1− y′) y′√

(1 + y′2) (1− y)

)
|x=x1

=

(
(1 + y′)√

(1 + y′2) (1− y)

)
|x=x1= 0.

So, this condition yield that y′ (x1) = −1. Now, we have three conditions

y (0) = 0, y (x1) = x1 − 1, and y′ (x1) = −1,

which are sufficient to determine the constants a, b and x1, by imposing these conditions on y2, we get

a = −1.30955, b = 0, x1 = 0.475206.

So,

y2 (x) = −1.30955x+ 0.678733x2 − 0.592559x3 + 0.15356x4.

Where the extremals of the Brachistochrone problem are cycloids.

3.2. Moving-Boundary Problems of Several Functions

In order to investigate for extremum for the functional

v[y(x), z(x)] =

x1∫
x0

F (x, y, z, y′, z′) dx,

one of the boundary points, say B (x1, y1, z1) is moved, and the other point A (x0, y0, z0) is fixed (or both

boundary points are movable), then it is obvious that an extremum may be achieved only on the integral

curves of the system of Euler’s equations

(7) Fy −
d

dx
Fy′ = 0; Fz −

d

dx
Fz′ = 0.
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In order to find the solution of the system of Euler’s equations (7) , we need to satisfy the condition

δv = 0; therefore, similar to the previous case, we get

δv = [F − y′Fy′ − z′Fz′ ]x=x1δx1 + Fy′ |x=x1 δy1 + Fz′ |x=x1 δz1 = 0.

If we consider the functional

v =

x1∫
x0

F (x, y1, y2, ..., yn, y
′
1, y
′
2, ..., y

′
n) dx,

in the same way, if we consider the moving point B (x11, y11, y21, ..., yn1), we have the following condition(
F −

n∑
i=1

y′iFy′i

)
|x=x1

δx1 +

n∑
i=1

Fy′i |x=x1
δyi1 = 0.

Example 3. Minimize v =
x1∫
0

(
y′2 + z′2 + 2yz

)
dx, with y (0) = 0; z (0) = 0, and the point (x1, y1, z1)

can move over the plane x = x1.

The necessary condition for the solution of this problem is to satisfy the system of Euler’s equations

y′′ − z = 0; z′′ − y = 0.

Using He’s variational iteration method, we have the following correctional functionals:

(8) yn+1(x) = yn(x) +

x∫
0

λ1 (t) (y′′n (t)− zn (t)) dt,

and,

(9) zn+1(x) = zn(x) +

x∫
0

λ2 (t) (z′′n (t)− yn (t)) dt.

Taking the variation of the both sides of the equations (8) and (9) with respect to yn, zn, respectively, we

obtain

δyn+1(x) = δyn(x) + δ

x∫
0

λ1 (t) (y′′n (t)− zn (t)) dt,

and,

δzn+1(x) = δzn(x) + δ

x∫
0

λ2 (t) (z′′n (t)− yn (t)) dt,

using the integration by parts, we get

δyn+1(x) = δyn(x) + λ1 (t) δy′n(x) |t=x −λ′1 (t) δyn(x) |t=x +δ

x∫
0

λ′′1 (t) δyn(x)dt,

and,

δzn+1(x) = δzn(x) + λ1 (t) δz′n(x) |t=x −λ′1 (t) δzn(x) |t=x +δ

x∫
0

λ′′1 (t) δzn(x)dt,
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since δyn, δzn are arbitrary, δyn+1 = 0, δzn+1 = 0, and by the fundamental Lemma of calculus of

variation, we obtain the following stationary conditions:

1− λ′1 (t) |t=x= 0, λ1 (t) |t=x= 0, λ′′1 (t) = 0.

and,

1− λ′2 (t) |t=x= 0, λ2 (t) |t=x= 0, λ′′2 (t) = 0.

Then, we obtain

λ1 (t) = t− x, λ2 (t) = t− x.

Therefore, we have

yn+1(x) = yn(x) +

x∫
0

(t− x) (y′′n (t)− zn (t)) dt,

and,

zn+1(x) = zn(x) +

x∫
0

(t− x) (z′′n (t)− yn (t)) dt.

Set,

y0 (x) = a sin(x) + b cos (x) , z0 (x) = c sin(x) + d cos (x) ,

we get,

y2 (x) =
1

6

(
x2 (3b+ 3d+ (a+ c)x) + 6b cosx+ 6a sinx

)
,

z2 (x) =
1

6

(
x2 (3b+ 3d+ (a+ c)x) + 6d cosx+ 6c sinx

)
.

Using the conditions y (0) = 0, z (0) = 0, noting that b = d = 0, and the condition at the moving boundary

point

[F − y′Fy′ − z′Fz′ ]x=x1
δx1 + Fy′ |x=x1

δy1 + Fz′ |x=x1
δz1 = 0

since δx1 = 0 and δy1, δz1 are arbitrary, then the conditions yield to

Fy′ |x=x1
= 0 and Fz′ |x=x1

= 0,

hence,

y′ (x1) = 0 and z′ (x1) = 0.

Imposing these conditions on y2 and z2, we obtain

y′2 (x) =
x2

2
(a+ c) + 6a cosx, z′2 (x) =

x2

2
(a+ c) + 6c cosx,

if cosx1 6= 0, then y2 (x) = z2 (x) = 0, which are trivial solutions, but if cosx1 = 0, then a = −c, i.e.,

y2 (x) = c sinx, z2 (x) = −c sinx,

where c is an arbitrary constant, which is also the exact solution.
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4. Extremals with Corners

There are many problems in nature involving corner points on their extremals, i.e., maybe the desired

function y = y (x) does not have a continuous derivative. For instance problems involving the reflection

and refraction of light. Therefore, if we want to find the curve that extremizes the functional v =
x2∫
x0

F (x, y, y′) dx and passes through the given points a (x0, y0) and b (x2, y2) ; such that, the curve must

arrive at b only after reflected from a given line y = ϕ (x) , so at this point of reflection c (x1, y1) , there

exist a corner point of the desired extremal y, therefore, at this point y′ is discontinuous.

In order to obtain the extremal, represent the functional v in the form

v [y (x)] =

x1∫
x0

F (x, y, y′) dx+

x2∫
x1

F (x, y, y′) dx,

here, the derivative y′ is assumed to be continuous on the intervals [x0, x1) and (x1, x2].

The basic necessary condition for an extremum, δv = 0. Since the point (x1, y1) can move along the

curve y = ϕ (x) , so we are involved in the conditions of the problem with a boundary point moving along

a given curve, as in the previous section, It is obvious that the curves ac and cb are extremals. Indeed,

on these segments y = y (x) is a solution of Euler’s equation [8]. In order to keep the reader in the mode,

we construct the following example.

Example 4. Find the curves that satisfy the shortest distance between a (0, 1) and b
(

1
2 ,

3
2

)
, such that

the curves must arrive at b
(

1
2 ,

3
2

)
after reflected from ϕ (x) = x, at the point (x1, y1) .

To get the shortest distance, we need to extremize the functional

v[y (x)] =

x1∫
0

√
1 + (y′ (x))

2
dx+

1
2∫

x1

√
1 + (y′ (x))

2
dx,

Here, we divide the desired extremum curve y (x) into two segments, k (x) and m (x) which define at

[0, x1] and [x1,
1
2 ], respectively. In order to find these segments, we must solve Euler’s equation

y′′ (x) = 0.

Using He’s variation iteration method, we have

kn+1(x) = kn(x) +

x∫
0

λ (s) k′′n (s) ds,

taking the variation with respect to the independent variable kn, we have

δkn+1(x) = δkn(x) + δ

x∫
0

λ (s) k′′n (s) ds.
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So, we get the stationary conditions

1− λ′ (s) |s=x= 0, λ (s) |s=x= 0,

λ′′ (s) = 0.

These yield to

λ (s) = s− x.

Therefore, our iteration formula becomes

kn+1(x) = kn(x) +

x∫
0

(s− x) k′′n (s) ds.

If we set

k0 (x) = ax+ b,

then, we get the exact solution

k (x) = ax+ b.

Similarly, we can get

m (x) = cx+ d.

Now, to determine these unknown constants, a, b, c, and d, we need to satisfy the necessary conditions, in

equation (6), in the previous section

δv =
(

(F − k′Fk′) |x=x−1
δx1 + Fk′ |x=x−1

δy1

)
−
(

(F −m′Fm′) |x=x+
1
δx1 + Fm′ |x=x+

1
δy1

)
= 0,

Since δx1 and δy1 are dependent, (x1, y1) move along the curve ϕ (x) = x, then δy1 = δx1. Therefore, we

have

[F + (1− k′)Fk′ ]x=x−1
δx1 − [F + (1−m′)Fm′ ]x=x+

1
δx1 = 0,

since δx1 is arbitrary, we get

[F + (1− k′)Fk′ ]x=x−1
= [F + (1−m′)Fm′ ]x+

1
,

then, we obtain[√
1 + k′2 + (1− k′) k′√

1 + k′2

]
x=x−1

=

[√
1 +m′2 + (1−m′) m′√

1 +m′2

]
x=x+

1

,

or,

(10)
1 + k′√
1 + k′2

|
x=x
−
1

=
1 +m′√
1 +m′2

|
x=x

+
1

.
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To simplify equation (10), we can set the following

k′ (x1) = tan (γ1) , m′ (x1) = tan (γ2) ,

then, we can write equation (10) as

1 + tan (γ1)

sec (γ1)
=

1 + tan (γ2)

sec (γ2)
,

or,

cos (γ1) + sin (γ1) = cos (γ2) + sin (γ2) .

Since the extremal curve y (x) is continuous, we obtain

k (x1) = m (x1) = ϕ (x1) ,

together with

k (0) = 1, m

(
1

2

)
=

3

2
.

These conditions are enough to determine the unknown constants

a = −.3333, b = 1, c = −3, d = 3, x1 = .75.

Therefore,

k (x) = −.3333x+ 1,

and

m (x) = −3x+ 3.

5. Conditional Problems

In this section, we discuss variational problems involving conditional extremum, such that the Isoperi-

metric problems. Then we introduce the relation between the eigenvalue problems and the isoperimetric

problems

5.1. Isoperimetric Problems

In this section, we will talk about specific type of variational problems, which involve a conditional

extremum. For example, it is required to investigate for an extremum for the functional

v[y1, y2, ..., yn] =

x1∫
x0

F (x, y1, y2, ..., yn, y
′
1, y
′
2, ..., y

′
n) dx,

and so-called isoperimetric conditions

x1∫
x0

Ki (x, , y1, y2, ..., yn, y
′
1, y
′
2, ..., y

′
n) dx = li, (i = 1, 2, ...,m) ,
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where li are constants, and m ≥ 1.

Now, to obtain the basic necessary condition in an isoperimetric problem, it is necessary to form the

auxiliary functional

v∗ =

x1∫
x0

F ∗dx, where F ∗ = F +

m∑
i=1

λiKi,

where λi are constants [8], and then find Euler’s equation for it, for more details, we refer the reader to

[8].

Example 5. Find the extremal of the following functional

v[y (x)] =

1∫
0

(y′ (x))
2
dx,

with boundary conditions

y (0) = 0, y (1) = 2.

and the isoperimetric condition
1∫

0

y (x) dx = 6.

The auxiliary functional

v∗ =

1∫
0

(
(y′ (x))

2
+ λy (x)

)
dx,

then Euler’s equation for v∗ is

λ− 2y′′ (x) = 0.

Using He’s variational iteration method we have the following correct functional

yn+1(x) = yn(x) +

x∫
0

γ (s) (λ− 2y′′n (s)) ds,

taking variation with respect to the independent variable yn, we have

δyn+1(x) = δyn(x) + δ

x∫
0

γ (s) (λ− 2y′′n (s)) ds.

So, we get the stationary conditions

1 + 2γ′ (s) |s=x= 0, γ (s) |s=x= 0, γ′′ (s) = 0.

Therefore, we have

γ (s) =
1

2
(x− s) .

Then the iteration formula becomes

yn+1(x) = yn(x) +

x∫
0

1

2
(x− s) (λ− 2y′′n (s)) ds.
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If we set

y0 = ax+ b,

then y1 is easy to find. By imposing the boundary conditions on the obtained y1, and using the isoperi-

metric condition, we have

a = −1, b = 0, λ = 12.

y1 (x) = −x+ 3x2.

Where the exact solution of this problem is also the same.

Example 6. Find the extremal in the isoperimetric problem of the extremization of the functional

v[y (x) , z (x)] =

1∫
0

(
y′2 + z′2 − 4xz′ − 4z

)
dx,

given that

1∫
0

(y′2 − z′2 − xy′)dx = 2, y (0) = 0, y (1) = 1,

z (0) = 0, z (1) = 1.

The auxiliary functional

v∗ =

1∫
0

(
(1 + λ) y′2 + (1− λ) z′2 − 4xz′ − 4z − λxy′

)
dx,

Now, the system of Euler’s differential equations of v∗ is as follows

F ∗y −
d

dx

(
F ∗y′
)

= −2y′′ (1 + λ) + λ = 0,

F ∗z −
d

dx
(F ∗z′) = z′′ = 0.

Using He’s variational iteration method we have the following correctional functionals:

yn+1(x) = yn(x) +

x∫
0

γ1 (t) (−2y′′n (t) (1 + λ) + λ) dt,

zn+1(x) = zn(x) +

x∫
0

γ2 (t) z′′n (t) dt.

Making these correction functionals, we can obtain the following stationary conditions:

1 + 2 (1 + λ) γ′1 (t) |t=x= 0, γ1 (t) |t=x= 0, γ′′1 (t) = 0.

1− γ′2 (s) |s=x= 0, γ2 (s) |s=x= 0, γ′′2 (s) = 0.

These conditions yield

γ1 (t) =
1

2 (1 + λ)
(x− t) , γ2 (t) = t− x.
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Therefore, we have

yn+1(x) = yn(x) +

x∫
0

1

2 (1 + λ)
(x− t) (−2y′′n (t) (1 + λ) + λ) dt,

zn+1(x) = zn(x) +

x∫
0

(t− x) (z′′n (t)) dt.

Set

y0 (x) = a sin (x) + b cos (x) , z0 (x) = c sin (x) + d cos (x) ,

y1 and z1 are easy to find. Imposing the boundary conditions on y1 and z1, we obtain:

a = 3.5, b = 0, c = 1, d = 0, λ = −1.1.

Thus

y1 (x) = (3.5− 2.5x)x,

z1 (x) = x.

Which is also the exact solution of this problem.

5.2. Eigenvalues of Isoperimetric

In order to solve the Isoperimetric problem, the idea is in finding differential equation with some condi-

tions, that comes from Euler’s equation, these together form an eigenvalue problem, for the eigenvalues λi

and the solution of it are the eigenfunctions. We should mention that the solutions of the isoperimetric

problem exists only for some values of the parameter λi. In order to get the point, we construct the

following example.

Example 7. Find the extremals of the following isoperimetric problem

v [y (x)] =

2∫
0

(y′ (x))
2
dx,

subject to

y (0) = 0, y (2) = 0,

2∫
0

y2dx = 6.

The auxiliary functional is given by

v∗ =

2∫
0

(
(y′ (x))

2
+ λy2 (x)

)
dx,

then Euler’s equation for v∗ is

(11) λy (x)− y′′ (x) = 0.
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Note that, equation (11) appears as an eigenvalue problem. Using He’s variational iteration method, we

have the following correct functional

yn+1(x) = yn(x) +

x∫
0

γ (s) (λyn (x)− y′′n (x)) ds.

Taking variation with respect to the independent variable yn, we have

δyn+1(x) = δyn(x) + δ

x∫
0

γ (s) (λyn (x)− y′′n (x)) ds.

So, we will get the stationary conditions

1 + γ′ (s) |s=x= 0, γ (s) |s=x= 0, λγ (s)− γ′′ (s) = 0.

Now, to find γ (s) , we need to take three cases for λ.

Case 1. λ < 0, by solving the above differential equation, we have

γ (s) =
−1√
−λ

sin
(√
−λ (s− x)

)
.

Then the iteration formula

yn+1(x) = yn(x) +

x∫
0

− 1√
−λ

sin
(√
−λ (s− x)

)
(λyn (s)− y′′n (s)) ds.

If we set

y0 = ax+ b,

we find,

y1 (x) = b cos
(√
−λx

)
+
a sin

(√
−λx

)
√
−λ

,

By imposing the boundary conditions on the obtained y1, we have

b = 0, λ = −
(nπ

2

)2

, where n = 1, 2, ...,

therefore,

y1 (x) =
2a sin

(
nπ
2 x
)

nπ
.

Now imposing the Isoperimetric condition, we get a = ±π
√

6,

so

y1 (x) =
±
√

62 sin
(
nπ
2 x
)

n
.

Case 2. λ > 0, then we have

γ (s) =
−e
√
λ(s−x) + e

√
λ(x−s)

2
√
m

.
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Then the iteration formula

yn+1(x) = yn(x) +

x∫
0

(
−e
√
λ(s−x) + e

√
λ(x−s)

2
√
λ

)
(λyn (s)− y′′n (s)) ds.

If we set y0 = ax+ b, then we find

y1 (x) = b cosh
(√

λx
)

+
a sinh

(√
λx
)

√
λ

,

By imposing the boundary conditions on y1, then we have the trivial solution y1 (x) = 0, but that does not

satisfy the Isoperimetric condition, i.e., when λ > 0, we do not have solution.

Case 3. λ = 0, we have

δyn+1(x) = δyn(x) + δ

x∫
0

γ (s) (−y′′n (x)) ds.

So, we will get the stationary conditions

1 + γ′ (s) |s=x= 0, γ (s) |s=x= 0, γ′′ (s) = 0.

γ (s) =
1

2
(x− s) .

Then the iteration formula becomes

yn+1(x) = yn(x) +

x∫
0

(
1

2
(x− s)

)
(−y′′n (s)) ds.

If, we set y0 = ax+ b, then we find

y1 (x) = ax+ b,

By imposing the boundary conditions on y1, then we also have the trivial solution y1 (x) = 0, therefore,

for λ = 0, we do not have solution.
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