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Abstract. In this article, we introduce the sequence spaces Z0(F,4) and Z∞(F,4) for the sequence of moduli

F = ( fk) and give some inclusion relations.
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1. Introduction

Let N, R and C be the sets of all natural, real and complex numbers respectively. We write

ω = {x = (xk) : xk ∈ R or C },

the space of all real or complex sequences. Let l∞, c and c0 be the linear spaces of bounded,

convergent and null sequences respectively, normed by

||x||∞ = sup
k
|xk|, where k ∈ N.
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Each linear subspace of ω , for example, λ ,µ ⊂ω is called a sequence space. A sequence space

λ with linear topology is called a K-space provided each of maps pi −→C defined by pi(x) = xi

is continuous for all i ∈ N. A K-space λ is called an FK-space provided λ is a complete linear

metric space.

An FK-space whose topology is normable is called a BK-space. Let λ and µ be two sequence

spaces and A = (ank) is an infinite matrix of real or complex numbers (ank), where n,k ∈ N.

Then we say that A defines a matrix mapping from λ to µ , and we denote it by writting A :

λ −→ µ . If for every sequence x = (xk) ∈ λ the sequence Ax = {(Ax)n}, the A transform of x

is in µ , where

(Ax)n = ∑
k

ankxk, (n ∈ N). (1.1)

By (λ : µ), we denote the class of matrices A such that A : λ −→ µ. Thus, A ∈ (λ : µ) if and

only if series on the right side of (1.1) converges for each n ∈ N and every x ∈ λ . The approach

of constructing new sequence spaces by means of the matrix domain of a particular limitation

method have been recently employed by Altay, Başar and Mursaleen [1], Başar and Altay [2],

Malkowsky [8], Ng and Lee [10], and Wang [15]. Şengönül [14] defined the sequence y = (yi)

which is frequently used as the Zp transform of the sequence x = (xi), i.e,

yi = pxi +(1− p)xi−1,

where x−1 = 0, p 6= 1, 1 < p < ∞ and Zp denotes the matrix Zp = (zik) defined by

zik =


p,(i = k),

1− p,(i−1 = k);(i,k ∈ N),

0,otherwise.

Following Başar and Altay [2], Şengönül [14] introduced the Zweier sequence spaces Z and

Z0 as follows

Z = {x = (xk) ∈ ω : Zpx ∈ c},

Z0 = {x = (xk) ∈ ω : Zpx ∈ c0}.

Here we list below some of the results of [14] which we will use as a reference in order to

establish some of the results of this article.
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Theorem 1.1. [14, Theorem 2.1.] The sets Z and Z0 are the linear spaces with the co-ordinate

wise addition and scalar multiplication which are the BK-spaces with the norm

||x||Z = ||x||Z0 = ||Z
px||c.

Theorem 1.2. [14, Theorem 2.2.] The sequence spaces Z and Z0 are linearly isomorphic to

the spaces c and c0 respectively, i.e Z ∼= c and Z0 ∼= c0.

Theorem 1.3. [14, Theorem 2.3.] The inclusions Z0 ⊂Z strictly hold for p 6= 1.

The idea of difference sequence spaces was introduced by Kizmaz [5]. In 1981, Kizmaz [5]

defined the sequence spaces

l∞(4) = {x = (xk) ∈ ω : (4xk) ∈ l∞},

c(4) = {x = (xk) ∈ ω : (4xk) ∈ c},

and

c0(4) = {x = (xk) ∈ ω : (4xk) ∈ c0},

where4x = (xk− xk+1) and40x = (xk). These are Banach spaces with the norm

||x||4 = |x1|+ ||4x||∞.

The idea of modulus was structured in 1953 by Nakano; see [9] and the references therein.

A function f : [0,∞)−→[0,∞) is called a modulus if

(1) f (t) = 0 if and only if t = 0,

(2) f (t+u)≤ f (t)+ f (u) for all t, u≥0,

(3) f is increasing, and

(4) f is continuous from the right at zero.

Let X be a sequence space. Ruckle [11-13] defined the sequence space X( f ) as

X( f ) = {x = (xk) : ( f (|xk|)) ∈ X}



660 KHALID EBADULLAH

for a modulus f . Kolk [6-7] gave an extension of X( f ) by considering a sequence of moduli

F = ( fk), that is

X(F) = {x = (xk) : ( fk(|xk|)) ∈ X}.

After then Gaur and Mursaleen[4] defined the following sequence spaces

l∞(F,4) = {x = (xk) :4x ∈ l∞(F)},

c0(F,4) = {x = (xk) :4x ∈ c0(F)}

for a sequence of moduli F = ( fk) and gave the necessary and sufficient conditions for the

inclusion relations between X(4) and Y (F,4), where X ,Y = l∞ or c0.

Lemma 1.4. [3, Lemma 1.2.] The condition sup
k

fk(t)< ∞, t > 0 holds if and only if there is a

point t0 > 0 such that sup
k

fk(t0)< ∞.

Lemma 1.5. [3, Lemma 1.3.] The condition inf
k

fk(t)> 0 holds if and only if there exists a point

t0 > 0 such that inf
k

fk(t0)> 0.

2. Main results

In this section, we introduce the following classes of sequence spaces.

Z∞(F,4) = {x = (xk) ∈ ω :4x ∈Z∞(F)},

Z0(F,4) = {x = (xk) ∈ ω :4x ∈Z0(F)}.

Theorem 2.1. For a sequence F = ( fk) of moduli, the following statements are equivalent:

(a) Z∞(4)⊆Z∞(F,4),

(b) Z0(4)⊂Z∞(F,4),

(c) sup
k

fk(t)< ∞, (t > 0).

Proof. (a) implies (b) is obvious.

(b) implies (c). Let Z0(4)⊂Z∞(F,4).
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Suppose that (c) is not true. Then by Lemma 1.4 sup
k

fk(t) = ∞ for all t > 0, and, therefore

there is a sequence (ki) of positive integers such that

fki(
1
i
)> i, f or i = 1,2,3...... (2.1)

Define x = (xk) as follows

xk =

 1
i , if k = ki, i = 1,2,3.......;

0, otherwise.

Then x ∈Z0(4) but by (2.1), x /∈Z∞(F,4) which contradicts (b). Hence (c) must hold.

(c) implies (a). Let (c) be satisfied and x ∈Z∞(4). If we suppose that x /∈Z∞(F,4), then

sup
k

fk(|4xk|) = ∞ for 4x ∈Z∞. If we take t = |4x|, then sup
k

fk(t) = ∞ which contradicts (c).

Hence Z∞(4)⊆Z∞(F,4).

Theorem 2.2. If F = ( fk) is a sequence of moduli, then the following statements are equiva-

lent:

(a) Z0(F,4)⊆Z0(4),

(b) Z0(F,4)⊂Z∞(4),

(c) inf
k

fk(t)> 0, (t > 0).

Proof. (a) implies (b) is obvious.

(b) implies (c). Let Z0(F,4)⊂Z∞(4).

Suppose that (c) does not hold. Then, by lemma 1.5 ,

inf
k

fk(t) = 0,(t > 0), (2.2)

and therefore there is a sequence (ki) of positive integers such that

fki(i
2)<

1
i

for i = 1,2, ..........
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Define the sequence x = (xk) by

xk =

 i2, if k = ki, i = 1,2,3.......;

0, otherwise.

By (2.2) x ∈Z0(F,4) but x /∈Z∞(4) which contradicts (b). Hence (c) must hold.

(c) implies (a). Let (c) holds and x ∈ Z0(F,4), that is, lim
k

fk(|4xk|) = 0. Suppose that

x /∈ Z0(4). Then for some number ε0 > 0 and positive integer k0 we have |4xk| ≥ ε0 for

k≥ ko. Therefore fk(ε0)≤ fk(|4xk|) for k≥ k0 and hence lim
k

fk(ε0) = 0 which contradicts (c).

Thus Z0(F,4)⊆Z0(4).

Theorem 2.3. The inclusion Z∞(F,4)⊆Z0(4) holds if and only if

lim
k

fk(t) = ∞ for t > 0. (2.3)

Proof. Let Z∞(F,4)⊆Z0(4) such that lim
k

fk(t) = ∞ for t >0 does not hold. Then there is a

number t0 > 0 and a sequence (ki) of positive integers such that

fki(t0)≤M < ∞ (2.4)

Define the sequence x = (xk) by

xk =

 t0, if k = ki, i = 1,2,3.......;

0, otherwise.

Thus x ∈Z∞(F,4), by (2.4). But x /∈Z0(4), so that (2.3) must hold If Z∞(F,4) ⊆Z0(4).

Conversely, let (2.3) hold. If x ∈Z∞(F,4), then fk(|4xk|)≤M < ∞ for k = 1,2,3.......Suppose

that x /∈Z0(4). Then for some number ε0 > 0 and positive integer k0 we have |4xk| ≥ ε0 for

k≥ k0. Therefore fk(ε0)≤ fk(|4xk|)≤M for k≥ k0 which contradicts (2.3). Hence x∈Z0(4).

Theorem 2.4. The inclusion Z∞(4)⊆Z0(F,4) holds, if and only if

lim
k

fk(t) = 0 for t > 0. (2.5)
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Proof. Suppose that Z∞(4)⊆Z0(F,4) but (2.5) does not hold.

Then

lim
k

fk(t0) = l 6= 0 (2.6)

for some t0 > 0. Define the sequence x = (xk) by

xk = t0
k−1

∑
v=0

(−1)

k− v

k− v


for k = 1,2,3, · · · . Then x /∈Z0(F,4), by (2.6). Hence (2.5) holds. Conversly , let x ∈Z∞(4)

and suppose that (2.5) holds. Then |4xk| ≤M < ∞ for k = 1,2,3.....

Therefore fk(|4xk|) ≤ fk(M) for k = 1,2,3..... and lim
k

fk(|4xk|) ≤ lim
k

fk(M) = 0, by (2.5).

Hence x ∈Z0(F,4).
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