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1Department of Mathematics, University of Pannonia, Egyetem u.10, 8200 Veszprém, Hungary

2Abdus Salam School of Mathematical Sciences, GC University, 68-B, New Muslim Town, Lahore

54600, Pakistan

3Department of mathematics, University of Sargodha, Sargodha 40100, Pakistan

4Faculty of Textile Technology, University of Zagreb, 10000 Zagreb, Croatia

Abstract. In this paper, we consider the class of self-adjoint operators defined on a Hilbert space,

whose spectra are contained in an interval. We give parameter dependent refinement of the well known

discrete Jensen’s inequality in this class. The parameter dependent mixed symmetric means are defined

for a subclass of positive self-adjoint operators which insure the refinements of inequality between power

means of strictly positive operators.

Keywords: self-adjoint operators, operator convex functions, operator means, symbolic calculus.

2010 AMS Subject Classification: 26D15; 47A63; 47A64; 47B15.

∗Corresponding author

E-mail addresses: lhorvath@almos.uni-pannon.hu (L. Horváth), khuramsms@gmail.com (K. A. Khan),
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1. Introduction and Preliminary Results

Initially a complex Hilbert space H is given. The Banach algebra of all bounded

linear operators on H is denoted by B(H). Sp(A) means the spectrum of the operator

A ∈ B(H). Let S(I) be the class of all self-adjoint bounded operators on H whose spectra

are contained in an interval I ⊂ R. A function f : Df (⊂ R) → R is operator monotone

on the interval I, if f is continuous on I and f(A) ≤ f(B) for all A, B ∈ S(I) satisfying

A ≤ B (i.e A−B is a positive operator). The function f is operator convex on I, if f is

continuous on I and

f(sA+ tB) ≤ sf(A) + tf(B)

for all A, B ∈ S(I) and for all positive numbers s and t. The function f is called operator

concave on I if −f is operator convex on I.

If f is an operator convex function on the interval I, Ti ∈ S(I), and wi > 0 (i = 1, ..., n)

such that
∑n

i=1wi = 1, then the discrete Jensen’s inequality is given by

(1) f

(
n∑
i=1

wiTi

)
≤

n∑
i=1

wif(Ti).

If f is an operator concave function on I , then inequality in (1) is reversed.

Some interpolations of (1) are given in [7]. The power means for strictly positive

operators with positive weights are also defined in [7] and their monotonicity is discussed.

In [5], the class S(I) is considered to give some refinements of the discrete Jensen’s

inequality, and the monotonicity property of the corresponding mixed symmetric means

is studied. The interpolations given in [7] are special cases of some results in [5].

We start with a result from [5]. To formulate this result we need some notations and

some hypotheses which will also give the basic context of our main results.

The power set of a set X is denoted by P (X). |X| means the number of elements in

X.

The usual symbol N is used for the set of natural numbers (including 0), while N+

means N \ {0}.

(H1) Let I ⊂ R be an interval, and let Ti ∈ S(I) (1 ≤ i ≤ n).
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(H2) Let w1, . . . , wn be positive numbers such that
n∑
j=1

wj = 1.

(H3) Let the function f : I → R be operator convex.

(H4) Let h, g : I → R be continuous and strictly operator monotone functions.

We do not apply Theorem 1.1 in this paper, and therefore on the score of the exact

meaning of the following expresions Ak,l (k ≥ l ≥ 1) see [5] or [6]. Let

Ak,k :=
∑

(i1,...,ik)∈Ik

(
k∑
s=1

wis
αIk,is

)
f


k∑
s=1

wis
αIk,is

Tis

k∑
s=1

wis
αIk,is

 ,

and for each k − 1 ≥ l ≥ 1 let

Ak,l :=
1

(k − 1) . . . l

∑
(i1,...,il)∈Il

tIk,l (i1, . . . , il)

(
l∑

s=1

wis
αIk,is

)
f


l∑

s=1

wis
αIk,is

Tis

l∑
s=1

wis
αIk,is

 .

Now we are in a position to formulate one of the main results in [5]:

Theorem 1.1. Assume (H1)-(H3) are satisfied. Then

(2) f

(
n∑
r=1

wrTr

)
≤ Ak,k ≤ Ak,k−1 ≤ . . . ≤ Ak,2 ≤ Ak,1 =

n∑
r=1

wrf(Tr).

In this paper, we first use the method of Horváth adopted in [3] to construct a new

refinement of Jensen’s inequality for operator convex functions. In this way we are able

to generalize the refinement results given in [5] as well as the results of Mond and Pečarić

in [7].

Secondly, we introduce a parameter dependent refinement of (1) by using the method

given in [4]. With the help of this new refinement, we construct the parameter dependent

mixed symmetric means for a subclass of S(I) and also give the monotonicity property

of these operator means.
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2. Generalizations

To give the generalization of Theorem 1.1, we start with the following notations intro-

duced in [3]:

Let X be a set. For every nonnegative integer m, define

Pm(X) := {Y ⊂ X | |Y | = m} .

We introduce two further hypotheses:

(H5) Let S1, . . . , Sn be finite, pairwise disjoint and nonempty sets, let

S :=
n⋃
j=1

Sj,

and let c be a function from S into R such that

c(s) > 0, s ∈ S, and
∑
s∈Sj

c(s) = 1, j = 1, . . . , n.

Let the function τ : S → {1, . . . , n} be defined by

τ(s) := j, if s ∈ Sj.

(H6) Suppose A ⊂ P (S) is a partition of S into pairwise disjoint and nonempty sets.

Let

k := max {|A| | A ∈ A} ,

and let

Al := {A ∈ A | |A| = l} , l = 1, . . . , k.

(We note that Al (l = 1, . . . , k− 1) may be the empty set, and of course, |S| =
k∑
l=1

l |Al|.)

Now, we give a refinement of (1). The empty sum of numbers or vectors is taken to be

zero.

Theorem 2.1. If (H1)-(H3) and (H5)-(H6) are satisfied, then

f

(
n∑
j=1

wjTj

)
≤ Nk ≤ Nk−1 ≤ . . . ≤ N2 ≤ N1 =

n∑
j=1

wjf(Tj),
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where

Nk :=
k∑
l=1

∑
A∈Al

(∑
s∈A

c(s)wτ(s)

)
f


∑
s∈A

c(s)wτ(s)Tτ(s)∑
s∈A

c(s)wτ(s)

 ,

and for every 1 ≤ m ≤ k − 1 the operator Nk−m is given by

Nk−m :=
m∑
l=1

(∑
A∈Al

(∑
s∈A

c(s)wτ(s)f(Tτ(s))

))
+

k∑
l=m+1

(
m!

(l − 1) . . . (l −m)

·
∑
A∈Al

 ∑
B∈Pl−m(A)

(∑
s∈B

c(s)wτ(s)

)
f


∑
s∈B

c(s)wτ(s)Tτ(s)∑
s∈B

c(s)wτ(s)

 .

Proof. The proof is entirely similar to the proof of Theorem 1 in [3], so we omit it.. �

The first application of Theorem 2.1 leads to a generalization of Theorem 1.1.

Theorem 2.2. Assume that (H1)-(H3) are satisfied, let k ≥ 1 be a fixed integer, and let

Ik ⊂ {1, . . . , n}k. For j = 1, . . . , n we consider the sets

Sj := {((i1, . . . , ik) , l) | (i1, . . . , ik) ∈ Ik, 1 ≤ l ≤ k, il = j} .

Let c be a positive function on S :=
n⋃
j=1

Sj such that

∑
((i1,...,ik),l)∈Sj

c ((i1, . . . , ik) , l) = 1, j = 1, . . . , n.

Then

(3) f

(
n∑
j=1

wjTj

)
≤ Nk ≤ Nk−1 ≤ . . . ≤ N2 ≤ N1 =

n∑
j=1

wjf(Tj),

where

Nk

:=
∑

(i1,...,ik)∈Ik


(

k∑
l=1

c ((i1, . . . , ik) , l)wil

)
f


k∑
l=1

c ((i1, . . . , ik) , l)wilTil

k∑
l=1

c ((i1, . . . , ik) , l)wil


 ,

and for every 1 ≤ m ≤ k − 1

Nk−m :=
m!

(k − 1) . . . (k −m)

∑
(i1,...,ik)∈Ik

 ∑
1≤l1<...<lk−m≤k
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(
k−m∑
j=1

c ((i1, . . . , ik) , lj)wilj

)
f


k−m∑
l=1

c ((i1, . . . , ik) , lj)wiljTilj

k−m∑
l=1

c ((i1, . . . , ik) , lj)wilj



 .

An immediate consequence of the previous result is Theorem 1.1: choosing

c ((i1, . . . , ik) , l) =
1

|Sj|
=

1

αIk,j
if ((i1, . . . , ik) , l) ∈ Sj,

it can be checked easily that the inequality (3) corresponds to the inequality (2).

Theorem 1.1 has some interesting special cases (see [5]). Theorem 2.2 generalizes these

results: apply it to either

Ik :=
{

(i1, . . . , ik) ∈ {1, . . . , n}k | i1 < . . . < ik

}
, 1 ≤ k ≤ n,

or

Ik :=
{

(i1, . . . , ik) ∈ {1, . . . , n}k | i1 ≤ . . . ≤ ik

}
, 1 ≤ k.

Now we apply Theorem 2.1 to some special situations which correspond to some results

about operator convexity.The next examples based on examples in [3].

Example 2.3. Let n, m, r be fixed integers, where n ≥ 3, m ≥ 2 and 1 ≤ r ≤ n− 2. In

this example, for every i = 1, 2, . . . , n and for every l = 0, 1, . . . , r the integer i+ l will be

identified with the uniquely determined integer j from {1, . . . , n} for which

(4) l + i ≡ j (modn).

Introducing the notation

D := {1, . . . , n} × {0, . . . , r} ,

let for every j ∈ {1, . . . , n}

Sj := {(i, l) ∈ D | i+ l ≡ j (modn)}
⋃
{j} ,

and let A ⊂ P (S) (S :=
n⋃
j=1

Sj) contain the following sets:

Ai := {(i, l) ∈ D | l = 0, . . . , r} , i = 1, . . . , n



662 L. HORVÁTH1, KHURAM ALI KHAN2,3,∗, AND J. PEČARIĆ2,4

and

A := {1, . . . , n} .

Let c be a positive function on S such that∑
(i,l)∈Sj

c (i, l) + c (j) = 1, j = 1, . . . , n.

A careful verification shows that the sets S1, . . . , Sn, the partition A and the function c

defined above satisfy the conditions (H5) and (H6),

τ (i, l) = i+ l, (i, l) ∈ D,

(by the agreement (see (4)), i+ l is identified with j)

τ (j) = j, j = 1, . . . , n,

|Sj| = r + 2, j = 1, . . . , n,

and

|Ai| = r + 1, i = 1, . . . , n, |A| = n.

Now we suppose (H1)-(H3) are satisfied. Then by Theorem 2.1

f

(
n∑
j=1

wjTj

)
≤ Nk =

n∑
i=1


(

r∑
l=0

c (i, l)wi+l

)
f


r∑
l=0

c (i, l)wi+lTi+l

r∑
l=0

c (i, l)wi+l




(5) +

(
n∑
j=1

c(j)wj

)
f


n∑
j=1

c(j)wjTj

n∑
j=1

c(j)wj

 ≤ n∑
j=1

wjf(Tj).

In case

wj :=
1

n
, j = 1, . . . , n,

c (i, l) :=
1

m (r + 1)
, (i, l) ∈ D, c(j) :=

m− 1

m
j = 1, . . . , n,

it follows from (5) that

f

(
1

n

n∑
j=1

Tj

)
≤ 1

mn

n∑
i=1

f

(
Ti + Ti+1 + . . .+ Ti+r

r + 1

)
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+
m− 1

m
f

(
1

n

n∑
j=1

Tj

)
≤ 1

n

n∑
j=1

f(Tj).

Example 2.4. Let n and k be fixed positive integers. Let

D := {(i1, . . . , in) ∈ {1, . . . , k}n | i1 + . . .+ in = n+ k − 1} ,

and for each j = 1, . . . , n, denote Sj the set

Sj := D × {j} .

For every (i1, . . . , in) ∈ D designate by A(i1,...,in) the set

A(i1,...,in) := {((i1, . . . , in) , l) | l = 1, . . . , n} .

It is obvious that Sj (j = 1, . . . , n) and A(i1,...,in) ((i1, . . . , in) ∈ D) are decompositions of

S :=
n⋃
j=1

Sj into pairwise disjoint and nonempty sets, respectively. Let c be a function on

S such that

c ((i1, . . . , in) , j) > 0, ((i1, . . . , in) , j) ∈ S

and

(6)
∑

(i1,...,in)∈D

c ((i1, . . . , in) , j) = 1, j = 1, . . . , n.

In summary we have that the conditions (H5) and (H6) are valid, and

τ ((i1, . . . , in) , j) = j, ((i1, . . . , in) , j) ∈ S.

Suppose (H1)-(H3) are satisfied. Then by Theorem 2.1

f

(
n∑
j=1

wjTj

)
≤ Nk =

∑
(i1,...,in)∈D

((
n∑
l=1

c ((i1, . . . , in) , l)wl

)

(7) f


n∑
l=1

c ((i1, . . . , in) , l)wlTl

n∑
l=1

c ((i1, . . . , in) , l)wl


 ≤ n∑

j=1

wjf(Tj).

If we set

wj :=
1

n
, j = 1, . . . , n,
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and

c ((i1, . . . , in) , j) :=
ij(

n+k−1
k−1

) ,
then (6) holds, since by some combinatorial considerations

|D| =
(
n+ k − 2

n− 1

)
,

and ∑
(i1,...,in)∈D

ij =
n+ k − 1

n

(
n+ k − 2

n− 1

)
=

(
n+ k − 1

k − 1

)
, j = 1, . . . , n.

In this situation (7) can therefore be expressed as

f

(
1

n

n∑
j=1

Tj

)
≤ 1(

n+k−2
k−1

) ∑
(i1,...,in)∈D

f

(
1

n+ k − 1

n∑
l=1

ilTl

)
≤ 1

n

n∑
j=1

f(Tj).

Let us close this section by deriving a sharpened version of the arithmetic mean -

geometric mean inequality.

Example 2.5. Let n ≥ 2 be a fixed positive integer, let

Sj :=
{

(i, j) ∈ {1, . . . , n}2 | i = 1, . . . , j
}
, j = 1, . . . , n,

and let

Ai :=
{

(i, j) ∈ {1, . . . , n}2 | j = i, . . . , n
}
, i = 1, . . . , n.

If T1, . . . , Tn are strictly positive operators, then it follows from Theorem 2.1 that

− ln

(
T1 + . . .+ Tn

n

)
≤

n∑
i=1

−
(

1

n

n∑
j=i

1

j

)
ln


n∑
j=i

Tj
j

n∑
j=i

1
j




≤ − ln (T1) + . . .+ ln (Tn)

n
,

and therefore

(T1 . . . Tn)
1
n ≤

n∏
i=1


n∑
j=i

Tj
j

n∑
j=i

1
j


1
n

n∑
j=i

1
j

≤ T1 + . . .+ Tn
n

.
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3. Parameter Dependent Refinement

In this part of the paper we use the following hypothesis:

(H7) Consider a real number λ such that λ ≥ 1.

Now we give a parameter dependent refinement of the discrete Jensen’s inequality (1).

Theorem 3.1. Suppose (H1)-(H3) and (H7). For k ∈ N, we introduce the sets

Sk :=

{
(i1, . . . , in) ∈ Nn |

n∑
j=1

ij = k

}
, k ∈ N,

and define the operators

Ck(λ) = Ck(T1, . . . , Tn;w1, . . . , wn;λ)

(8) :=
1

(n+ λ− 1)k

∑
(i1,...,in)∈Sk

k!

i1! . . . in!

(
n∑
j=1

λijwj

)
f


n∑
j=1

λijwjTj

n∑
j=1

λijwj

 .

Then

(a)

f

(
n∑
j=1

wjTj

)
= C0(λ) ≤ C1(λ) ≤ . . . ≤ Ck(λ) ≤ . . . ≤

n∑
j=1

wjf(Tj), k ∈ N.

(b) For every fixed λ > 1

lim
k→∞

Ck(λ) =
n∑
j=1

wjf(Tj).

It follows from the definition of Sk that Sk ⊂ {0, . . . , k}n (k ∈ N), and it is obvious

that

Ck(1) = f

(
n∑
j=1

wjTj

)
, k ∈ N.

The proof of Theorem 3.1 is essentially the same as the proofs of the similar results in

[4], so it is omitted. But to prove the second part of the theorem we need the following

two results. First, we generalize Lemma 15 in [4].
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Lemma 3.2. Let (X, ‖·‖) be a normed space. Let p1, . . . , pn be a discrete distribution

with n ≥ 2, and let λ > 1. Let l ∈ {1, . . . , n} be fixed. el denotes the vector in Rn that

has 0s in all coordinate positions except the lth, where it has a 1. Let q1, . . . , qn be also a

discrete distribution such that qj > 0 (1 ≤ j ≤ n) and

ql > max (q1, . . . ql−1, ql+1, . . . , qn) .

If

g :

{
(t1, . . . , tn) ∈ Rn | tj > 0 (1 ≤ j ≤ n),

n∑
j=1

tj = 1

}
→ X

is a bounded function for which

τl := lim
el
g

exists, and pl > 0, then

lim
k→∞

∑
(i1,...,in)∈Sk

k!

i1! . . . in!
qi11 . . . q

in
n g

 λi1p1
n∑
j=1

λijpj

, . . . ,
λinpn
n∑
j=1

λijpj

 = τl.

Proof. We have to modify just the final part of the proof of Lemma 15 in [4]. We can

suppose that l = 1.

Choose 0 < ε < 1. Since the distribution function Fn−1 of the Chi-square distribution

(χ2-distribution) with n − 1 degrees of freedom is continuous, and strictly increasing on

]0,∞[, there exists a unique tε > 0 such that

Fn−1(tε) = 1− ε.

Define

S1
k :=

(i1k, . . . , ink) ∈ Sk |
n∑
j=1

k

(
ijk
k
− qj

)2
qj

< tε

 ,

let S2
k := Sk \ S1

k (k ∈ N+), and consider the sequences

a1k :=
∑

(i1k,...,ink)∈S1
k

k!

i1k! . . . ink!
qi1k1 . . . qinkn g

 λi1kp1
n∑
j=1

λijkpj

, . . . ,
λinkpn
n∑
j=1

λijkpj

 ,
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and

a2k :=
∑

(i1k,...,ink)∈S2
k

k!

i1k! . . . ink!
qi1k1 . . . qinkn g

 λi1kp1
n∑
j=1

λijkpj

, . . . ,
λinkpn
n∑
j=1

λijkpj

 ,

where k ∈ N+.

By using the first part of the proof of Lemma 15 in [4], we have that

(i) ∑
(i1k,...,ink)∈S1

k

k!

i1k! . . . ink!
qi1k1 . . . qinkn = 1− ε+ δε(k), k ∈ N+,

where lim
k→∞

δε(k) = 0 (let kε ∈ N+ such that δε(k) < ε for all k > kε),

(ii) for every ε1 > 0 we can find an integer kε1 > kε such that for all k > kε1∥∥∥∥∥∥∥∥∥∥
g

 λi1kp1
n∑
j=1

λijkpj

, . . . ,
λinkpn
n∑
j=1

λijkpj

− τ1
∥∥∥∥∥∥∥∥∥∥
< ε1, (i1k, . . . , ink) ∈ S1

k .

Since g bounded on its domain (‖g − τ1‖ ≤ m), it follows from (i) and (ii) that∥∥∥∥∥∥∥∥∥∥
∑

(i1,...,in)∈Sk

k!

i1! . . . in!
qi11 . . . q

in
n g

 λi1p1
n∑
j=1

λijpj

, . . . ,
λinpn
n∑
j=1

λijpj

− τ1
∥∥∥∥∥∥∥∥∥∥

≤
∑

(i1,...,in)∈S1
k

k!

i1! . . . in!
qi11 . . . q

in
n

∥∥∥∥∥∥∥∥∥∥
g

 λi1p1
n∑
j=1

λijpj

, . . . ,
λinpn
n∑
j=1

λijpj

− τ1
∥∥∥∥∥∥∥∥∥∥

+
∑

(i1,...,in)∈S2
k

k!

i1! . . . in!
qi11 . . . q

in
n

∥∥∥∥∥∥∥∥∥∥
g

 λi1p1
n∑
j=1

λijpj

, . . . ,
λinpn
n∑
j=1

λijpj

− τ1
∥∥∥∥∥∥∥∥∥∥

≤ ε1 (1− ε+ δε(k)) +m (ε− δε(k)) , k > kε1 ,

and this gives the result. �

The second lemma corresponds to the symbolic calculus for self-adjoint operators.
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Lemma 3.3. Assume (H1) and let f : I → R be continuous. Let the function

g :

{
(t1, . . . , tn) ∈ Rn | tj > 0 (1 ≤ j ≤ n),

n∑
j=1

tj = 1

}
→ B(H)

defined by

g (t1, . . . , tn) := f

(
n∑
j=1

tjTj

)
.

Then

lim
el
g = f(Tl), 1 ≤ l ≤ n.

Proof. Let

α := min
1≤j≤n

(minSp(Tj)) and β := max
1≤j≤n

(maxSp(Tj)) ,

where Sp(T ) denotes the spectrum of T . Then

Sp

(
n∑
j=1

tjTj

)
⊂ [α, β] ⊂ I

for all tj ≥ 0 (1 ≤ j ≤ n) with
n∑
j=1

tj = 1.

It is enough to prove that f is continuous on S([α, β]).

To prove this let ε > 0 be fixed, and let (An)n∈N be a sequence in S([α, β]) such that

An → A ∈ S([α, β]).

Since f is continuous on [α, β], the Stone-Weierstrass theorem implies the existence of

a sequence of real polynomial functions (fk)k∈N which converges uniformly on [α, β] to f .

It follows that there exists k0 ∈ N such that

|fk0(t)− f(t)| < ε

3
, t ∈ [α, β] .

The fundamental result for continuous functional calculus (see for example [2]) yields that

(9) ‖f(An)− fk0(An)‖ = ‖(f − fk0) (An)‖ = sup
t∈Sp(An)

|f(t)− fk0(t)|

≤ sup
t∈[α,β]

|f(t)− fk0(t)| <
ε

3
, n ∈ N,

where ‖·‖ means the norm on H. Similarly, we have

(10) ‖fk0(A)− f(A)‖ < ε

3
.
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Since An → A, we obtain Ain → Ai for every i ∈ N, and therefore there is n0 ∈ N such

that

(11) ‖fk0(An)− fk0(A)‖ < ε

3

for all n > n0.

Now the inequalities (9-11) give that

‖f(An)− f(A)‖ ≤ ‖f(An)− fk0(An)‖+ ‖fk0(An)− fk0(A)‖

+ ‖fk0(A)− f(A)‖ < ε

for all n > n0, and hence f(An)→ f(A).

The proof is complete. �

Suppose (H1)-(H3) and (H7). We consider three special cases of (8).

(a) k = 1, n ∈ N+ :

C1(λ) =
1

n+ λ− 1

n∑
i=1

(1 + (λ− 1)wi) f


n∑
j=1

wjTj + (λ− 1)wiTi

1 + (λ− 1)wi

 .

(b) k ∈ N, n = 2 :

Ck(λ) =
1

(λ+ 1)k

k∑
i=0

(
k

i

)(
λiw1 + λk−iw2

)
f

(
λiw1T1 + λk−iw2T2
λiw1 + λk−iw2

)
.

(c) w1 = . . . = wn := 1
n

:

Ck(λ) =
1

n (n+ λ− 1)k

∑
(i1,...,in)∈Sk

k!

i1! . . . in!

(
n∑
j=1

λij

)
f


n∑
j=1

λijTj

n∑
j=1

λij

 .

Next, we define some further operator means and study their monotonicity and con-

vergence.

Definition 3.4. We assume that (H1), (H2) and (H4) are satisfied and λ ≥ 1. Then we

define the operator means with respect to (8) by

(12) Mh,g(k, λ) := h−1

 1

(n+ λ− 1)k

∑
(i1,...,in)∈Sk

k!

i1! . . . in!

(
n∑
j=1

λijwj

)
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·(h ◦ g−1)


n∑
j=1

λijwjg(Tj)

n∑
j=1

λijwj


 , k ∈ N.

We now give the monotonicity of the means (12) by the virtue of Theorem 3.1.

Proposition 3.5. For λ ≥ 1, we assume (H1), (H2) and (H4). Then

(a)

Mg = Mh,g(0, λ) ≤ . . . ≤Mh,g(k, λ) ≤ . . . ≤Mh, k ∈ N,

if either h ◦ g−1 is operator convex and h−1 is operator monotone or h ◦ g−1 is operator

concave and −h−1 is operator monotone.

(b)

Mg = Mh,g(0, λ) ≥ . . . ≥Mh,g(k, λ) ≥ . . . ≥Mh, k ∈ N,

if either h ◦ g−1 is operator convex and −h−1 is operator monotone or h ◦ g−1 is operator

concave and h−1 is operator monotone.

(c) In both cases

lim
k→∞

Mh,g(k, λ) = Mh.

Proof. The idea of the proof is the same as given in [5]. �

As a special case we consider the following example.

Example 3.6. If I :=]0,∞[, h := ln and g(x) := x (x ∈]0,∞[), then by Proposition 3.5

(b), we have the following inequality: for every Tj > 0 (1 ≤ j ≤ n), λ ≥ 1, and k ∈ N+

n∏
j=1

T
wj
j ≤

∏
(i1,...,in)∈Sk


n∑
j=1

λijwjTj

n∑
j=1

λijwj


1

(n+λ−1)k
k!

i1!...in!

n∑
j=1

λijwj

≤
n∑
j=1

wjTj,

which gives a sharpened version of the arithmetic mean - geometric mean inequality

n∏
j=1

T
1
n
j ≤

∏
(i1,...,in)∈Sk


n∑
j=1

λijTj

n∑
j=1

λij


1

n(n+λ−1)k
k!

i1!...in!

n∑
j=1

λij

≤ 1

n

n∑
j=1

Tj.
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Supported by the power means we can introduce mixed symmetric operator means

corresponding to (8):

Definition 3.7. Assume (H1) with I :=]0,∞[ and (H2). We define the mixed symmetric

means with respect to (8) by

Ms,r(k, λ)

:=

 1

(n+ λ− 1)k

∑
(i1,...,in)∈Sk

k!

i1! . . . in!

(
n∑
j=1

λijwj

)

·M s
r

T1, . . . , Tn;
λi1w1
n∑
j=1

λijwj

, . . . ,
λinwn
n∑
j=1

λijwj




1
s

,

if s, r ∈ R and s 6= 0.

The monotonicity and the convergence of the previous means is studied in the next

result.

Proposition 3.8. Assume (H1) with I :=]0,∞[ and (H2). Then

(a)

(13) Ms ≤ . . . ≤Ms,r(k, λ) ≤ . . . ≤Ms,r(0, λ) = Mr,

if either

(i) 1 ≤ s ≤ r or

(ii) −r ≤ s ≤ −1 or

(iii) s ≤ −1, r ≥ s ≥ 2r;

while the reverse inequalities hold in (13) if either

(iv) r ≤ s ≤ −1 or

(v) 1 ≤ s ≤ −r or

(vi) s ≥ 1, r ≤ s ≤ 2r.

(b) All of these cases

lim
k→∞

Ms,r(k, λ) = Ms

for each fixed λ > 1.
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Proof. We apply Proposition 3.5 (b). �
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