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1. Introduction

We consider finite simple undirected graphs G = (V(G), E(G)) without loops and
multiple edges. We follow the most common terminology and notation and for concepts
not defined here we refer e.g. to [2].

The circumference of G (i.e., the length of a longest cycle in GG) will be denoted by
circ(G). A subgraph H of a graph G is called an induced subgraph of G if, for any
pair of vertices x and y of H, xy is an edge of H if and only if zy is an edge of G. If

H is an induced subgraph of G, then we use the notation H " G. For M ¢ V(G),
(M) denotes the induced subgraph of G on the set M. Given graphs Hy, ... Hy, we
say that G is {Hy,... Hy}-free if G contains no induced subgraph isomorphic to any
of the graphs Hy,..., Hy. The graphs Hy, ..., H; will be referred to in this context as
forbidden induced subgraphs. Specifically, the four-vertex star X = K 3 will be also called
the claw and in this case we say that G is claw-free. For a vertex u € V(G), the set
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Neg(u) = {v € V(G) : wv € E(G)} is called the neighborhood of u in G and the set
Nglu] = Ng(u) U {u} is called the closed neighborhood of u in G.

We say that x is a eligible vertex if the subgraph (Ng(x)) is connected non-complete.
The set of all eligible vertices of G will be denoted by Vg (G). For an eligible vertex
x € Vir(G) set B, = {uv : u,v € Ng(z),uv ¢ E(G)} and let G be the graph with
vertex set V(GE) = V(G) and with edge set E(G%) = E(G) U B, (i.e., G& is obtained
from G by adding to (Ng(x))g the set B, of all missing edges). The graph G is called
the local completion of G at x. If VLo (G) = V(G), then we say that G is locally connected.
A graph G is essentially k-edge-connected if the deletion of less than k edges leaves at
most one component with more than one vertex.

Definition 1. Let G be a claw-free graph. We say a graph H is a closure of G, denoted
H = c(G), if
(1) there is a sequence of graphs G, ...,Gy such that Gy = G, Gy = H, V(Gi11) =
V(G;) and E(Gi1) = E(G;) U B, for some x; € Vi (G;) ,
(i7) Ve (H) = 0.

The following result summarizes basic properties of the closure.

Theorem 1 (Ryjacek [13]). For every claw-free graph G,
(1) cl(G) is uniquely determined,
(7i) cl(G) is the line graph of a triangle-free graph,
(13i) cire(cl(G)) = cire(G), and
(i) cl(G) is Hamiltonian if and only if G is Hamiltonian.

We say that a claw-free graph G is closed if G = cl(G).

Let C be a subclass of the class of claw-free graphs. We say that the class C is stable
under the closure (or simply stable) if cl(G) € C for every G € C (equivalently, the class
C is stable if the closure operation is internal on C).

Suppose that Z;, B; ; and N; ;; are the graphs as shown in Figure 1.

Theorem 2 (Brousek et al. [3]).
(i) The class of Ky 3P;-free graphs is a stable class for any i > 3.
(11) The class of K1 3Z;-free graphs is a stable class for any i > 1.
(11i) The class of K13N; ji-free graphs is a stable class for any i, j, k > 1.

Also Brousek et al. [3] gave an example showing that the class of K 3B, j-free graphs
is not stable under closure operation.

One of the first results on forbidden subgraphs and Hamiltonicity is by Goodman and
Hedetniemi [§].

Theorem 3 (Goodman and Hedetniemi [8]). If G is a 2-connected { K1 3, Z1 }-free graph,
then G is Hamiltonian.
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FIGURE 1. The graphs Z;, B;; and N; ;

Later, in 1981 Duffus et al. [6] extended Theorem 3 to the larger class of Kj 3Ny 1 ;1-free
graphs.
Theorem 4 (Duffus et al. [6]). Every 2-connected K1 3Ny 1-free graph is Hamiltonian.

Bedrossian [1] and Faudree and Gould [7] characterized all pairs of connected forbidden
subgraphs X, Y such that every 2-connected X,Y-free graph is Hamiltonian.

Theorem 5 (Bedrossian [1], Faudree and Gould [7]). Let X and Y be connected graphs
with X, Y # P3, and let G be a 2-connected graph of order n > 10 that is not a cycle.
Then, G being XY -free implies G is Hamiltonian if and only if (up to symmetry) X = K 3
andY = Py, Ps, Ps,Cs, Z1, Zs, Z3, B11, N111 or By .

A similar result for 3-connected graphs is given by Luczak and Pfender [10] in 2004.

Theorem 6 (Luczak and Pfender [10]). Every 3-connected K, 3Pi-free graph is Hamil-
tonian.

Moreover, Luczak et.al. showed that there are infinitely many graphs such that they
are 3-connected and K 3Ps-free, but non-Hamiltonian.

Theorem 6 give a motivation i.e. to find an upper bound for the numbers 7, j such that
every 3-connected K 3B; j-free graph is Hamiltonian.

In the next section we will present the following results:

e Every 3-connected K 385 5-free graph is Hamiltonian.
e Every 3-connected K 353 4-free graph is Hamiltonian.

2. Main results: 3-connected K 3B; j-free graphs
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In the proof we need the following definitions. The following concepts were introduced
by Miller et.al. [11].

A pair of pendant edges with a common vertex is called a cherry. If a graph G contains
no cherry, we say that G is cherry-free. Let G be a graph, z € V(G), dg(z) > 2 and

denote all neighbours of = by Ng(z) = {a1,aq,...,a;,b1,ba, ..., b;} with ¢,j > 1. Let G
be the graph with

V(GH) = (V(G)\ {z}) U{xy, 22}, where z1, 20 & V(G),
and
E(GH = (E(G)\ {zai,...,za;,xby,...,xbj}) U{z1ay,... ,z10;}

U{zabr, ..., 220} U{z122}.

Then we say that G is obtained from G by splitting of type 1 of the vertex = (see
Figure 2).

Suppose we have a graph G that contains a pendant edge e with end vertices z, u.
Let us assume x € V(G), dg(x) > 3 and denote all neighbours of z by Ng(z) =
{u,a1,a9,...,a;,b1,bs,...,b;} with ¢,7 > 1. We will construct the graph G in the
following way.

V(GH9) =v(@),
and

E(GH9) = B(G) \ {xby, xbs, ..., xb;} U {uby,uby,. .., ub;}.

Then we say the graph Gy () is obtained from G by splitting of type 2 of x or rotation
of e (see Figure 2).

aq b
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aq bl aq bl e b%) %)
R e Lz
a; e T bj a; e *1 1) bj 1 bj 1 bj

Splitting of type 2 of z

Splitting of type 1 of x _
or rotation of e

FiGURE 2. Splitting and rotation

Theorem 7 (Miller et.al. [11]). Let G be a claw-free graph and x € V(G). If G& contains
an induced subgraph F such that F = L(H), where H is a triangle-free and cherry-free
graph, then G contains an induced subgraph F' such that F' = L(H') and either H ~ H,
or H' is obtained from H by splitting of type 1 of the vertex x or splitting of type 2 of x.
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Suppose that Y is a family of graphs. If for any Y € ) and any Y’ obtained from Y
by splitting of type 1 or 2 of a vertex, Y’ contains a subgraph Y € ), then ) is called
closed under vertex splitting (or shortly split-closed).

It is known that the class of K 3B; ,-free graphs is not stable under the closure opera-
tion. Our main target is to find such a class ("9 that is split-closed and every graph
in 5779 contains a subgraph isomorphic to L™1(B,,.).

The following concepts are introduced by Miller et.al. [11]. Suppose that B is a family
of connected line graphs of triangle-free and cherry-free graphs. Let G be a family of
connected closed K 3-free graph, and suppose k > 2 is an integer. Suppose that a family
S of connected line graphs of triangle-free and cherry-free graphs satisfies the next three
conditions.

(i) S is split-closed,
(i1) every S € S contains a subgraph isomorphic to L™!(B) for some B € B,
(i73) every closed k-connected K 3L(S)-free graph is K 3G-free.

Then, S is called a k-stabilizer for B into G under closure cl, or shortly a (k,B,G, cl)-
stabilizer. If B = {B} and G = {Q}, then we shortly say that S is a (k, B, Q, cl)-stabilizer.

Theorem 8 (Miller et.al. [11]). Let S be a (k,B,G, cl)-stabilizer, k > 1, and let G be a
k-connected Ky 3B-free graph. Then cl(G) is K 3G-free.

Let us assume that 7 is a class of all triangle-free and cherry-free graphs. In our proof
we need a special subclass of 7. Suppose that H € 7 and let s,r be integers. If H
contains a subgraph isomorphic to L™!(Bs,) then H is called (s,r)-good. We denote by
A9 all (s,1)-good graphs i.e. "9 = {H € | H is (s,r)-good}. A pendant edge
e € E(H) is called a critical edge, if H € ™9 and for every subgraph of H isomorphic
to L7'(Bs.), the edge e corresponds to the edge b} (see Figure 3). For example, if H is
a cycle of length at least 10 with attached pendant edge e, then H is (2,5)-good, the edge
e is critical, and after rotation of e we obtain a graph H' € 2 \ (%59

L~ Y(Byy)

FIGURE 3. Preimages of By 5 and Bs4

In the following sections we will show that J#2%9 is a (3, By, Pi1, cl)-stabilizer and
BN g a (3, B34, Pr1, cl)-stabilizer i.e. the closure of every 3-connected K 3Bs 5-free
(or K385 4-free) graph is K 3Pjq-free.
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A graph H is called (s,7)-good of type A, if H € 59 and H has not any critical
edge. The set of (s,7)-good graphs of type A is denoted by %”A(S’T)g ie. ,%ﬁA(S’T)g ={H €
A 59| H is (s,r)-good of type A}. For example, H is the graph which is obtained by
identifying a vertex of a cycle of length at least 10 with an end vertex of a path of length
at least 2, then H is (2,5)-good of type A.

The following proposition 1 says that the class of all (s, r)-good graphs (579 is closed
under vertex splitting.

Proposition 1. Let H € "9 and let H € # be obtained from H by splitting of
type 1 of a vertex or by rotation of a non-critical edge. Then H' € 9. Moreover, if
H e A8 then also H' € A

Proof is straightforward.

Let H € 2779, We say that H is (s, r)-good of type B if, for every sequence H, ... ,H;
such that H;, = H and H,,; is obtained from H; by splitting of type 1 a vertex or by
rotation of an edge, either

(1) Hy€ A9 §=1,...,4, or
(ii) there is a jo, 1 < jo < j, such that H; € "9 for i = 1,...,j, — 1 and
Hj, € 07",
We denote " = {H € #"9| H is (s,r)-good of type B}.

For example, if H is obtained from a cycle C7; with vertices labeled a;...aq; by at-
taching a pendant edge e at a; and by adding the chord asayg, then H € #6349 ¢ is the
critical edge and after rotation of e we obtain a graph H' € :%”A(M)g, hence H € :%”553’4)9.

Theorem 7 immediately implies the following corollary, summarizing properties of the

classes €, A9, %8#)97 L%B(s,'r’)g'

Corollary 1. Let G be a claw-free graph and let G, be the local completion of G at a
verter v € V(QG).

(i) If G is L(I)-free, then G, is L(€)-free.

(ii) If G is L(")9)-free, then G, is L(79)-free.

(i11) If G is L(%”A(s’r)g)-free, then G, is L(e%”f’r)g)-free.

(iv) If G is L(AE U AT -free, then G is L(AETT U A7) - free.

Proof. (i) If L(H) Nl G, for some H € #, then Theorem 7 implies L(H') N G, where

H’ is obtained by splitting of type 1 or 2 of a vertex.
The proofs of parts (i7), (¢iz) and (iv) are similar. O

In our proof we use some special subclass of the class 7.

Let C be a cycle of length t > 4 with V(C) = {z1,...,2} and let P;,..., P, be t (not
necessarily nontrivial) vertex-disjoint paths with P; = yéy{ e yf , 7 =1,...,t. The graph,
obtained by identifying z; = ), 7 = 1,...,t, is called an (i, ...,%)-t-sun, or, briefly, a
t-sun (see Figure 4). The cycle C' is called the disc and the paths P, ..., P; the beams of
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FIGURE 4. Good sun of type A

the sun, and for a beam P;, the vertex z; is called its root. The family of all suns will be
denoted .#.

It is easy to verify that if S € .4 and S’ is obtained from S by splitting of a vertex or
by rotation of an edge, then also S’ € .. Now we define the classes of (s,7)-good suns
and of (s,r)-good suns of types A and B as .9 = .7 0 (579, Yf(‘s’r)g =N %”Af”)g
and Yés’r)g =.7N ,%”Bfw)g , respectively.

For S € .79 the beam of S containing the center (i.e. the only vertex of degree 3) of
the subgraph Y = L™1(B,,) is called the main beam of S, and if an S € .7*™9 contains
more subgraphs that are isomorphic to Y, we will always suppose that Y is chosen such
that the length of the main beam is maximum. For a sun with vertex set {xy,..., 2} we
will use notation S(zy ...xs), where in the list of vertices we always list first the vertices
of the disc, followed by lists of vertices of the beams, where the vertices of beams are
ordered starting with the root and the beams are ordered in the order of the vertices of
the disc; lists are separated with semicolons. If a sun is good, we always start the list of
vertices of the disc with the root of the main beam (and, consequently, the main beam is
also the first one in the list of beams). For example, the ((2,5)-good of type A) sun in
Figure 4 will be denoted S(z42320212625; 24Y1YsYs; 22U3Y5YaY3; 2191 ).

Now we are ready to prove our main results.

2.1 K1,3BQ75-free graphs

T - L_1<P11)

a1 a2 as a4 a5 G a7y ag a9 a1 a11 A12
0 —O0—O0—O— O — O —OP—O—O@—O—©@

FIGURE 5. Preimage of Py

Proposition 2. Let G be a K, 3Bs 5-free graph. Then cl(G) contains no induced subgraph
F such that L=(F) € ™9 U 729
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Proof. 1If F ral cl(G) is such that L7Y(F) € Yf’g’)g U Yé2’5)g, then, by Corollary 1 and
by induction, there is an F” " G such that L7YF") € Yf"r’)g U YE(;Q’S)Q. Thus, L~(F)
contains a subgraph L™1(By5), contradicting the fact that G is By 5-free. U

Proposition 3. Let G be a 3-connected closed claw-free graph. If G is not Ky 3P -free,
then G contains an induced subgraph F such that L=*(F) € .#>7 0 79

Proof. Let GG be a 3-connected closed claw-free graph and suppose that G is not P;i-free.
By Theorem 1, there is a graph H = L7'(G). Since G is not Pj;-free, H contains a
subgraph T' = L™'(Pj;) (not necessarily induced). We will use the labeling of vertices
of T" as indicated in Figure 5. The graph G is 3-connected and hence H is essentially
3-edge-connected. Thus, the set R = {asaq,aras} cannot be a cut-set of H, implying
there is a path P = dyd;...dg, £ > 1, such that, up to symmetry, dy = ag, dp €
{a1, as, a3, ay, as, as, ag, aig, a1y, a12} and d; € V(H) \ V(T) for 1 < i < k—1. We will
show that in each of the possible cases H contains a sun S € ./ f"r’)g U YE(;Z’S)” . We list
all possible cases in the following table in which the first two columns describe the case,
in the third column we give minimum length of the path P which follows from the fact
that H is triangle free, and in the last column we indicate the sun obtained in this case.
In the following cases we obtain a sun S containing a copy of L™!(By3).

Case Min. The sun S containing
dy dp k acopyof L7 (Bygs)

ag Q1 1 S(dy . ..drasasagas; doay . . . aje) € 5”1&2’5)!]

ag ay 1 S(dy...dpasasas:doas . .. ag) € S

ag a3 1 S(do...drasas;doay ... ajo;dpasay) € yfﬁ)g

ag ay 2 S(dy...dgas;doaz .. .a12; dragas) € yf(xzj)g

ag as 3 S(dy...dg;doay...a19;drasas) € y£2,5)9

ag as 2 S(dy...doar: dyagayeair: dyasasasasa,) € S0

ag Ao 1 S(dy...doagar; dyajpaiiars; drasasasasay) € yf(12,5)9

ag a1 S(dg...dpagagar; dyaiiare; dyasasazasay) € 5@(‘2’5)9

ag ay1 1 S(dg...doaroagasgar; drais; drasasazasay) € yéz,s)g

ag a1 S(dy...doar1ar0a9asa7; drasasazasay) € Y,§2’5)g i k> 9

We note here that in the ninth case after rotation of its beam of length 1, we are in the
tenth case.

The only remaining possibility is dy = ag, di, = a12, k = 1. Wedefine 7" = (V(1"), E(T"))
such that V(T") = V(T), E(T") = E(T) U {aga12}. Again, since H is essentially 3-edge-
connected, the set R’ = {agar, agag} cannot be a cut-set of H, implying there is a path
P =dydy...d,, t > 1, such that d, € {a7,as}, d, € {a1,a9,as, a4, as, ag, ag, ayp, ai1, aia}
and d, € V(H)\ V(T") for 1 <i <t — 1. Symmetrically as above, there is only one path
beginning at dj, = a; and this path is d, = ar,d, = a;,t = 1. There are the following
possibilities.
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Case Min. The sun S containing
dy d, t acopyof L7'(Bygs)
asg Qg 1 S(aﬁauanaloagd’ ar; G6G5CL4CL3, od CLQ) (2 2L
as Qs 1 S(agaiparapagdyar; agasasag; dy . . . dyay) € Y(Q 5)g
as as 1 S(d 9100110120607, d .d] 120471, CLGCL56L4) (2 59
ag Qg4 1 S(d 9100110120607, d d +A3A2047; a6a5) y(Q 5)g
asg Qs 1 S(d Ag10A11A120607; d . dta4a3a2a1) y/(f 5)g if ¢ Z 2
as Qg 2 S( .. d0a7, dtCL5CL4(I37 doagaloanalg) S y/(1275)g
ag Qg 3 S( .. dE), d;aloallalg; d{)a7a6a5a4a3a2a1) € y@ 5)g
as a2 S(dy...dag; dyarasasasazas; diaiars) € 5/(2 5
as ai 1 S( .. d;amag; d6a7a6a5a4a3a2) € y(Q 5)g ift>2
ag aig 1 S( - d;analoag; d6a7a6a5a4a3a2) € y(Q Sl

The remaining possibilities are:

We consider these cases separately.

Case 1. d;,

_ U
= ar, dt

V(T"),
{asas, asas} cannot be a cut-set of H, implying there is a path P” =

E(T//)

=ay and t = 1. We define 7" = (V(T"), E(T")) such that V(T") =
= E(T") U{ara;}. Since H is essentially 3-edge-connected, the set R” =
dpd!...dl, s > 1,

such that dfj € {as, a4}, d? € {a1, as, a5, a6, ar, as, ag, a1g, a11,a12} and d € V(H) \ V(T")
for 1 <i < s — 1. There are the following possibilities.
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Case  Min. The sun S containing

dy d! s acopyof L7 (Byjs)

as aj 2 S(d” d//ag, dl! 0A4a0506012011A10; d’ a7a8) € y@ 5)g
as a9 3 S(dfy...d!ls5dYasasagarsariarg; dlajayr) € 5’ 25

a3 Qs 2 S(d” d;’a4, d0a2a1a7, dsaﬁalganawag) S y[f )9

as Qg 1 S(d” d;’a5a4; df)’agalcw; dgCLGCLlQCLH(llO(IgCLg) € y1§2’5)g
as ary 1 S(d” dg(lgal; dg’agagawanalg%; d8a4a5) € yf(‘lf))g
a3 das 1 S(d” dga9a10a11a12a6a5a4; d{)’agalcw) € y1§275)g

a3 Qg 1 S(d” dga10a11a12a6a5a4; d{)’agalm) S yf(XZ,S)g

as aijo 1 S(ds oo dg’a4a5a6a7a8a9; d’s’analg; d”a2a1) c yf(ﬁﬁ)g
as ai 1 S(d;/ c. d8a4a5a6a7a8a8a10; d;lalg; Oagal) € y (2,5)9
as a2 1 S(d” d;’analoagaga7a6a5a4; dgagal) 5”15‘2 5)g

aqs Qaq 1 S(d" dls/CLQCLg; d{]’ag,aﬁananamag; d/s/a'ﬂlg) S y/(XQ,B)g
ags Qg 2 S(d” 6,@3; d’s'alamg; dg&5a6a12a11a10> € y(2,5)g
agy as 3 S(dy...d!;djasasa aragag; dlagainarr) € Y(Q )9

ay  ag 2 S(dj...das; djasasarazasag; diagainar) € Ly (25)9
as ay 1 S(dp...dlagas; djasasay; dlagagarpariars) € 5”(25
as as 1 S(d” d”a9a10a11a12a6a5; d”agagal) S y(25

ag Qg 1 S(d 3201070605, d d, a10011; aﬁalg) € y (2:5)g
ayg ailo 1 S(d 30901070605, d .d” sA90sg; (lﬁalg) € y(25

ay, Qai 1 S(d” d”a10a9a8a7a6a5, doagagal) € y@ 5)g

ayg A12 1 S(d” .d s111A10A9A8A70605; d; agagal) S y(25

Note that in the ninth case we obtain a sun S such that the rotation of its beam of length
1 results in a good sun S’ with disc of length 10 and main beam of length 2.

Case 2. djy = ag, d, = ay; and t = 1. Weredefine 7" = (V/(T"), E(T")) such that V(T") =
V(T"), E(T")= E(T")U{aga1}. Since H is essentially 3-edge-connected, the set R” =
{agag, ajpai1} cannot be a cut-set of H, implying there is a path P” = djdy...d", s > 1,
such that djj € {ag,a1o}, d! € {a1,a9,as, aq, as, ag, ar,as,a11,a12} and d € V(H) \ V(T")
for 1 <i < s — 1. There are the following possibilities.
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Case  Min. The sun S containing

dy d! s acopyof L7Y(Bys)

Qg aq 1 S(d// d/’a2a3a4a5a6a7a8; d”a10a11a12) Y(M)g
ag Q9 1 S(d” d”a3a4a5a6a7a8, d aloallalz) € y @ 5

Qg as 1 S(d A10011A120607048; d/ . d”azal; d Cl5(l4) c yA2’5)g
Qg ay 1 S(d" df 0A87A6As5; d’ agagahaﬁalganam) y(2’5)g
Qg as 1 S(anagd a10; 11A120607, d odl a4a3a2a1) € y (2:5)9
Qg Qg 1 S(d aga11dio; d d sA504A30201; CL116L12) € y 25)9
Qg ay 2 S(d” . d”(lg, do&loallalg, d a6a5a4a3a2a1) € y (25)9
Qg as 3 S(d// . d d 0210011A12; dsa7a6a5a4a3a2a1) c yA25
g ai1q 2 S(d// . d”alo, ga8a7a6a5a4a3a2a1; d//alg) € y(Z,S)g
g A12 1 S(d” dl 0@10a11; dl! 0a80ar7; d a6a5a4a3a2a1) € y 2 )9
aip ap 1 S(agaud Ag; ag7ag12; d c. d’s’agaga4a5) € yAQ (2:5)g
ATV D)) 1 S(agandoag, aga7aedl2; dO . d”a3a4a5) S y[fé)g
aip das 1 S(CLG(llQ(lHd a9a8a7,a6a5a4,d” d//(lga ) c y(275)g
a9 Qg4 1 S(d!...djagasaragas; dlasasar; agariare) € 74 25)9
10 Qs 1 S(auagagdo, a11a120607; d/ d”a4a3a2a1) < y(Z )9
aip GAg 1 S(d" coodl sA7agay; dy 0?11Q12; d’ a5a4a3a2a1) € y 2 59
aip ary 1 S(ds . d”agag, d’ s 6504030201 ; d; analg) € y 2 g
aip das 2 S(d;’ . d”ag, d’ sA7A6A5A4A30207 5 d; (111(112) € y(Q S)g
a1 Aai 3 S(dg C. d8a12a6a5a4a3a2a1; d0a9a8a7) 5{4(12 5)g
aip a2 2 S(d;’ d’s’aﬁa5a4a3a2a1; d{)’agag) S yéQ,S)g

Case 3. dj = as, d, = a5 and t = 1. Weredefine 7" = (V(T"), E(T")) such that V (T") =
V(T"), E(T") = E(T") U {asas}. Since H is essentially 3-edge-connected, the set R” =
{asgas, asas} cannot be a cut-set of H, implying there is a path P” = did]...d”, s > 1,
such that dj € {as, a4}, d? € {a1, as, a5, a6, ar, as, ag, arg, a11,a12} and d € V(H) \ V(T")
for 1 <i < s — 1. There are the following possibilities.
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Case  Min. The sun S containing

dy d! s acopyof L7 (Byjs)
as aip 2 S(a6a12a11a10a9a8a7; a6a5a4d6’ . dgaz) c yf(ﬁﬁ)g
az ay 3 S(agapariapagagar; agasasdy . .. dray) € 5’(2’5)9
as Qs 2 S( S d”a4, d a6a7a8a9a10a11a12, d CLQCll) c y(25 g
as Qg 1 S(dg .. d0a4a5; dsa7a8a9a10a11alg; doag(ll) 5”/(12 5)g
as ary 1 S(dg d”a6a12a11a10a9a8a5a4; d/,CLQal) € y(275)g
as das 1 S(d a5a6a7, d df 0?2071, a6a12a11a10a9) c y (2:5)g
as Qg 1 S( 6/ c. d8a8a7a6a5a4; doagal; a6a12a11a10) € yAZ )9
as a1 S(dy...dlagasarasasaq; dyasas; dlayiars) € ,5@(12’5)9
as ai 1 S(d;/ c. d8a4a5a6a7a8a9a10; d;lalg; Oagal) € y (2,5)9
as a2 1 S( g c. d;’analoagaga7a6a5a4; dgaQal) ngZ )9
ay  ay 1 S(dy...dlasas; dyasagaragagag) € 56(12’5)9 if s >2
aqs Qg 2 S( 8 Ce d;’agag; d{)’a5a6a7a8agam; d;’al) € y(2,5)g
ay as 3 S(dl...dJ;d agarasagaipars; djazasar) € Y(%
ay  ag 2 S(df...dlas; dyjasasay; dlaragagaparr) € ,5@(‘2 5)g
as ag 1 S(df...dlagas; djasasay; asagagaipariars) € ¢5’£‘2’5)g
s ag 2 S(df...dlaragas; dyasasay; dlagarparr) € yf’g))g
ag Qg 1 S( 8 R d;’agag,; dg(lgagal; CL8G7G6CL126L116L10) € y}(‘Q,B)g
as ayo 1 S(dy...dlagasas; dyasasar; agaracaizarr) € Y/(XQ’B)Q
ay ai 1 S(a8a5a6a7; &8a9a10d” gagagal; a6a12) € y(275)g
ayg a1 1 S(d” .d! s111A10A9A8A70605; d; (lgagal) S y(25

The remaining possibility is dj = a4, d’
such that V(T*) = V(T"),

. d:na m Z 17 SU.Ch that ds S {a9a a’lO}a d;kn € {ala a9, a3, 4, as, g, A7, ag, A11, a’l?}
Y\ V(T*) for 1 <i < m — 1. There are the following possibilities.

= ay,s = 1. We define T* = (V(T™), E(T™))
E(T*) = E(T") U{a4a,}. Since H is essentially 3-edge-
connected, the set R* = {agag, a1pa11} cannot be a cut-set of H, implying there is a path

=dydy ..
and df € V(H
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Case  Min. The sun S containing

dy di, m acopyof L7'(Bys)

Qg aq 1 S(d* a4a30a9; d .df 0Q10a11; CL4CL5CL86L7CL6(112) € y@ 59
ay Qs 1 S(d;aiaqas;d doaloall, A4a5030706012) € Ly 25)9
Qg as 1 S(da .df mA2A1A405060708; dp CL106L11(112) S y(25

Qg ay 1 S(d;‘jn coody 0a8A7As 05, d m 3201 a6a12a11) € y (259

Qg as 2 S(d:n Coodh 0agAa70g; d* ma4a30207; d? a10a11a12) € y (2:5)9
Qg ag 1 S(djn coody 010A11412; d? a7a8a5a4a3a2a1) € 45” (2 5)g

Qg ay 2 S(d:n Ce dOCLS, d0a6a5a4&3a2a17 doaloCLllCng) y/(f 5)g
Qg as 3 S(djn NN d07 dp 0Q7ael504A302017, dy CL106L11(112) € (5/(2,5)9
g ai1q 2 S(dfn Ce doam, d* mA1206A504A30201 ; d0a8a7) € y 2 59
g A12 1 S(d:n Ldf aloan,d a12a6a5a4a3a2a1,d CLgCL7) € yA
aip ap 1 S(d*a11a12a6a7a8a9, d .. doagag, a8a5a4) € yAQ (25)g
aip as 1 S(d0a11a12a6a7a8a9, d .. dé&zag; a8a5) S y/(l2,5)g

aip as 1 S(d 1101206070809, d .. déagal; CL8(I5CL4> € yf(ﬁﬁ)g
alp Qg4 1 S(d{aiiaisaearagag; dy, . .. dyasasay; asas) € 5/(2’5)9
a1p GAs 1 S( .df mA6A7A849; dy 011a12; d* CL4CL36L26L1) if m Z 2
aip Qg 1 S( 0 - .d; a7a8ag,d a11a412; df CL5CL4CL30,26L1) 5”(25
aip ary 1 S(d:n cody 0Q9Asg; d; maA6A5A4a4302071; dy CL116L12) € y 2 2
a9 as 2 S(djn coody 0a9; d mad6a504030A201; dp CL116L12) € y (2 5)9
a1 Aail 3 S(d:n Ce dO? dr mad1206050443020471 d0a9a8a7) S y (25)9
1o a12 1 S(djn coody 0115 d’ m6a504aA30207, d CLgCLg(l’r) S ‘yA2 )9

The remaining possibility is dy = ayo, d};, = a5, m = 1. We define T** = (V(T**), E(T**))
such that V(T**) = V(T*), E(T*™) = E(T*) U {aijpas}. Since H is essentially 3-edge-
connected, the set R* = {a10a11, a12a6} cannot be a cut-set of H, implying there is a path

f=ditdy . dF o n > 1, such that d§F € {a11, a1}, & € {aq, as, a3, aq, a5, ag, az, as, ag, aip}
and df* € V(H) \ V(T™) for 1 <i <n — 1. There are the following possibilities.
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Case  Min. The sun S containing

dy* dr*  n acopy of L7(Byjs)

aj; ap 1 S(d**a12a6a7a8a9a10; ds* . d;*agag; a6a5a4) € (5/14(375)9
ayr ay 1 S(dyrapasaragagare; diy . .. diFazay; agas) € Yf’f))g
ai; das 1 S(d A1206A708090710; dO .dZ*CLQCLl; (IGCL5CL4) S yf(ﬁﬁ)g]
ai; aq 1 S(d A1206A708A9010); dO* d**agagal; CLGCL5) € 54}2,5)9
a1 as 2 S(d** d a10a9a8a7a6,d a4a30a207, ) € y (2:5)9

aip Qg 2 S(d** .. d a12; d aipGoaglry, d a5a4a3a2a1) € y (25)9
ai;p  ar 1 S( Ce d agd12; dO a10oag, dO a6a5a4a3a2a1) € y (2:5)9
ai; das 1 S(d** ce d a7060a12, d a10a5a4a3a2a1) c y (2:5)g

a1 Qg 2 S(d** .. d agad7aed12; d &10&5&4&3&2&1) € y (2:5)9

aip Qaip 3 S(dn .. d a12a6a7a8a9,d CL5CL4CL36L2) € y 25

12 Qa1 1 S(d;*awgag, n . d* a11a10a9a8a7,a4a5a6) S y(25
a2 Qo 1 S(dffajagas; d . d0 A11A10A9A8a7; A4a506) € 5”(25
12 as 1 S(d;kl*a4a1a2, n - d ai11a10090gar; a4a5a6) (25
12 Qg 1 S(d...d5anapagasaragas; diasasay) € 5” 2 5

12 QAs 1 S(d;* e d 1141009080706, d CL4CL36L26L1) 5’

ai2 QAg 3 S(d;* ce d a11A10A90807; dn a5a4a3a2) € y (2 5)9

12 Qary 2 S(d;kl* Ce d a110A10090g; dn a6a5a4a3a2a1) € y

12 Aas 1 S(dz* N d a11aA1009; d a7a6a5a4a3a2a1) S y@ 5)g
12 Qg 1 S(d§ ... dagarag; dyfallajpasasazasay) € 5’ (25)9

a12 Qio 1 S(d;* ce d AeA7Aa8A9; d aiq, a6a5a4a3a2) 5/5 )9

We note here that in the case dj* = a2, d)* = a1p we obtain a sun S such that the rotation
of its beam of length 1 results in a (2,5)-good-sun S’ with disc of length 8 and main beam
of length 4.
In each of the possible cases, we showed there is a sun S € . 1512’5)9 u yé2’5)g . We proved
Proposition 3.
O

Now we can prove the following theorem.
Theorem 9. Let G be a 3-connected K, 3By 5-free graph. Then cl(G) is Py -free.

Proof. Proposition 1 implies that the class of all (2,5)-good graphs #(>%)9 is split-closed.
By the definition of J#(2%9 every H € #*59 contains a subgraph isomorphic to
L7(Byj). Propositions 2 and 3 imply that every closed 3-connected K; 3Bs 5-free graph
is K, 3P -free. Then, the class 52299 is a (3, By, Py1, cl)-stabilizer. Theorem 8 imme-
diately implies that cl(G) is Py;-free. O

Corollary 2. Every 3-connected K, 3Bs5-free graph is hamiltonian.
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2.2 K, 3Bs4-free graphs

Proposition 4. Let G be a K, 3Bs 4-free graph. Then cl(G) contains no induced subgraph
F such that L~Y(F) € 2% 0 9.

Proof. It F ra cl(G@) is such that L71(F) € %”A(M)g U L%’jg(?”‘l)g, then, by Corollary 1 and
by induction, there is an F/ ¢ G such that LY F) € 2390 9. Thus, L(F)
contains a subgraph L™!(Bs4), contradicting the fact that G is Bj 4-free. O

Proposition 5. Let G be a 3-connected closed claw-free graph. If G is not K, 3P -free,
then G contains an induced subgraph F such that L=(F) € %Y 0 s>,

Proof of Proposition 5 is postponed to Subsection 2.3. [
Now we will prove that the closure of a 3-connected K 3 B3 4-free graph must be Pyq-free.

Theorem 10. Let G be a 3-connected K 3Bs 4-free graph. Then cl(G) is Pyy-free.

Proof. We will show that the class of all 3-good graphs #7349 is a 3-stabilizer for Bs 4 into
Py; under closure cl. Proposition 1 implies that #2399 is split-closed. By the definition of
AV every H € /59 contains a subgraph isomorphic to L™(Bs,4). Propositions 4
and 5 implies that every closed 3-connected K 385 4-free graph is K 3P ;-free. Then, the
class 39 is a (3, By 4, P11, cl)-stabilizer. Theorem 8 immediately implies that cl(G) is
Pyi-free.

O

Corollary 3. Every 3-connected K, 3Bs 4-free graph is hamiltonian.
2.3 Proof of Proposition 5

Proof. Let G be a 3-connected closed claw-free graph and suppose that G is not P;;-free.
By Theorem 1, there is a graph H = L7'(G). Since G is not Pj;-free, H contains a
subgraph T' = L7'(P;;) (not necessarily induced). We will use the labeling of vertices
of T" as indicated in Figure 5. The graph G is 3-connected and hence H is essentially
3-edge-connected. Thus, the set R = {asaq,arag} cannot be a cut-set of H, implying
there is a path P = dpdy...dg, k > 1, such that, up to symmetry, dy = ag, dp €
{a1, as, as, a4, as, as, ag, ajg, a1y, a2} and d; € V(H) \ V(T) for 1 < i < k—1. We will
show that in each of the possible cases H contains either a sun S € .% f(‘3’4)g U 5”;3’4)9 or
W e %3,4)5; U %’ésﬁgg . We list all possible cases in the following table in which the first
two columns describe the case, in the third column we give minimum length of the path
P which follows from the fact that H is triangle free, and in the last column we indicate
the sun obtained in this case. In the following cases we obtain a sun S containing a copy

of L1 (B374) .
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Case Min. The sun S containing
dy dp k acopyof L7'(Bsy)

ag a1 S(do...drasazagas; doay ... a11) € y£3,4)9

ag ay 1 S(dy...drasagas;doaz...a1q) € y/(lsA)g > 9
ag a3 1 S(do...drasas;doay ... a1r;drasay) € yf(l?)A)g itr> 2
ag ay 2 S(dy...dgas;doar...aq11;drazas) € 54}3,4)9

ag as 3 S(dy...dg;doar...a11;dpasazas) € 5”[(‘3’4)9

ag as 2 S(dy...dpar; doasasazasas; dyagarg) € 5

ag ag 1 S(dy...drasar; doasasazasar; dyayparr) € 1715;3’4”

ag a1 S(do...dragagar; doasasazasay; drajiars) € yf(l?),ﬁl)g T
ag a1 1 S(dy...dpapagasar; doasasazasay) € yé?,,ﬂ:)g

ag a1 1 S(do...drar1ar0a9asa7; doasasazasar) € y£3,4)g

The remaining possibilities are:

d[):a@, dk:ag, k’zl,
do = ag, dp = ayp, k=1;
dOZCLG, dk:a3, k=1.

We consider these cases separately.

Case 1. dy = ag, d = ag and k = 1. We define 7" = (V(T"), E(1")) such that V(T") =
V(T), E(T") = E(T) U {agaz}. Since H is essentially 3-edge-connected, the set R =
{asgas, asas} cannot be a cut-set of H, implying there is a path P’ = d{d ... d}, t > 1,
such that df, € {as, a4}, d, € {a1,as, a5, a6, ar, as, ag, arg,a11,a12} and d, € V(H) \ V(T")
for 1 <i <t — 1. There are the following possibilities.
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Case Min. The sun S containing

dy d, t acopyof L7'(Bsy)

as ay 2 S(asasaudy . .. djas; asaragagaipar) € 45@(,3’4)9

as Qag 3 S(a6&5a4d . d;, a6a7a8a9a10a11) c Yf”‘*)g

az a5 2 S(aed; ... dyas; asarasagaioar; dyas) € 5”(3’4)‘(’

az ag 2 S(d}...dyagas; dyaragagarpars; dyasar) € y(34

az ar 1 S(d,...dasasa6; djagagarpariarz) € yA34 it h>0
as ag 1 S(d...d\asagar; dyagayoarars; agasas) € &9

az ag 1 S(dy...dazarasasay; dyasay; dyarpaiarn) € yf(xg,zx)g
as ayp 1 S(dy...dagasaragasay; dyasay; dyariars) € yf(l3,4)g i k> 2
ag  a 1 S(agasasdy . . . diarpagasar; agasaq; diars) € 56(13’4)9
a3 aiz 1 S(agasasdy . .. dyaroagagar; asazay; dyarz) € Y(M)g
ar a1 1 S(agasasdyas; agazasagargary; dyds;) € S5

ay Az 2 S<a6@2a3d0a57 Aed7a8A9A10011, dOd, ) - 5” 3 49

ar a5 3 S(asasasdy ... dj; asarasagaioar) € 5/(34

as Qe 2 S(d}...dyas; dyaragagarpar; dyasazay) € ,7(34

ay arg 1 S(d}...dasas; diagagaioar aiz; dyazasa;) € 5/(34 g
as ag 1 S(d a3a2a6a57d/ .. djagarpararz; agay) € yA34

ayq Qg 1 S(dyasasagas; dy . . . diajpaiiale; agarag) € 5{5‘3’4)9

a4 Ao 1 S(dy ... dyasasagaragag; diariaiz; dyasaza,) € 456(13’4)9
a4 Q11 1 5(a6a2a3a4a5, aaragagayo; dp . . . dyags) € 5/1&374)9

a4 an 1 S(agasasasas; agaragagarpary; dy . .. dy) € yf(l?:#l)g

The remaining possibilities are:

dy =as, dy=a7, t=1,
dE}:CLg, d;:aw, t=1

Subcase 1.1 dj = a3, d; = a7 and t = 1. Weset " = (V(T"), E(T")) such that V(T") =
V(T"), E(T') = E(T")U{asaz}. Since H is essentially 3-edge-connected, the set R” =
{asas, asag} cannot be a cut-set of H, implying there is a path P” = djd}...d!, s > 1,
such that dj € {a4, a5}, d? € {a1,aq, a3, a6, a7, as, ag, arp, a11,a12} and d} € V(H) \ V(T")
for 1 < i < s— 1. Symmetrically as above, there is no path such that dfj = a4 and
d! =a;, i =1,2,3,6,7,...,12, thus, all possible paths begin at dj = as. There are the
following possibilities.
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Case  Min. The sun S containing

dy d! s acopyof L71(Bsy)

as a1 1 S(arazasdyas; aragagaioaiiarz; dg . . . dias) € 5@(‘3’4)9
as a2 2 S(a7a3a4d6a6; ar7aggipa11 A2, dg R d;’al) c Y}f”“g
as az 2 Slarazaidyas; arasagarana; dy . .. df € S5

a5 do 3 Slagazasdy . . . dJ; azagagaiparars € 56(‘3’4)9

as a7 2 S(d...dgas; djasagaioariara; dyasazas € Yf({q”‘l)g

as as 1 S(d!...dYagar; dlagaiearia; asasazas € S5

as g 1 S(dgasasazaq; dy . . . diarpaiiars; azazas € 5@(13’4”

as aio 1 S(d” .. d0a6a7a8a9, d;’a11a12; d8a4a3a2a1 c yf(ng)g
as an 1 S(dg R d;’aloagasa?aﬁ; dga4a3a2a1 c y(g 49

as Q12 1 S(dg .. d;’analoagaga?aﬁ; d8a4a3a2a1 c y(3 A)g

Subcase 1.2 dj = a3, d; = a9 and t = 1. We redefine 7" = (V/(T"), E(T")) such that
V(T") = V(T"), EI") = E(T") U {asan}. Since H is essentially 3-edge-connected,
the set R” = {asay,asag} cannot be a cut-set of H, implying there is a path P” =
dyd]...d”, s > 1, such that dfj € {a4, a5}, d! € {a1,a9,as,a6,ar,as, ag, ayp, a11,a12} and
d! e V(H)\ V(T") for 1 <i < s—1. By Case 1, there is no path beginning at dj = a4.
Thus all possible paths begin at dj = a5. There are the following possibilities.

Case  Min. The sun S containing

dy d? s acopyof L7'(Bsy)

as ap 1 S(a10a3a4d”a6a7a8ag; a10011012; d” . dga,z) € y1§3,4)g
as Qa9 2 S(a10a3a4d aga7a8Ag; A10A11A12; d, . d;/CLl) € y1§3,4)g
as as 2 S(a10a3a4d0a6a7aga9, a10a11012; d” . dlll c y1§3,4)g

as Qg 3 S(d;’ ; dg, d; ar7agdgl10aly; dy 04302 € y (3:4)g

as ary 2 S(d;/ .. Oaﬁ, d” s a8a9a10A11G12; d0a4a3a2 € y

as das 1 S(dg . d”CLGCL7, dsagawanalg, d0a4a3a2a1 S y@ A)g

as Qdg 1 S(amd” d”a4a3, a10a11012; a3a2a6a7ag) € %(34 if s Z 2
as Qa1p 1 S(d” 0a6a7aga9, d’ sA11a12; d0a4a3a2a1 € y

as aij 1 S(d” . dsaloagagamﬁ, d0a4a3a2a1 S y(?) A9

as Qa2 1 S(d/l . d’s/allaloagaga?aﬁ; dga4a3a2a1 € yf(‘?, A)g

We note here that in the case dj = as, d! = ag, s = 1 we define a good H =

(V(H),E(H)) € > as follows: V(H) = V(T"), E(H) = E(T") U {asag} and the
critical edge is asay. After rotation of its critical edge H' € 7, (3:4)

Case 2. dy = ag, d, = ayp and k = 1. We define 7" = (V(1"), E(T’)) such that V(1") =
V(T), E(T') = E(T)U{agaro}. Since H is essentially 3-edge-connected, the set R =

{agar,asag} cannot be a cut-set of H, implying there is a path P’ = dyd)...d}, t > 1,




EVERY 3-CONNECTED CLAW-FREE B; 7_;-FREE GRAPH IS HAMILTONIAN 553

such that dj, € {ar,as}, d, € {a1,az, a3, a4, as, ag, ag, ajp, a1, a12} and d; € V(H) \ V(T")
for 1 <4 <t —1. There are the following possibilities.

Case Min. The sun S containing

dy d t acopy of L7'(Bs4)

as aq 1 S(d0a9a10a6a5, d d a2a3a4, (Ilgallalg) € y 34)9
ag 1 S(dyagarpagas; dj . . . dyasasas; apaii1a12) € L4 34)9
as as 1 S( d a7a6a5a4, doagal, doagaloanam) - y1§34
ag Qg 1 S(d0a9a10a6a5, djy . . . dyasasay; arpar1a12) € L4 (8:4)g
ag  as 1 S(dyagarpasas; d . . . dyasazasay; ajpaiiar2) € 5”(3 g
ag Qg 2 S(d bar; dyasagaszasay; dyagayg) € 5{&34

as Qg 3 S( . dt? d0a7a6a5a4a3, dtal(]analg) € yf(l?;A)g

ag ayg 2 S(dj...dag; dyaragasasas; diaiarz) € 56(13’4)9

ag a;; 1 S(a6a5d A910; AeA5a4a3a2a1; dy . . . djas) € ,5@(13’4)9
asg a9 1 S(a6a5d AgQ10, AgA5040A30207; d e dQCLH) - (5{&3,4)9

By Case 1, there are only three paths beginning at the vertex a; and these are:

U U .
d0:a7, dt:an, t= 1,

d6:a7, d;:alo, tzl

We note here that, in the third case we have a triangle agaraqg, a contradiction with the
fact that H is triangle-free.

Subcase 2.1 djy = a7, d, =11 and t = 1. Weset T" = (V(T"), E(T")) such that V (T") =
V(T"), E(T")= E(T")U{ara11}. Since H is essentially 3-edge-connected, the set R’ =
{arag, agaip} cannot be a cut-set of H, implying there is a path P” = djd]...d., s > 1,
such that dj € {as, a9}, d? € {a1,as, a3, a4, as, ag, az, aig,a11,a12} and d € V(H) \ V(T")
for 1 <i < s—1. By Case 2, there is no path beginning at dj = as. Thus, all possible

paths begin at djj = ag. There are the following possibilities.
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Case  Min. The sun S containing

dy d! s acopyof L71(Bsy)

ag aq 1 S(dyasaragaio; dy - . . dlasasay; azaya12) € :71513’4)9

ay Q9 1 S(dbasaragaig; dj . .. dlasasas; arai1a12) € 7, 349

g asg 1 S(d” d”a8a7a11a10a6a5a4, d s 2013 aualg) c yAS g
g QA4 1 S(d0a10a6a7a8, dO . ds 30901, CL7CL116L12> € yAS A9

g OQj 1 S(d;’ R dgagamnawa(g; d;’a4a3a2a1; a11a12) € y1§3,4)g
g Qg 2 S(dlsl d”a8a7, d”a5a4a3a2a1, d”aloaualg) € y(?) g
ag ary 2 S(d;’ Oag, d’ sAeA5A40302; doaloallalg) € y

g ai10 3 S(CLGCL'zCLgdg N ds? CL66L5CL4CL36L2G1) € ‘SﬂA3 Mg

ag a1 2 S(a6a7a8d6’ . d;’am; a6a5a4a3a2a1) € y1§374)g

g Q12 1 S(a6a7a8dg ce d;’aloan; a6a5a4a3a2a1) € yf(‘374)g

Subcase 2.2 dj = a7, d; = a3 and t = 1. We redefine 7" = (V(T"), E(T")) such that
V(T") =V (T"), E(T")= E(T")U{aras}. Again since H is essentially 3-edge-connected,
the set R” = {arag,agaip} cannot be a cut-set of H, implying there is a path P” =
dydy...d!, s > 1, such that dj € {as,ao}, d! € {a1, a9, as, as,as, ag, ar, a0, a11,a12} and
d! e V(H)\V(T") for 1 <i < s—1. By Case 2, there is no path beginning at dj = as.
Thus, all paths begin at dj = ag. There are the following possibilities.

Case  Min. The sun S containing

dy d? s acopyof L7'(Bsy)

ag ay 1 Slazaragasag; agaxd! ... djas; agapariarn) € 56(‘3,4)9

ag Qs 1 H=(V(H),E(H)) € %(3,4);;

ag az 1 S(dV...dJjagarasasay; dlasayr; djaparials) € yf(‘?’v"‘)g

ag as 1 S(dy...dlasagaras; djapaiiare; dlasasay) € 56(‘3,4)9 if k> 2
ag as 1 S(d...dlasarazas; d'agaioayary; asazay) € SN

ag a2 S(dl...djasar; d{asasasazar; djarpanar) € S5

ag ay; 2 S(d!...djas;dagasasazas; djapaiials) € yf(l3,4)g

ag a3 Slagarasdy . . . dJ; agasasazazar) € YX)’A)Q

ag ap 2 Slagaragdy ... dlaj; agasasazasay) € y1g374)9

ag Q12 1 S(a6a7a8d6’ e d;’aman; a6a5a4a3a2a1) c 5/{5\374)9
We note here that in the second case dfj = ag, d) = ay we define a good H =

(V(H), E(H)) € #Y7 as follows: V(H) = V(T"), E(H) = E(T")u{d/d,....d"_d"}
and the critical edge is asa;. After rotation of its critical edge we have a graph H' €
%(374)5]

The only remaining case is dj = ag; d? = a4 an s = 1. We define 7" = (V(T™), E(T"))
such that V(T") = V(T"), E(T")= E(T")U{a¢a4}.
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Again since H is essentially 3-edge-connected, the edge asaz cannot be a cut-edge
of H, implying there is a path P” = dy/d/'...d}, ¢ > 1, such that d € {ai,as},
d/KH S {a3,a4,a5,a6,a7,a8,a9,a10,a11,a12} and d;// S V(H) \ V(T”/) for 1 <1 < ¢ —1.
There are the following possibilities.

Case  Min. The sun S containing

dy dj ¢ acopyof L7'(Bs4)
ar a3 2 S(arasasaqdy’; azasagaroariaiz; dy’ . . . dg'as) € yj§3’4)g
ayp Qa4 1 S(a7a3a2d{)” Ce dz/agag; a7a6a10a11a12) c y1g374)9
ap as 1 S(arasaiagas; arazaxdy ... dj'as; apaiain) € 5/}‘3’4)9
ar ag 1 S(agaedy ...dJ asas; azazas; asagaioaiiarz) € yf(l3,4)g
ar ar 1 S(dy'...dg asazasasae; dy asag; asaroaiiaiz) € Y/(;?’A)g
a as 1 S(wasasardy ... djasas; asasarpanars) € S5
ay Gy 1 Slasarasasaqg; agasdy) ... d} as; agaipaiiarz) € yf(l3,4)g
a; ayp 1 S(d)...dJasazasasaq; d) ara12; agazasag) € yf(1374)9
a an 1 S(agaragasas asasdy .. df'ars; agareagas) € S5
a a;y 1 S(asaragasag; azasdy ... dYay; agarpagas) € SN
az az 3 S(agagarasasas; agaipaiiaiz; asdy’ ... dy'ay) € 5@(13’4)9
az ag 2 Slawagasarasdy' ... df'asag; arpaiiarn) € 5@(1374)9
az a5 1 Slawagasarazasd)ag; aanais; dy’. .. dfar) € S5
as ag 1 H=(V(H),E(H)) € %3,4)9
a2 ar 2 S(amagagdg” .. .dg’a3a4a5a6; a10a11a12) c y,4(1374)g
as as 1 S(agasagazd) ...dJ as; asa9aiparials) € yf(‘SA)g
a; ay 1 S(arasaidyas; arasasdy ... dyar; apanar) € S5
az aig 1 Slasasagarasag; asazdy ... df'anar) € 5
az a1 S(azasaipagas; azasdy . . . dy'ais; agasas) € yf"*)g

. " " . (3,4)g
az Q12 1 S(a10a9a8a7a6, aypandy ...dyas; a7a3a4) SR

Note here that in the case dj = as, d]) = ag we define a good H € %553’4)9 in
the following way: V(H) = V(T"), E(H) = E(T")u{d)d],...,d} ;d}'} and then the
critical edge is asa;. After rotation of the critical edge the resulting graph is H' € %”A(?)A)g :

Case 3. dy = ag, d = az and k = 1. We define 7" = (V(T"), E(1")) such that V(T") =
V(T), E(T") = E(T) U {agas}. Since H is essentially 3-edge-connected, the set R =
{agar, agag} cannot be a cut-set of H, implying there is a path P’ = d{d, ... d}, t > 1,
such that df, € {a7,as}, d, € {a1,as, a3, a4, as, ag, ag, a19,a11,a12} and d, € V(H) \ V(T")
for 1 <i <t — 1. There are the following possibilities.
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Case Min. The sun S containing
dy d, t acopyof L7'(Bsy)
as ap 1 S(dy...dazazasasa6a7; dyagaipaials) € (5/£3,4)g
ag ay 1 S(dy...dazasasagar; dyagapariarn) € y,a(ng)g
ag as 1 S(dy ... dyaragasay; dyasay; djagainariars)) € y[é(‘3,4)g
as ay 1 S(dy...dasasar; dyagaiparrarz; agasasar) € y,a(ng)g
ag as 1 S(dy...dasar; dyagaiparials; agazasar) € y1g3,4)g
as ag 2 S(d;...dyar; djasasazazay; dyagaipariarn) € ng&ll)g
as Qag 3 S(df) .. d;; d6a7a6a5a4a3; dgaloanalg) e y1§3,4)g
as ayp 2 S(dy...dag; dyarasasasas; dyaiagn) € 56(1374)9
as ayr 1 S(dy...daypag; dyarasasasas; dyars) € L5 ift>2
ag ajp 1 S(dj...daga11a1009; dyarasasasas) € 5@&3’4)5’ if£>9

By Case 1, there are only three paths beginning at the vertex ar, and these are dj, =

[
a7,dt =

possibilities are:

r !
o — as, dt_alla

dq
dq

! !
do = ar, dt = a0,

!
ag, dt = a12,

!
ar, dt = as,

I I
do = ar, dt = a1,

aj,t = 1; dy = ar,d; = a3, t =1 and dj =

t=1
t =1,
t=1
t=1
t =

[A—
a7,dt =

a1p,t = 1. The remaining

We note here that in the third case we have a triangle agaras, contradicting the fact

that H is a triangle-free graph.

Again since H is essentially 3-edge-connected, the set R” = {agay4, asag} cannot be a
cut-set of H, implying there is a path P” = did]...d!, s > 1, such that dj € {a4,as},
d! € {ay,a9,as,a6,ar,as, ag,ayp, a1, a2} and d € V(H)\V(T') for 1 <i < s—1. In
some cases, if some edge is needed in order to have H € %EEBA)Q , we give this edge in the

last column ”Extra edge”.
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Case  Min. The sun S containing Extra

dy d! s acopyof L71(Bsy) edge

ay aq 1 S(agasdjas; agaragagarpary; dy . .. dlas) € 5&(‘3’4)9

ay Qo 2 S(a6a3d0a5, a6a7a8a9a10a11, d()/ .. d;al) € yf(‘?)/l)g

ags az 3 Slagdy...d!;agarasagaiparr) € ,5”(3’4)9

as Qg 2 S(d!.. d”a5, djaragagaiparr; djagasar) € 5/ (8:4)g

as  ar 1 S(d...djasag; d?agagaiparials; dyasasay) € 5”(34

a, ag 1 S(d...djasagar; dlagaiparrarz; agasasay) € 5”(3 A)g

as ay 1 H = (V(H),E(H)) e A5 arayy,
S(a3a6a7a8a12a11a10d" .d; azasay) € 5/(34 if s> 2, agas,
S(a3a6a7a8d'5/ . 0, as3a9a1 CZ7CL1()CL11CL12) € y (3:4)9 if s Z 2, araio,

ay ayp 1 S(d! .d{)’a5a6a7a8ag;dsanalg;doagaQal) € YA

a; ay 1 Hy= (V(H,), E(Hy)) € 5"

ar ain 1 S(awarasag; apand. . .. djas; azagazasar) € LY arayo,
S(anagagaio; anndl ... dyasasas; agazagas) € 5”14(13’4)“7 aga,
S(d/l . d sA11A10A9a8A7A605; dgagagal) y(3,4)g if s Z 2

as aq 1 S(a6a3a4d0, AeA7agdgd10Al], d// d”CLQ) if s Z 2

as Qas 1 S(a6a3a4d0, a6a7a8a9a10a11, d” 1) S y 34 if ¢ Z 2

as as 2 S(dy...dlay; d”a6a7a8a9a10a11, dasay) € 5”(34

as Qg 3 S(d” .. d"' d"a6a7a8a9a10a11; d’ agagal) Y(?’ g

as  ar 2 S(d!...djag; dlagagaipariare; djasazasay) € 5”(34

as ag 1 S(d...djagar; dlagarpariars; dyasasasay) € 5/(34

as Qg 1 S(d” . dga9a10a11&8a7a6; d{)’a4a3a2a1) S yAS A)g aganq
S(dy ... d"aypar1a12a8a7a¢; djasazasay) € Yf(lg’zl)g agai2
S(dy ... dlagaras; dyasasasay; arapary) € 56(13’4)9 araio
S(dy ... d"agazae; dyasazasay; azayias) € y/(‘?»A)g a7ai;

as a1 S(dl...dyjasaragag; dlajiars; dyasasasay) € YE’A)Q

as ai S(d/l cood! s 110090a8a70¢; d0a4a3a2a1) € y(g g

as a1 S(df...dlaj1ap0a9asa7a6; djasazasay) € YA e

Note here that in the case djj = aq4, d!
V(Hy) =V(T'), E(H,) =
After rotation of its critical edge we have (H)

s

= a9 we define a good H; € :%%3’4)9 as follows:

E(T")U{arai1,dyd], ..., d7_,d’} and the critical edge is ajjaq2.

we define a good Hj € %3’4)‘7 in the following way V' (Hy) = V(1"), E(Hy) =

{dgdy, ...,

k
"€ 7. In the case djj = a4, d! = ap

E(T") U

" ,d”} and the critical edge is ajjaie. After rotation of its critical edge we are

in the case dj = ay4, d =

S

ai9.

Remaining possibilities are:
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1 1 . ! ! __ —1-
d0:a47 d5:a97 8:17 o — as, dt_alb t_lv

! ! .

d() = asg, dt = ap2, = 15

d6 = ar, d:ﬁ = 10, t= ;

1! 1! . ! ! I .
dO = Uy, ds = ai19, 821, dO—CLg, dt—(l12, t—]_,
d6 = ar, d; = @10, t= ;

1! Ui . ! ! __ P .
d0:a57 ds =a;, s=1; 0 — as, dt_alla t=1

! ! —_—1-
0—a8, dt—alg, t—l,

! ! .
d0:a77 t:al()) t= )

! ! .
d0:a77 t:alh t:]-a

1/ " . ! __ ! __ — .
d0:a57 ds:a27 8217 dO—CLg, ¢+ — aii, t_]-a

i
o — ar,

[
0—&7,

’r _ 1.
+ — @10, t_a

d
d
d
dy =as, d,=a, t=1,
d
d

! _ .
y =an, t=1;

Subcase 3.1 dj = a4, d! = a9 and s = 1. We define 7" = (V(T"), E(T")) such that
V(T") =V (T"), E(T")= E(T")U{a4a9}. Again since H is essentially 3-edge-connected,
the edge asas cannot be a cut-edge of H, implying there is a path P = dy'dy" ... d}’', ¢ > 1,
such that dy € {a1,a2}, d]/ € {as,ay, a5, ag, ar, as, ag, ar0, a11,a12}, d;’ € V(H) \ V(T")
for 1 <i < /¢ —1. There are the following possibilities.
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Case  Min. The sun S containing Extra
dy d} ¢ acopyof L7'(Bsy) edge
a;  as 2 S(agd] asas; agazasagaiparr; dy ... dy as) € Y(M
a1 Q4 1 S(a(;agdlg//ag); agA7a8A9A10A11; dleﬁ .. d{)”ag) S yf(f g
a,  as 1 S(d)...dJasazay; d) agazasagaig) € 56(‘3’4)9 if 0>2
a;  ag 1 S(agasdy . ..dJ asas; asagarpariars; dj azag) € yf(‘g’zl)g
ar ar 1 Slagasaed) ... dJ azas; agagaipariars) € LS’IL(‘B’A)Q
a; as 1 S(asgasagazd) ... dJ asas; agagaipaiiars) € Yf(‘?”@g
a;  ag 1 S(agaed) ... dJ as; asagarasariarz; dy'arg) € YﬁgA)g agayy
S(asasdy ... d}) ay; asagaragarsay; d) ay) € 5”[(‘3’4)9 agais
S((IgCLng/ e d’g”a4; a3ae7ag12a11, d/e//ag) € yf(ng)g araio

a; ayp 1 Slasagasaragas; agazasdy . .. dJ ay1a12) € ,5@(13’4)9

a; a;; 1 S(agagasaragas; asazasdy . .. d)'ay) € :5”14(13’4)‘7

a; aip 1 Slasagasaragas; agazasdy . .. dJ ay1a10) € 5” (3:4)g

as as 3 S(agd) asas; agazasagaiparr; dy ... dyay) € Y(M

(05} Qg 2 S(a(;agdlg//ag); AgA7a8A9A10A11, dleﬁ c. d{)”al) yf(f A)g

ay a5 1 Hy = (V(H),E(Hy)) € #>

as g 2 S(d)...dYasagas; d) aragagaiparials) € 5’?’499

ag ay 1 S(d]...dJazasasa6; d) agagaipariars) € ,5@(13’4)9

asg as 1 S( (. dg”a3a4a5a6a7; dg’agaloallalg) c 45{5)74)!]

ay ag 1 Hy= (V(HQ), E(H,)) € A8

g A1g 1 S(a6a5a4a9a8a7; a6a3d3’ c d}”)anau) S y(?) A9

ay ay 1 Hy=(V(Hs), E(Hs)) € >

as a1 Slagasasagagar; agasdy . .. dJ aj1a10) € 5”(34

Note here that in the case dj = aq, d}’ = a5 we define a good H; € %(3’4)9 as follows:
V(Hy) =V (T"), E(H,) = E(T")JU{dyd", ... ,dJ" d}'} and the critical edge is aay. After
rotation of its critical edge we are in the case d’o” =ay, dj’ = as. Inthe case df = aq, dj =
ag we define a good Hy € %(3’4)9 in the following way: V(Hs) = V(T"); E(Hs) =
E(Tyu{dydyl,...,d)d}'} and the critical edge is ajas. After rotation of its critical
edge we are in the case dj = a1, d}’ = ag. In the case d = as, dj’ = a1; we define a good
H; e %3’4)9 as follows: V(Hs) = V(T"), E(H3) = E(T")U{dydy,...,d)" ;d]'} and the
critical edge is ajas. After rotation of its critical edge we are in the case dg’ =ay, dy = an.

The remaining case is df = a1, d}’ = a5 and £ = 1. We define 7" = (V(T"), E(T"))
such that V(T") = V(T"), E(T") = E(T")U{ajas}. Hence H is essentially 3-edge-
connected, the set R” = {ajas,aza3} cannot be a cut-set of H, implying there is a path
P =dyd, ...d,, v > 1, such that dy € {ai,as}, d. € {as, a4, as, ag, ar, as, ag, ayo, 11, @12},

d; € V(H)\ V(T") for 1 <i <r — 1. By the subcase 3.1, there is only one possible case
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and this is dy = a1, d, = a5 and r = 1. But this contradicts the fact that H is a simple
graph (i.e. ajas is multi-edge).

Subcase 3.2 dj = a4, d! = ajp and s = 1. We redefine 7" = (V(T"), E(T")) such that
V(T")=V(T"), E(T") = E(T")U{asa12}. Again since H is essentially 3-edge-connected,
the edge asa3 cannot be a cut-edge of H, implying there is a path P = dy'dy" ... d}’', ¢ > 1,
such that df € {a1,a2}, d]’ € {as,aq, a5, ag, az, as, ag, @10, a11, 012}, d;’ € V(H )\V(T”)
for 1 <i < ¢ —1. There are the following possibilities.

Case  Min. The sun S containing Extra
dy d} ¢ acopyof L7'(Bsy) edge
ar a3 2 S(aed) asas; asarasagaroarn; dy’ . . . dy'as) € Y(M
a1 as 1 S(asasd) as; agazasagaoars; dy’ . .. dyaz) € y(“

a; as 1 Sd)...djasasaq; d) a6a7aga9a10) c jﬂ(“ 0> 9
a; ag 1 S(d)...dJasazasasaq; d) aragagaipariars) € y1§3,4)g
ar  ar L Sy ... dyasazasasag; dy'agagaipariarz) € 171513’4)9
ap ag 1 S(d)...dJasazasasa6a7; d) agarparials) € 56(;3’4)9
ap Gy 1 S(agaipariarsasazagaras; dy .. . dy as; agag) € yf(‘374)g
a1 a1 S(asaeasas; azazdy .. d}ariarz; agagas) € S5

ar a1 S(agazasas; asarasagare; asasdy . . . dJ'ars) € S5
ar aiz 1 S(asazasas; agazasagaioars; azazdy - .. dy') € L4 (84)g
az az 3 S(aed)'asas; asarasagaroars; dy’ . . . dg'ar) € y(34

ay ag 2 S(agasdy’as; asaragagaroars; dy’ . .. di'ay) € 5{5134

as as 1 H = (V(H),E(H)) € %34

az Qs 2 S(dy'...dyazasas; i’ azagagarpariar) € yé3’4)g

az  ar 1 S( v - dg,a3a4a5a6; déﬂasagamaualg) S yf(ﬁﬁl)g

ez as 1 S(dy...djasasasasar; d}agasgarars) € S5

as Qg 1 S(a6a3a4a5,a6a7a8d’” d’”al;a4a12an) c y1§3,4)g

az a1 S(asazasas; agarasagdy’ . . . dg'ar; asaizan) € yf(lgA)g
ay a1 Hy=(V(Hy),E(Hy)) € %3,4)9

az az 1 S(dy'...df'asasasas; dyariaroagasar) € 5”/(x3’4)g

Note here that in the case dj = a2, d)' = as we define a good H; € %(3’4)9
follows: V(Hy) = V(1"), E(H,) = E(T")u{dyd],...,d; d}'} and the critical edge is

aias. After rotation of its critical edge we are in the case d’o” = a1, dj) = as. In the
u

case dy = a2, dj’ = ay; we define a good Hy € %(3’4)9 in the following way: V(Hs) =
V(T"); E(Hs) = E(T")u{dyd",...,dJ"d}'} and the critical edge is ajas. After rotation

of its critical edge we are in the case dg” =ay, d = an.

The remaining case is dff = a1, d}’ = a5 and £ = 1. We define 7" = (V(T"), E(T"))

such that V(T") = V(T"), E(T") = E(T") U {ajas}. Hence H is essentially 3-edge-
connected, the set R” = {ajas, azaz} cannot be a cut-set of H, implying there is a path
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P - JOd_l ce e Jra r Z ]-7 such that CZO S {ala a2}7 d_'r‘ S {a'37 Qy4, as, g, A7, ag, ag, 10, A11, alQ}:
d; € V(H)\V(T") for 1 <i < r—1. Again, by the subcase 3.1, there is only one possible
case and this case is dy = a1, d, = a5 and r = 1. But this contradicts the fact that H is

a simple graph (i.e. ajas is multi-edge).
Subcase 3.3 dj = a5, d”! = a; and s = 1. We redefine 777 = (V(T"), E(T")) such that

V(" = v(T"),
the set R” = {ajas,asas} cannot be a cut-set of H, implying there is a path P =

" i
do dl .

1"
!

E(T") = E(T") U{asa;}. Since H is essentially 3-edge-connected,

) 14 Z 17 such that dg/ S {a17a2}7 d/Z/I € {a37a47a57a67a77a87ag)a107a117a12}7
d" e V(H)\ V(T") for 1 <i < ¢ —1. There are the following possibilities.

Case  Min. The sun S containing Extra
dy dj ¢ acopyof L7'(Bs4) edge
ay as 2 S(a6d2”(14a5; ag7a8A91011; d/é, C. dg,ag) - 5@(‘3’4)5’
ar as 2 S(asasdy as; asarasagaroain; dy’ . . . dy'as) € Y/(xSA)g
a1 as 3 S(dleﬁ R dg’a2a3a4; d/é/a6a7a8a9a10) c ng?)/l)g
ar as 1 S(d)...dYasasasazag; dazasagaipanar) € S5
ap a; 1 S(d)...dJasazasasaq; dy agagaiparials) € 54}3,4)9
dr  as 1 S(dy'. .. dyazasasasasar; dj'agaroan arz) € 5’14(;3’4)9
ap ag 1 S(dyasazasas;dy ... dJ ana12; asarag) € 5”%(‘3’4)9
a; a1 S(asasasay; asaxdy . .. d) ay1a12; agaragag) € «56(13’4)9
ar a1 S(asasasas; asarasagaig; azaxdy ... dY'ars) € S50
ap ais 1 S(asazasas; asaragagaipan; azasdy .. dy') € 5@(‘37‘”9
az az 3 S(aed;'asas; asaragagarpars; dy’ ... dy'ar) € 5@53’4)51
az as 2 S(asazd) as; agazasagaoars; dy’ . .. dy'ar) € y,a(ng)g
az  as 2 S(a6a3a4dlgﬂ; AgA7a8A9A10011 5 d/é, Ce d/DNG/I) - 15”14(‘3’4”
as a2 S(d)...dJasasas; d} aragagaipariarn) € {5{&374)9
az a; 1 S(d)...dJasasasae; d) agagaigarials) € 5/1&(‘374)9
az ag 1 S(d)...dJasasasaear; d) agaiparials) € yf(l?’#l)g
as Qg 1 S(dg'a1a5a4a3; dgl - dg/aloallalg; a5a6a7a8) c yf(‘&‘l)g
az Qi 1 S(d) ...dYa1asasazasaragag; ) ar1ais) € y1§3,4)9
az an 1 Sagasasas; agaragsagaig; asardy ... dj'ars) € 5”}13’4)9
a; az 1 S(agazasas; agarasagary; asazardy ... dj'ay) € S5

Subcase 3.4 dj = a5, d! = as and s = 1. We redefine 77 = (V(T"), E(T")) such that

V(1) = V(T7),
the set R” = {asas,azas} cannot be a cut-set of H, implying there is a path P” =
, £ > 1, such that dj € {ai,a2}, d}/ € {as, a4, as,aq,az,as, ag, aro, arn, a2},
d e V(H)\V(T") for 1 <i < ¢ — 1. There are the following possibilities.

" g
drdr.

"
!

E(T") = E(T") U {asas}. Since H is essentially 3-edge-connected,
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Case  Min. The sun S containing Extra
dy d} ¢ acopyof L7'(Bsy) edge
a;  as 2 S(agd] asas; agazasagaiparr; dy ... dy as) € Y(M
a1 Q4 1 S(a(;agdg as5; AgA7A8A9A10A11; d”/ d{)”ag) S yf(xdéL
a; a2 Sd)...dJasazay; df agaragagarg) € 56(‘3’4)9
a;  ag 1 S} ...dyasazasasaq; d) azagagaripariarz) € 17/(13’4)9
ap ay 1 S(d]...dJasazasasa6; d) agagarpariarz) € f1§3’4)g
aq as 1 S( /” d”’a2a3a4a5a6a7; d’g”agaloaualg) € y1§374)g
a;  ag 1 S(a2a3a4a5, asdy’ ... d} ajparias; asasarag) € Y1§3’4)g
a; a1 S(asasasay; asaxdy . .. d) ay1a12; agaragag) € yf(lgA)g
a; a1 1 S(a6a3a4a5, Aga7a8A9A10, aga,gd/// d///(llg) € y1§374)g
a; a1 S(asasasas; asaragagaioars; asaxdy ... dJ") € Yf(lg’zl)g
as as 3 Slaedy asas; agaragagarparr; dy ... dy'ar) € YX)’A)Q
as  ay 2 S(asasd) as; agazasagaiparr; dy ... dy'ay) € 5”(34
as as 3 S(agazasd]’;agaragagaioary; dy ... dyay) € Y(M
as  ag 2 S(d)...dYagasas; d) aragagaipariars) € YA‘S 4)9
as ay 1 S(d)...dJasasasaq; d) agagaipariarn) € Yf(lg’zl)g
ag as 1 S(d/” dg’a3a4a5a6a7; dg’agalgallalg) c 45”1974)9
ay ay 1 Hy = (V(Hy), E(H)) € #>
azg ayp 1 S(dfaaizagag; d) ... dj asaqsas; agazag) € Y(M agao

H* = (V(H"), E(H")) € "9 asay
S(arayd) agas; aragasasag; d)’ . .. djay) € ;7}13’4)9 a7ai;
S(d{)”ag)agag; dg/ c. d’e”allalg; a6a7a8a9) € y}(‘g’@g if ¢ Z 2
ay ay 1 Hy = (V(H), E(H,)) € s>
as a, 1 Hs=(V(Hs), E(H3)) € A
We note here that in the cases dff = a2, d)) = ag; dj = as, d} = ay; and

dy = ag, dj) = ayp we define a good H;, = (V(H;),E(H;)) € %349 as follows:
V(H;) = V(T"), E(H;) = E(T")u{dydl,...,dJ' d}'} and the critical edge is ajas,
for © = 1,2,3 respectively. After rotation of 1ts critical edge the resulting graph is
(H;) € %(34 , (i = 1,2,3) respectively. In the case dj = a2, d} = aip we define a
good H* = (V(H*), E(H*)) € 5" in the following way V(H*) = V(T"), E(H*) =
E(T") U {asay, dydy’,....dJ" \d}'} and the critical edge is aga;. After rotation of its
critical edge we have a (H*) € %”14(34 :
The remaining possibility is:

1" 1" . /o ’_ —
dO = a9, dg = aio, 6217 do—a7, dt—alo, t=1.

3.4-1 df = as,d)) = ayp, ¢ = 1; dj = ar,d;, = ao,t = 1. We redefine 7" =
(V(T™), E(T")) such that V/(T"") = V(T"), E(T") = E(T")U{aza19,ara1}. Since H is

essentially 3-edge-connected, the edge a;pa;; cannot be a cut-edge of H, implying there is a
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path P = dyd, ...d,, 7 > 1, such that dy = {a11, a12}, d, € {a1, as, as, as, ag, az, as, ag, aip},
d; € V(H)\ V(T") for 1 <i <r — 1. There are the following possibilities.

Case  Min. The sun S containing

dy d. r acopyof L' (Bs.)

a a2 Slard,agas; aragasasasas;d, . .. doan) € 5

ayy ag 1 S(aragbard.as; aragasasasag;d, . .. doay;) € yf(lsA)g
ar, ag 1 S(aypapbardy...d.ay; ajpazasasas; d.azag) Eyf(lu)g
az ar 1 S(d,...dyanaagas; dragasasasasa;) € {5{&3,4)9

aiy ag 1 S(d,...dyanapa9asar; d.asasasasa;) € 57ﬁa4m

ayz as 1 S(d,...dyanaagasarag; drasasasa;) € y1§3,4)9

iz G4 1 S(a10a2a5a6a7a8a97aloalldo .dya3) € y/(lgA)g

az az 1 S(d,...danagagagarasasas; drazar) € 1723’4)9

aiz az 1 ‘g(a10a7a8a9aa10a11d0 -dyay; azagasagas) € Y
ay ar 1 S(agarasag; aando .. . dras; aragasasag) € S5
an aw 3 S(ardyagas; arasasaaazaz; dy ... doars) € S5

ann ag 2 S(araipbard, ag,a7a()a5a4@3a27d .doar) € yf(‘&zx)g
ayy ag 1 Slayarbard.ag;d, ... dyais; aroasasasasas) € yf(laA)g
an a; 2 S(d,...doarasas; dragasasazasar) € 5”,4(1374)9

an ag 1 S(d,...doarpagasar; dyasasazasay) € .55

an a1 S(d,...dyaagasarag; dyasazasar) € F50

aijl Qs 1 H, = (V(H,), E(H,)) € (%%(3,4)9

an ey 1ty = (V(Hy), B(Hy)) € 5"

ayn ay 2 Slasagasag: asd, .. . doars; agaragagarg) € 5
an ar 1 S(azasasas; asasd, .. . doars; agarasagar) € 5

We note here that in the case dy = a11, d, = as we define a good H; € %(3’4)9
follows: V(Hy) = V(T"), E(Hy) = E(T") U {dody,...,d,_1d,} and the critical edge
is ajia10. After rotation of its critical edge we are in the case do = a2, dr = ay. In
the case dy = a1y, d, = az we define a good H, € B9 iy the following way V' (Hs) =
V(T™), E(Hy) = E(T")U{dod,, ...,d,_1d,} and the critical edge is ai1a15. After rotation
of its critical edge we are in the case dy = a1a, d, = as.

In each of the possible cases, we showed there is either H € %”14(3’4)9 U %’}9’4)9 or
S e My 78 We proved Proposition 5. O
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