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Abstract. In this paper, we study the asymptotic behavior of the solutions of a neutral type difference

equation of the form

∆

[
x(n) +

w∑
j=1

qj(n)x(τj(n))

]
+ p(n)x(σ(n)) = 0, n ≥ 0

where (p(n))n≥0 is a sequence of positive real numbers such that p(n) ≥ p, p ∈ R+, τj(n), j =

1, ..., w are general retarded arguments, σ(n) is a general deviated argument (retarded or advanced),

(qj(n))n≥0, j = 1, ..., w are sequences of real numbers, and ∆ denotes the forward difference operator

∆x(n) = x(n+ 1)− x(n).
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1. Introduction

A neutral difference equation is a difference equation in which the higher order differ-

ence of the unknown sequence appears in the equation both with and without delays or

advances. See, for example, [1−3, 9] and the references cited therein. We should note

that, the theory of neutral difference equations presents complexities, and results which

are true for non-neutral difference equations may not be true for neutral equations [16].

The study of the asymptotic and oscillatory behavior of the solutions of neutral dif-

ference equations has a strong theoretical interest. Moreover, results on those equations

can be applied in several disciplines/fields of science and mathematics, including circuit

theory, bifurcation analysis, population dynamics, stability theory, the dynamics of de-

layed network systems and others. As a result of the wide range of applications, neutral

difference equations have attracted a great interest in the literature.

Consider the neutral difference equation in which the difference of the unknown se-

quence appears in the equation both with and without more than one delays

(E) ∆

[
x(n) +

w∑
j=1

qj(n)x(τj(n))

]
+ p(n)x(σ(n)) = 0, n ≥ 0,

where (p(n))n≥0 is a sequence of positive real numbers such that p(n) ≥ p, p ∈ R+,

(qj(n))n≥0, j = 1, ..., w are sequences of real numbers, (τj(n))n≥0 , j = 1, ..., w are increas-

ing sequences of integers that satisfy

(1.1)

τj(n) ≤ n− 1, j = 1, ..., w ∀n ≥ 0, limn→∞ τj(n) = +∞

and

τ`(n) < τm(n+ 1), ∀`,m ∈ [1, w] ∩ N

and (σ(n))n≥0 is an increasing sequence of integers such that

(1.2)

σ(n) ≤ n− 1 ∀n ≥ 0, limn→∞ σ(n) = +∞,

or

σ(n) ≥ n+ 1 ∀n ≥ 0.
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Define

k1 = − min
n≥0

1≤j≤w

τj(n) , k2 = −min
n≥0

σ(n)

and

k = max {k1, k2} .

(Clearly, k is a positive integer.)

By a solution of the neutral difference equation (E), we mean a sequence of real numbers

(x(n))n≥−k which satisfies (E) for all n ≥ 0. It is clear that, for each choice of real numbers

c−k, c−k+1, ..., c−1, c0, there exists a unique solution (x(n))n≥−k of (E) which satisfies the

initial conditions x(−k) = c−k, x(−k + 1) = c−k+1, ..., x(−1) = c−1, x(0) = c0.

A solution (x(n))n≥−k of the neutral difference equation (E) is called oscillatory if

for every positive integer n0 there exist n1, n2 ≥ n such that x(n1)x(n2) ≤ 0. In other

words, a solution (x(n))n≥−k is oscillatory if it is neither eventually positive nor eventually

negative. Otherwise, the solution is said to be nonoscillatory.

In the special case where τj(n) = n−aj and σ(n) = n± b, aj, b ∈ N, equation (E) takes

the form

(E′) ∆

[
x(n) +

w∑
j=1

qj(n)x(n− aj)

]
+ p(n)x(n± b) = 0, n ≥ 0.

In the last few decades, our insight in the asymptotic behavior of neutral difference

equations has been significantly advanced. A large number of papers have contributed to

the research on this subject. See [4−8, 10−24] and the references cited therein.

The objective in this paper is to investigate the asymptotic behavior of the solutions

of Eq. (E). Equation (E) formally describes an extended neutral difference equation,

involving several retarded arguments τj(n), j = 1, 2, ..., w. In the following sections, we

(first) establish some preliminary results that will serve as a useful tool in examining the

asymptotic behavior of the solutions of Eq. (E), depending on sequences of real numbers

(qj(n)), j = 1, 2, ..., w. Then we postulate and prove a theorem setting convergence and

divergence conditions on the solutions of Eq. (E).

2. Some Preliminaries
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Assume that (x(n))n≥−k is a nonoscillatory solution of (E). Then it is either eventually

positive or eventually negative. As (−x(n))n≥−k is also a solution of (E), we can restrict

ourselves to the case where x(n) > 0 for all large n. Let n1 ≥ −k be an integer such that

x(n) > 0, ∀n ≥ n1. Then, there exists n0 ≥ n1 such that

x(σ(n)) > 0, x(τj(n)) > 0, j = 1, 2, ..., w ∀n ≥ n0.

Set

(2.1) z(n) = x(n) +
w∑
j=1

qj(n)x(τj(n)).

In view of (2.1), Eq. (E) becomes

(2.2) ∆z(n) + p(n)x(σ(n)) = 0.

Taking into account that p(n) ≥ p > 0, we have

∆z(n) = −p(n)x(σ(n)) ≤ −px(σ(n)) < 0 ∀n ≥ n0,

which means that the sequence (z(n)) is eventually strictly decreasing, regardless of the

values of the terms qj(n).

Let the domain of τj be the set D(τj) = Nn∗
j

=
{
n∗j , n

∗
j + 1, n∗j + 2, ...

}
, where n∗j is the

smallest natural number that τj is defined with. Set

n∗ = max
1≤j≤w

n∗j .

Then τj, j = 1, 2, ..., w are defined in the set Nn∗ = {n∗, n∗ + 1, n∗ + 2, ...}.

Let the subsequences

(2.3)

x(τρ(n)(n)) = max {x(τ1(n)), x(τ2(n)), ..., x(τw(n))}

and

x(τϕ(n)(n)) = min {x(τ1(n)), x(τ2(n)), ..., x(τw(n))} ,

where ρ(n), ϕ(n) are sequences that take values in the set {1, 2, ..., w}. Clearly, condition

(1.1) guarantees that
(
x(τρ(n)(n))

)
and

(
x(τϕ(n)(n))

)
are subsequences of (x(n)).
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Notice that

(2.4) τj1(τj2(· · · τj`(n))) = τj1(ns) where ns = τj2(· · · τj`(n)).

The following lemma provides us with some useful tools for establishing the main results:

Lemma 2.1. Assume that the sequence (x(n))n≥−k is a positive solution of (E). Then

the following statements hold:

(i) If
∞∑
i=n0

p(i)x(σ(i)) = S0 < +∞,

then

(2.5) lim
n→∞

z(n) = A = lim
n→∞

w∑
j=1

qj(σ(n))x(τj(σ(n))), A ∈ R.

(ii) If
∞∑
i=n0

p(i)x(σ(i)) = +∞,

then

(2.6) z(n) < 0, eventually.

Proof. Summing up (2.2) from n0 to n, n ≥ n0, we obtain

z(n+ 1)− z(n0) +
n∑

i=n0

p(i)x(σ(i)) = 0,

or

(2.7) z(n+ 1) = z(n0)−
n∑

i=n0

p(i)x(σ(i)).

For the above relation, exactly one of the following can be true:

(2.7.a)
∞∑
i=n0

p(i)x(σ(i)) = S0 < +∞,

or

(2.7.b)
∞∑
i=n0

p(i)x(σ(i)) = +∞.
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Assume that (2.7.a) holds. Since p(n) ≥ p > 0, we have

+∞ > S0 =
∞∑
i=n0

p(i)x(σ(i)) ≥ p
∞∑
i=n0

x(σ(i)).

The last inequality guarantees that

∞∑
i=n0

x(σ(i)) < +∞

and, consequently

(2.8) lim
n→∞

x(σ(n)) = 0.

Also, (2.7.a) guarantess that limn→∞ z(n) exists as a real number. Set

lim
n→∞

z(n) = A ∈ R.

Since (z(σ(n))) is a subsequence of (z(n)), we have

lim
n→∞

z(σ(n)) = A,

or

lim
n→∞

[
x(σ(n)) +

w∑
j=1

qj(σ(n))x(τj(σ(n)))

]
= A.

Using (2.8), we obtain

lim
n→∞

w∑
j=1

qj(σ(n))x(τj(σ(n))) = A.

Thus

lim
n→∞

z(n) = A = lim
n→∞

w∑
j=1

qj(σ(n))x(τj(σ(n))).

The proof of Part (i) of the lemma is complete.

Assume that (2.7.b) holds. Then, by taking limits on both sides of (2.7) we obtain

lim
n→∞

z(n) = −∞,

which in conjunction with the fact that the sequence (z(n)) is eventually strictly decreas-

ing, means that z(n) < 0 eventually.

The proof of Part (ii) of the lemma is complete.

The proof of the lemma is complete.
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3. Main results

Throughout this section, we are going to use the following conditions:

(C1)


c := lim sup q(n) < −1,

and

(q(n)) is bounded



(C2)



q(n) < −1, limn→∞ q(n) = −1

and

lim
n→∞

n∏
j=0

(−q(µ(j)) = B < +∞



(C3)



q(n) > −1, limn→∞ q(n) = −1

and

lim
n→∞

n∏
j=0

(−q(µ(j))) = B > 0


(C4) −1 < q(n) ≤ 0 and lim inf q(n) > −1,

where

(3.1) q(n) =
w∑
j=1

qj(n)

and (q(µ(j))) is a subsequence of (q(n)).

The asymptotic behavior of the solutions of the neutral difference equation (E) is de-

scribed by the following theorem:

Theorem 3.1. For Eq. (E) the following statements hold:
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(I) Every nonoscillatory solution does not converge in R, if the terms qj(n) are all

nonpositive and condition (C1) holds.

(II) Every solution oscillates if the terms qj(n) are all nonpositive and condition (C2)

or condition (C3) holds.

(III) Every nonoscillatory solution tends to zero if the terms qj(n) are all nonpositive

and condition (C4) holds.

(IV) Every nonoscillatory solution is bounded if the terms qj(n) are all nonnegative.

Furtheremore, if 0 ≤ q(n) < 1 and lim sup q(n) < 1 then every nonoscillatory solution

tends to zero.

Proof. Assume that (x(n))n≥−k is a nonoscillatory solution of (E). Then it is either

eventually positive or eventually negative. As (−x(n))n≥−k is also a solution of (E), we

can restrict ourselves to the case where x(n) > 0 for all large n. Let n1 ≥ −k be an integer

such that x(n) > 0, ∀n ≥ n1. Then, there exists n0 ≥ n1 such that

x(σ(n)) > 0, x(τj(n)) > 0, j = 1, 2, ..., w ∀n ≥ n0.

Set

(2.1) z(n) = x(n) +
w∑
j=1

qj(n)x(τj(n)).

In view of (2.1), Eq. (E) becomes

(2.2) ∆z(n) + p(n)x(σ(n)) = 0.

Taking into account that p(n) ≥ p > 0, we have

∆z(n) = −p(n)x(σ(n)) ≤ −px(σ(n)) < 0 ∀n ≥ n0,

which means that the sequence (z(n)) is eventually strictly decreasing, regardless of the

values of the terms qj(n).

Assume that the terms qj(n) are all nonpositive and (C1) holds. If (2.7.a) holds then,

in view of Part (i) of Lemma 2.1, we have

lim
n→∞

z(n) = A = lim
n→∞

w∑
j=1

qj(σ(n))x(τj(σ(n))), A ∈ R
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which guarantees that A ≤ 0.

If A = 0, then

lim
n→∞

z(n) = 0.

Taking into account that the sequence (z(n)) is eventually strictly decreasing, it follows

that eventually, z(n) > 0. Thus, from (2.1), (2.3), (3.1) and (2.4), we obtain

x(n) > −
w∑
j=1

qj(n)x(τj(n)) ≥

(
−

w∑
j=1

qj(n)

)
x(τϕ1(n)(n))

= −q(n)x(τϕ1(n)(n)) > −cx(τϕ1(n)(n)) > · · · > (−c)m(n) x(τϕm(n)
(n∗)),

or

x(n) > (−c)m(n) x(τϕm(n)
(n∗)).

Consequently,

lim
n→∞

x(n) ≥ lim
n→∞

[
(−c)m(n) x(τϕm(n)

(n∗))
]

= +∞,

which contradicts (2.8). Therefore A < 0. Thus, since (z(σ(n))) is a subsequence of

(z(n)), we have

lim
n→∞

z(σ(n)) = A < 0,

or

lim
n→∞

[
x(σ(n)) +

w∑
j=1

qj(σ(n))x(τj(σ(n)))

]
= A < 0

or

lim
n→∞

w∑
j=1

qj(σ(n))x(τj(σ(n))) = A < 0.

If the only accumulation point of (x(n)) is zero or else limn→∞ x(n) = 0, then limn→∞ x(τj(σ(n))) =

0. Combined with the fact that (C1) holds or else (qj(n)), j = 1, 2, ..., w are all bounded,

we will have

lim
n→∞

w∑
j=1

qj(σ(n))x(τj(σ(n))) = 0,

which contradicts the previous inequality. Therefore (x(n)) has more than one accumu-

lation points, and consequently (x(n)) does not converge in R.
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Assume that (2.7.b) holds. Then, by taking limits on both sides of (2.7) we obtain

lim
n→∞

z(n) = −∞,

or

lim
n→∞

[
x(n) +

w∑
j=1

qj(n)x(τj(n))

]
= −∞.

Thus

lim
n→∞

[
x(n) +

(
w∑
j=1

qj(n)

)
x(τρ(n)(n))

]
= −∞,

or

lim
n→∞

[
x(n) + q(n)x(τρ(n)(n))

]
= −∞.

Since (q(n)) is bounded, the last relation guarantees that

lim
n→∞

x(τρ(n)(n)) = +∞,

which means that (x(n)) is unbounded. Therefore, (x(n)) does not converge in R. The

proof of Part (I) of the theorem is complete.

Assume that the terms qj(n) are all nonpositive and condition (C2) holds. Supose, for

the sake of contradiction, that (x(n))n≥−k is an eventually positive solution of (E).

If (2.7.b) holds then, from Part (ii) of Lemma 2.1, (2.6) holds. Consequently, for all

large n, we have

x(n) +
w∑
j=1

qj(n)x(τj(n)) < 0.
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Using (2.3), (3.1) and (2.4), the last inequality becomes

x(n) < −
w∑
j=1

qj(n)x(τj(n)) <

(
−

w∑
j=1

qj(n)

)
x(τρ1(n)(n))

= −q(n)x(τρ1(n)(n)) < (−q(n))[−q(τρ1(n)(n))x(τρ2(n)(τρ1(n)(n)))]

< · · · < (−q(n))
(
−q(τρ1(n)(n))

)
· · ·
(
−q(τρm(n)

(n))
)
x(τρm(n)

(n∗))

= x(τρm(n)
(n∗))

m(n)∏
j=0

(
−q(τρj(n)(n))

)

≤ x(τρm(n)
(n∗)) lim

n→∞

m(n)∏
j=0

(
−q(τρj(n)(n))

)
= Bx(τρm(n)

(n∗))

or

(3.2) x(n) < Bx(τ(n∗)).

The above inequality means that the sequence (x(n)) is bounded and therefore (z(n)) is

bounded. This contradicts (2.7.b), and therefore
∑∞

i=n0
p(i)x(σ(i)) < +∞. Thus, from

Part (i) of Lemma 2.1, we have

lim
n→∞

z(n) = A = lim
n→∞

w∑
j=1

qj(σ(n))x(τj(σ(n))), A ∈ R

which guarantees that A ≤ 0.

Assume that A < 0. Taking into account that the sequence (z(n)) is eventually strictly

decreasing, it follows that z(n) < 0, eventually. As in the previous case, (3.2) is satisfied

and therefore (x(n)) is bounded.

Let

(3.3) M = lim sup x(n).
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Then there exists a subsequence (x(θ(n))) of (x(n)) such that

lim
n→∞

x(θ(n)) = M .

Since (z(θ(n))) is a subsequence of (z(n)) we have

lim
n→∞

[
x(θ(n)) +

w∑
j=1

qj(θ(n))x(τj(θ(n)))

]
= A,

or

− lim
n→∞

w∑
j=1

qj(θ(n))x(τj(θ(n))) = M − A.

Therefore, for every ε with 0 < ε < −A, there exists n2 ∈ N such that for every n ≥ n2

−
w∑
j=1

qj(θ(n))x(τj(θ(n))) + ε ≥M − A.

Thus (
−

w∑
j=1

qj(θ(n))

)
x(τρ(θ(n))(θ(n))) + ε ≥M − A,

or

−q(θ(n))x(τρ(θ(n))(θ(n))) + ε ≥M − A.

Consequently,

lim sup
[
−q(θ(n))x(τρ(θ(n))(θ(n))) + ε

]
≥M − A,

or

M + ε ≥ lim supx(τρ(θ(n))(θ(n))) + ε > M − A

or

ε ≥ −A.

This result contradicts that ε < −A and therefore A = 0. Furthermore, taking into

account that the sequence (z(n)) is eventually strictly decreasing, we conclude that z(n) >

0, eventually. Thus, for all large n, we have

x(n) +
w∑
j=1

qj(n)x(τj(n)) > 0.
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Using (2.3), (3.1) and (2.4), the last inequality becomes

x(n) > −
w∑
j=1

qj(n)x(τj(n)) ≥

(
−

w∑
j=1

qj(n)

)
x(τϕ1(n)(n))

= −q(n)x(τϕ1(n)(n)) > (−q(n))[−q(τϕ1(n)(n))x(τϕ2(n)(τϕ1(n)(n)))]

> · · · > (−q(n))
(
−q(τϕ1(n)(n))

)
· · ·
(
−q(τϕm(n)

(n))
)
x(τϕm(n)

(n∗))

= x(τϕm(n)
(n∗))

m(n)∏
j=0

(
−q(τϕj(n)(n))

)
.

Since (x(n)) has a lower bound greater than zero, it cannot have any subsequence that

tends to zero. Thus limn→∞ x(σ(n)) = 0 is not valid, and therefore
∑∞

i=n0
p(i)x(σ(i)) =

∞. This result comes to contradiction with our previous assumptions, leading us to

conclude that (x(n)) oscillates.

Assume that the terms qj(n) are all nonpositive and condition (C3) holds. Supose,

for the sake of contradiction, that (x(n))n≥−k is an eventually positive solution of (E).

If (2.7.b) holds then, in view of Part (ii) of Lemma 2.1, (2.6) is satisfied. By a simi-

lar procedure, as in the previous case we conclude that (3.2) holds, which means that

the sequence (x(n)) is bounded and consequently (z(n)) is bounded. This contradicts∑∞
i=n0

p(i)x(σ(i)) = +∞.

Thus
∑∞

i=n0
p(i)x(σ(i)) < +∞. By a similar procedure, as in the previous case we

eventually have

x(n) > x(τϕm(n)
(n∗))

m(n)∏
j=0

(
−q(τϕj(n)(n))

)
.

Since the sequence (x(n)) has a lower bound greater than zero, it cannot have any

subsequence that tends to zero. Thus limn→∞ x(σ(n)) = 0 is not valid, and therefore∑∞
i=n0

p(i)x(σ(i)) = ∞. This result comes to contradiction with our previous assump-

tions, leading us to conclude that (x(n)) oscillates. The proof of Part (II) of the theorem

is complete.
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Assume that the terms qj(n) are all nonpositive and condition (C4) holds. Let

(3.4) lim inf q(n) = d > −1.

This ensures that q(n) > d or −q(n) < −d < 1 eventually.

Supose that (2.7.b) holds. Then, in view of Part (ii) of Lemma 2.1, (2.6) is satisfied.

Using (3.1), (2.3), (3.4) and (2.4), we obtain

x(n) < −
w∑
j=1

qj(n)x(τj(n)) <

(
−

w∑
j=1

qj(n)

)
x(τρ1(n)(n))

= −q(n)x(τρ1(n)(n)) < −dx(τρ1(n)(n))

< (−d)[−q(τρ1(n)(n))x(τρ2(n)(τρ1(n)(n)))]

< (−d)[−dx(τρ2(n)(τρ1(n)(n)))] < · · · < (−d) (−d) · · · (−d)x(τρm(n)
(n∗))

= x(τρm(n)
(n∗))

m(n)∏
j=0

(−d) = x(τρm(n)
(n∗))(−d)m(n)+1 → 0 as n→∞.

This result means that the sequence (x(n)) tends to zero as n→∞, and therefore (z(n))

is bounded. This contradicts (2.7.b).

Thus,
∑∞

i=n0
p(i)x(σ(i)) < +∞ which, in view of Part (i) of Lemma 2.1, means that

lim
n→∞

z(n) = A = lim
n→∞

w∑
j=1

qj(σ(n))x(τj(σ(n))), A ∈ R

which guarantees that A ≤ 0.

Assume that A < 0. Taking into account that the sequence (z(n)) is eventually strictly

decreasing, it follows that z(n) < 0 eventually. Following a similar procedure as in the

previous case, we eventually have

x(n) < x(τρm(n)
(n∗))

m(n)∏
j=0

(−d) = x(τρm(n)
(n∗))(−d)m(n)+1 → 0 as n→∞
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which means that limn→∞ x(n) = 0, and consequently limn→∞ z(n) = 0. This contradicts

A < 0. Therefore A = 0.

Since the sequence (z(n)) is eventually strictly decreasing, it is obvious that z(n) > 0

eventually. Therefore, there exists ε > 0 such that

z(n) < ε and q(n) > d− ε > −1 for sufficiently large n.

Using (3.1), (2.3), (3.4) and (2.4), we obtain

x(n) +
w∑
j=1

qj(n)x(τj(n)) < ε,

or

x(n) < −
w∑
j=1

qj(n)x(τj(n)) + ε ≤

(
−

w∑
j=1

qj(n)

)
x(τρ1(n)(n)) + ε

= −q(n)x(τρ1(n)(n)) + ε < (−d+ ε)x(τρ1(n)(n)) + ε

< (−d+ ε)
[
(−d+ ε)x(τρ2(n)(τρ1(n)(n)))] + ε

]
+ ε

= (−d+ ε)2 x(τρ2(n)(τρ1(n)(n)))− (−d+ ε) ε+ ε

< · · · < (−d+ ε)m x(τρm(n)(n)(τρm(n)−1(n)(n)))

+ε+ (−d+ ε) ε+ · · ·+ (−d+ ε)m ε.
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As n→∞, clearly m→∞, and therefore

lim
n→∞

x(n) ≤ lim
m→∞

[
(−d+ ε)m x(τρm(n)(n)(τρm(n)−1(n)(n)))

]

+ lim
m→∞

[ε+ (−d+ ε) ε+ · · ·+ (−d+ ε)m ε]

= 0 + lim
m→∞

[ε+ (−d+ ε) ε+ · · ·+ (−d+ ε)m ε] =
ε

1 + d− ε
.

Since ε is an arbitrary real positive number, and taking into account that x(n) > 0, it is

apparent that

lim
n→∞

x(n) = 0.

The proof of Part (III) of the theorem is complete.

Assume that the terms qj(n) are all nonnegative. Clearly, q(n) ≥ 0. If (2.7.b) holds

then, in view of Part (ii) of Lemma 2.1, (2.6) is satisfied. This contradicts z(n) = x(n) +∑w
j=1 qj(n)x(τj(n) > 0. Therefore (2.7.b) is not valid and consequently (2.7.a) holds. This

result, combined with (2.7), implies that the sequence (z(n)) is bounded and therefore

(x(n)) is bounded.

Assume that 0 ≤ lim sup q(n) = q < 1. If

M = lim sup x(n),

then there exists a subsequence (x(θ(n))) of (x(n)) such that

lim
n→∞

x(θ(n)) = M .

Since z(n) > 0 we have limn→∞ z(n) = A ≥ 0.

Let A > 0. Then

lim
n→∞

[
x(θ(n)) +

w∑
j=1

qj(θ(n))x(τj(θ(n)))

]
= A,

or

lim
n→∞

w∑
j=1

qj(θ(n))x(τj(θ(n))) = A−M ≥ 0.



48 G. E. CHATZARAKIS1,∗ AND G. N. MILIARAS2

Therefore

A ≥M .

On the other hand

lim
n→∞

w∑
j=1

qj(σ(n))x(τj(σ(n))) = A

or

lim sup
w∑
j=1

qj(σ(n))x(τj(σ(n))) = A.

But

w∑
j=1

qj(σ(n))x(τj(σ(n))) ≤

(
w∑
j=1

qj(σ(n))

)
x(τρ(σ(n))(σ(n)))

= q(σ(n))x(τρ(σ(n))(σ(n))).

Consequently

lim sup
w∑
j=1

qj(σ(n))x(τj(σ(n))) ≤ lim sup
[
q(σ(n))x(τρ(σ(n))(σ(n)))

]
≤ lim sup q(σ(n)) lim supx(τρ(σ(n))(σ(n)))

≤ qM .

Therefore,

M > qM ≥ A,

which contraticts that M ≤ A. Thus A = 0, and consequently limn→∞ x(n) = 0. The

proof of Part (IV) of the theorem is complete.

The proof of the theorem is complete.

Remark 3.2. As a consequence of Theorem 3.1, we derive the following corollary for Eq.

(E′).

Corollary 3.3. For Eq. (E′) the following statements hold:

(i) Every nonoscillatory solution is unbounded if the terms qj(n) are all nonpositive

and condition (C1) holds.
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(ii) Every solution oscillates if the terms qj(n) are all nonpositive and condition (C2)

or condition (C3) holds.

(iii) Every nonoscillatory solution tends to zero either the terms qj(n) are all nonpos-

itive and condition (C4) holds, or the terms qj(n) are all nonnegative.

Proof. Assume that the terms qj(n) are all nonpositive and (C1) holds. If (2.7.a) holds

then, in view of Part (i) of Lemma 2.1, we have

lim
n→∞

z(n) = A = lim
n→∞

w∑
j=1

qj(n± b)x(n− aj ± b),

which guarantees that A ≤ 0.

Let A < 0. Since (2.8) is satisfied we have limn→∞ x(n± b) = 0. Then limn→∞ x(n) = 0

and consequently limn→∞ x(n − aj ± b) = 0. Taking into account that (C1) holds, we

conclude that limn→∞ z(n) = 0 which contradicts A < 0. Thus A = 0 and since the

sequence (z(n)) is eventually strictly decreasing , it is obvious that z(n) > 0 eventually,

or

x(n) > −
w∑
j=1

qj(n)x(n− aj) ≥

(
−

w∑
j=1

qj(n)

)
x(n− a

ϕ1(n)
)

= −q(n)x(n− a
ϕ1(n)

) > (−c)x(n− a
ϕ1(n)

) > · · · > (−c)m(n) x(n∗ − aϕm(n)
).

Consequently

lim
n→∞

x(n) ≥ lim
n→∞

[
(−c)m(n) x(n∗ − aϕm(n)

)
]

= +∞,

which contradicts (2.7.a). Therefore
∑∞

i=n0
p(i)x(i± b) = +∞.

Summing up (2.2) from n0 to n, n ≥ n0, we obtain

z(n+ 1) = z(n0)−
n∑

i=n0

p(i)x(i± b)

which implies that

lim
n→∞

z(n) = −∞.
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Thus

lim
n→∞

[
x(n) +

w∑
j=1

qj(n)x(n− aj)

]
= −∞,

or

lim
n→∞

[
x(n) +

(
w∑
j=1

qj(n)

)
x(n− aρ(n))

]
= −∞,

or

lim
n→∞

[
x(n) + q(n)x(n− aρ(n))

]
= −∞.

Since (q(n)) is bounded, the last relation guarantees that

lim
n→∞

x(n− aρ(n)) = +∞,

which means that (x(n)) is unbounded. The proof of Part (i) of the corollary is complete.

Part (ii) follows directly from Part (II) of Theorem 3.1.

As we have shown in Parts (III) and (IV) of Theorem 3.1, it is true that

lim
n→∞

x(σ(n)) = 0

and consequently

lim
n→∞

x(n± b) = 0,

which means that

lim
n→∞

x(n) = 0.

The proof of Part (iii) of the corollary is complete.

The proof of the corollary is completed.
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