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Abstract. In this article, we illustrate the advantages of using multistage technique to improve

the solution obtained via iterative methods for series solution of di¤erential equations. This is

accomplished by comparing between the Padé and the multistage techniques when used with the

Adomian decomposition method and the di¤erential transformation method. The case study is

a system of nonlinear di¤erential equations that describes three species food chain model with

Beddington DeAngelis functional response. Numerical simulations illustrate that the multistage

technique presents good results in the di¤erent cases of the solution of the considered system

whereas the Padé technique fails when dealing with the case of periodic solution.

2000 AMS Subject Classi�cation: 34A34; 34K28; 92B05

1. Introduction

Several iterative methods were proposed to solve functional equations, mainly di¤eren-

tial equations, in the form of in�nite series solution. Yet, a common drawback in these
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methods is the lack of global convergence as the results obtained are accurate only for

a small period of time. Two approaches are used to overcome this drawback. The �rst

one is to compute a very large number of the series terms but this leads to computational

complexities. The second approach is to use some techniques to improve the obtained

solution.

Two of the well known iterative methods are the Adomian decomposition method

(ADM) [1] and the di¤erential transformation method (DTM) [2]. To solve di¤eren-

tial equations with ADM, an inverse integral operator is applied to a recurrence relation

to obtain the terms of the series solution. Whereas the DTM computes the components

of the Taylor series solution with the advantage that it can be computerized to greatly

reduce the size of computational work.

The Padé approximation is one of the techniques that can be utilized to overcome

the lack of global convergence in the iterative methods. Though the ADM-Padé (ADM-

P) technique show good results [3], we demonstrate that it fails with periodic solutions

whereas the multistage ADM (MADM) [4] and the multistage DTM (MDTM) [5] give

good results in all the cases of the solution of the considered system.

The case study of this work is the mathematical model of a predator-prey system for

three species food chain model. This type of models is usually characterized by the

functional response which is the function that describes the number of preys consumed

per predator per unit time for given quantities of prey and predator. The functional

response proposed in this article is of the Beddington DeAngelis type as it is considered

to be more general than the other types [6] and [7]. This model is a generalization for the

host�parasitoid�hyperparasitoid model studied in [8].

This paper is structured as follows; In Section 2, the mathematical model of the food

chain we use as a case study is introduced. Section 3 presents the basics of the ADM,

the DTM, the Padé approximation, and the multistage technique. Section 4 contains the

numerical simulations and results. Section 5 contains the conclusion of this work.

2. Mathematical model
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In this paper, we study the nonlinear three species food chain model with the Bedding-

ton DeAngelis functional response of the following form

dx
dt
= x[a1 � b1x� s1y

c1+x+d1y
];

dy
dt
= y[�a2 � b2y + s2x

c1+x+d1y
� s3z

c2+y+d2z
];

dz
dt
= z[�a3 � b3z + s4y

c2+y+d2z
];

; (2:1)

where x, y, and z represent the population density of the prey, the predator, and the top-

predator at time t, respectively: Parameters ai, bi, si, ci; and di are positive constants.

The state space of system (2.1) is given by R3+ = f(x; y; z) 2 R3 : x > 0; y > 0; z > 0g:

This model can be considered a general form of many food chain models (see [6] and

references within). Model (2.1) has at most four non-negative equilibrium points which

are:

E0 = (0; 0; 0), E1 = (a1b1 ; 0; 0), E2 = (�x; �y; 0); and the positive equilibrium point E3 =

(x�; y�; z�); see [6] and [7].

3. Methods of solution

3.1 Adomian decomposition method

Consider the standard operator

Lu+Ru+Nu = g; (3:1)

where u is the unknown function, L is the highest order derivative which is assumed to

be easily invertible, R is a linear di¤erential operator of order less than the order of L,

Nu represents the nonlinear terms, and g is the source term. By applying the inverse

operator L�1 to both sides of equation (3.1) we obtain

u = v � L�1(Ru)� L�1(Nu); (3:2)

where the function v represents the terms arising from integrating the source term g and

from using the auxiliary conditions. The standard Adomian method de�nes the solution
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u by the series

u =
1X
n=0

un; (3:3)

and the nonlinear term by the series

Nu =
1X
n=0

An; (3:4)

where An are the Adomian polynomials determined formally from the relation[1]

An =
1

n!

"
dn

d�n
[N(

1X
i=0

�iui)]

#
�=0

; n = 0; 1; ::: (3:5)

The solution components u0, u1; u2, . . . , are then determined recursively by using the

relation 8<: u0 = v

uk+1 = �L�1Ruk � L�1Ak; k � 0
(3:6)

where u0 is referred to as the zeroth component.

By replacing each nonlinear term in system (2.1) by its corresponding Adomian poly-

nomials and applying the inverse operator, which is an integral operator from t0 to t, a

truncated series solution is thus obtained as

xN =
NX
n=0

xn; yN =
NX
n=0

yn; and zN =
NX
n=0

zn; (3:7)

3.2 Di¤erential transformation method

The DTM is a semi analytical�numerical technique which uses the form of polynomials

as the approximation to the exact solution. It is an iterative procedure for obtaining

Taylor series solutions of functional equations. The di¤erential transformation of an

analytic function u(t) is de�ned by

U(k) =
1

k!
[
dku(t)

dtk
]t=t0 ; k = 1; 2; ::: (3:8)
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The inverse di¤erential transformation of U(k) is de�ned by

u(t) =
1X
k=0

U(k)(t� t0)k; (3:9)

In real applications, the function u(t) is expressed by the truncated �nite series of the

form

u(t) =

NX
k=0

U(k)(t� t0)k: (3:10)

Let u(t), v(t) and w(t) be three uncorrelated functions of time t and U(k), V (k), and

W (k) are their corresponding di¤erential transforms. Then the following basic properties

of the di¤erential transformation hold ([5], [9], and references therein)

1- If u(t) = v(t)� w(t); then U(k) = V (k)�W (k).

2- If u(t) = av(t); then U(k) = aV (k); where a is a constant.

3- If u(t) = v(t)w(t); then U(k) =
kP

ki=0

V (ki)W (k � ki):

4- If u(t) = tn; then U(k) = �(k � n) where �(k � n) = f1 k=n0 k 6=n:

Also, algorithms are available for computing the di¤erential transform of general ana-

lytic nonlinear functions and for arbitrary order di¤erential equations[10].

In system (2.1) we have

X(0) = x0 = x(t0); Y (0) = y0; Z(0) = z0;

X(1) = x0[a1 � b1x0 � s1y0
c1+x0+d1y0

];

Y (1) = y0[�a2 � b2y0 + s2x0
c1+x0+d1y0

� s3z0
c2+y0+d2z0

];

Z(1) = z0[a3 � b3z0 � s4y0
c2+y0+d2z0

]:

(3:11)

To write the iterative scheme of system (2.1) in a more compact form, we de�ne the

following terms

	X(i) = (i+ 1)X(i+ 1);


X;Y (i) =
iP

m=0

X(m)Y (i�m); and

�j;X;Y (i) = cj�(i) +X(i) + djY (i); �(k) = f1 k=00 k 6=0:

(3:12)
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The following equations describe the iterative scheme of system (2.1) for k = 1; 2; :::

X(k + 1) = 1
(k+1)�1;X;Y (0)

[
kP
n=0

(a1X(n)� b1
X;X(n))�1;X;Y (k � n)

�s1
Y;X(k)�
k�1P
n=0

	X(n)�1;X;Y (k � n)];
(3:13)

Y (k + 1) = 1
(k+1)�1;X;Y (0)�2;Y;Z(0)

[
kP
n=0

nP
l=0

(�a2Y (l)� b2
Y;Y (l))�2;Y;Z(n� l)�1;X;Y (k � n)

+
kP
n=0

(s2
Y;X(n)�2;Y;Z(k � n)� s3
Z;Y (n)�1;X;Y (k � n))

�
k�1P
n=0

	Y (n)�2;Y;Z(k � n)�1;X;Y (0)

�
k�1P
n=0

nP
l=0

	Y (l)�2;Y;Z(n� l)�1;X;Y (k � n);

(3:14)

Z(k + 1) = 1
(k+1)�2;Y;Z(0)

[
kP
n=0

(�a3Z(n)� b3
Z;Z(n))�2;Y;Z(k � n)

+s4
Z;Y (k)�
k�1P
n=0

	Z(n)�2;Y;Z(k � n)]:
(3:15)

In the following subsections, the two improvement techniques we considered (the Padé

approximation and the multistage technique) are presented.

3.3 Padé approximation

The Padé approximants are a particular type of rational fraction approximation which

idea is to match the Taylor series expansion as far as possible [11]. The L; M Padé

approximant to U(t) =
1P
n=0

unt
n is uniquely determined for given L andM and is denoted

by

[L=M ] =
PL(t)

QM(t)
=

LP
n=0

pnt
n

MP
n=0

qntn
: (3:16)

The normalization condition QM(0) = 1 is imposed such that QM(t) and PL(t) have

no common factors [11] and [12]. The Padé approximant for the truncated sum Uk(t) =
KP
n=0

unt
n is the same as for U(t) when K � L+M [12]:
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The diagonal approximant [M=M ] is usually the most accurate Padé approximant [13].

Therefore, we construct the diagonal approximants in the following numerical simulations

such that the series in (3.7) are transformed as follows

x�N =

MP
n=0

dnt
n

MP
n=0

entn
; y�N =

MP
n=0

fnt
n

MP
n=0

gntn
; and z�N =

MP
n=0

hnt
n

MP
n=0

kntn
: (3:17)

where N �M +M .

3.4 Multistage technique

The other technique used to increase the accuracy of iterative methods is to divide

the interval [t0; T ) into m subintervals, [t0; t1), [t1; t2), . . . , [tm�1; T ). Then the N + 1

terms partial sums x1N =
NP
n=0

x1n; y1N =
NP
n=0

y1n; and z
1
N =

NP
n=0

z1n are obtained as the

system solution for the �rst subinterval [t0; t1): Then, the solutions x1N ; y
1
N ; and z

1
N are

used to obtain a new initial condition for the next subinterval [t1; t2) and another solution

x2N ; y
2
N ; and z

2
N for subinterval [t1; t2) is obtained. This procedure is applied over the m

successive subintervals, and the obtained solutions for each subinterval [tp�1; tp) can be

used to obtain the initial condition at tp for the next subinterval [tp; tp+1):

4. Numerical implementation

In this section, we present the numerical results obtained when model (2.1) is solved

by ADM, DTM, MADM, MDTM, ADM-P, and 4th order Runge�Kutta method (RK4).

Three sets of values are assigned to the system parameters to illustrate three cases of the

solution stability [6] and [14].

Case a1 b1 a2 b2 a3 b3 s1 s2 s3 s4 c1 d1

1 1 1 0:4 1 0:1 0:5 2 2 2 2 1 1

2 1 1 0:4 1 1:5 0:5 2 2 2 1 1 1

3 1 1 1 0 1 0 1 10 10 2 0 1
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c2 d2 x(0) y(0) z(0)

1 4 0:3 0:5 0:4

1 4 0:3 0:5 0:4

0 1 0:7046 0:2941 0:2853

Case 1 represents an asymptotically stable coexistence equilibrium point of the model.

Case 2 and Case 3 correspond to a ratio-dependent food chain model with positive periodic

solution and asymptotically stable equilibrium point, respectively.

MADM and MDTM are used with N = 6 and h = 0:4; ADM-P has M = 3; RK4 step

is 0:01. We show ADM-P for [M=M ], [M � 1=M ], and [M=M � 1] as in some cases the

last two give better results.

Fig.1 to Fig. 3 have the legend shown in Fig. 1-a. In numbering the �gures (a), (b),

and (c) represent the solution of Case 1, Case 2, and Case 3, respectively.

0 5 10 15 20
time

0.2

0.4

0.6

0.8

1.0
prey

ADM P M M 1

ADM P M 1 M

ADM P M M

ADM

RK4

MADM

Fig. 1-a.
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Fig. 1-b.

0 5 10 15 20
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0.6

0.7

0.8

0.9

1.0
prey

Fig. 1-c.

Fig. 1 Prey population density using ADM-P and MADM.
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Fig. 2-a.

0 5 10 15 20
time

0.3

0.4

0.5

0.6

predator

Fig. 2-b.
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Fig. 2-c.

Fig. 2 Predator population density using ADM-P and MADM.
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Fig. 3-a.
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Fig. 3-b.
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Fig. 3-c.

Fig. 3 Top-predator population density using ADM-P and MADM.

Fig1, Fig2, and Fig3 show that ADM solution diverges as time increases and does

not preserve the positivity, boundedness, nor the periodic behavior of the solution. The

ADM-P has a better performance than ADM solution but it does not preserve the periodic

behavior in Case 2 and Case 3. On the other hand, the solution obtained by MADM is

more accurate in all cases and with a time step h = 0:4; it coincides with the solution

obtained using RK4 with time step equals 0:01.

The terms of the series solution obtained using DTM and MDTM are identical to those

obtained by ADM and MADM, respectively. This asserts the fact that DTM solution
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shows the same disadvantages of ADM solution and MDTM, as MADM, gives more

accurate solution.

5. Conclusion

In this work, it is shown that though the ADM-P solution is more accurate than both

ADM and DTM, it also diverges after a period of time. More importantly, it does not

preserve the periodic behavior of the solution. Both the MADM and the MDTM presented

accurate results in simulating all cases of the solution, including periodic type, for the

system of nonlinear di¤erential equations. These two methods also inherits the advantage

of giving a functional form of the solution within each time interval. Also, the accuracy of

the two methods can be controlled via changing truncation order N or subinterval width

h. Yet, there is no formula that shows how to choose the more suitable h or N .
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