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1. INTRODUCTION

Let Ω be a bounded subset of RN (N ≥ 2). Consider the following non-linear Dirichlet prob-

lem

(1.1) A(u)+g(x,u,∇u) = f ,

where A(u)=−diva(x,u,∇u) is a Leray-Lions Operator defined on D(A)⊂W 1
0 Lϕ(Ω)→W−1Lψ(Ω)

with ϕ and ψ are two complementary Musielak-Orlicz functions, and where g is a non-linearity

which satisfies, for all s ∈ R,ξ ∈ RN and almost all x ∈ Ω, the classical sign condition, i.e.

g(x,s,ξ )s≥ 0, and the following natural growth condition:

(1.2) |g(x,s,ξ )| ≤ b(|s|)(c(x)+ϕ(x, |ξ |)),
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where b : R→ R is a continuous and non-decreasing function and c(.) is a given non-negative

function in L1(Ω). We study the problem (1.1) in the variational case i.e.

f ∈W−1Eψ(Ω).

In Orlicz spaces, Gossez [16] solved (1.1) in the case where g depends only on x and u. If g

depends also on ∇u, the problem (1.1) has been solved by Benkirane and Elmahi in [5] and [6]

by making some restrictions. In [5], g is supposed to satisfy a ”non-natural” growth condition,

and in [6], g is supposed to satisfy a natural growth condition but the result is restricted to N-

function satisfying a ∆2-condition. Elmahi and Meskine [15] proved the existence of solutions

for (1.1) without assuming a ∆2-condition on the N-function.

In the framework of variable exponent Sobolev spaces, E. Azroul, A. Barbara and H. Hjiaj

have shown, in [2], the existence of solutions for the elliptic problem (1.1) where the second

member f is firstly taken in W−1,p′(x)(Ω) and then in L1(Ω).

In Musielak-Orlicz spaces, the existence results for (1.1), where the non-linearity g depends

only on x and u, have recently been proved by Benkirane and Sidi El Vally in [12]. If g depends

also on ∇u, Benkirane, Blali and Sidi El Vally [3] have solved (1.1) in the case where the

Musielak-orlicz function complementary to ϕ satisfies the ∆2-condition.

It is our purpose in this paper to study the problem (1.1) in context of Musielak-Orlicz spaces,

in the variational case i.e. f ∈W−1Eψ(Ω), without assuming a ∆2-condition on ϕ and its com-

plementary. Our result generalizes that of Elmahi and Meskine in [15] and that of Benkirane,

Blali and Sidi El Vally [3].

The study of nonlinear partial differential equations in this type of spaces is strongly motivat-

ed by numerous phenomena of physics, namely the problems related to non-Newtonian fluids

of strongly inhomogeneous behavior with a high ability of increasing their viscosity under a

different stimulus, like shear rate, magnetic or electric field [20].

As an example of equations to which the present result can be applied, we give

−div
(

m(x, |∇u|)
|∇u|

.∇u
)
+uϕ(x, |∇u|) = f ,

where m is the derivative of ϕ with respect to t.
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The paper is Organized as follows: after introduction in section 1, we give in section 2 some

preliminaries and lemmas that we will use in the proof of the theorem of existence for solution

which is the main result in the section 3.

2. PRELIMINARIES

Musielak-orlicz function. Let Ω be an open subset of RN and let ϕ be a real-valued function

defined in Ω×R+ and satisfying the following conditions:

(a): ϕ(x, .) is an N-function for all x ∈ Ω (i.e. convex, nondecreasing, continuous,

ϕ(x,0) = 0, ϕ(x, t)> 0 for all t > 0, lim
t→0

ϕ(x,t)
t = 0 and lim

t→∞

ϕ(x,t)
t = ∞);

(b): ϕ(., t) is a measurable function for all t ≥ 0.

A function ϕ which satisfies the conditions (a) and (b) is called a Musielak-orlicz function.

For a Musielak-orlicz function ϕ we put ϕx(t) = ϕ(x, t) and we associate its nonnegative

reciprocal function ϕ−1
x , with respect to t, that is

ϕ
−1
x (ϕ(x, t)) = ϕ(x,ϕ−1

x (t)) = t.

The Musielak-orlicz function ϕ is said to satisfy the ∆2−condition if for some k > 0, and a

non negative function h, integrable in Ω, we have

(2.1) ϕ(x,2t)≤ kϕ(x, t)+h(x) for all x ∈Ω and all t ≥ 0.

When (2.1) holds only for t ≥ t0 > 0, then ϕ is said to satisfy the ∆2−condition near infinity.

Let ϕ and γ be two Musielak-orlicz functions, we say that ϕ dominate γ , and we write γ ≺ ϕ ,

near infinity (resp. globally) if there exist two positive constants c and t0 such that for almost

all x ∈Ω:

γ(x, t)≤ ϕ(x,ct) for all t ≥ t0 (resp. for all t ≥ 0 i.e. t0 = 0).

We say that γ grows essentially less rapidly than ϕ at 0 (resp. near infinity), and we write

γ ≺≺ ϕ , If for every positive constant c we have

lim
t→0

(
sup
x∈Ω

γ(x,ct)
ϕ(x, t)

)
= 0 (resp. lim

t→∞

(
sup
x∈Ω

γ(x,ct)
ϕ(x, t)

)
= 0).
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Remark 1. [12] If γ ≺≺ ϕ near infinity, then ∀ε > 0 there exist k(ε)> 0 such that for almost

all x ∈Ω we have

(2.2) γ(x, t)≤ k(ε)ϕ(x,εt) for all t ≥ 0.

Musielak-Orlicz space. For a Musielak-Orlicz function ϕ and a measurable function u : Ω→R

we define the functional

ρϕ,Ω(u) =
∫
Ω

ϕ(x, |u(x)|)dx.

The set Kϕ(Ω) = {u : Ω→ R measurable
/

ρϕ,Ω(u)< ∞} is called the Musielak-Orlicz class

(or generalized orlicz class). The Musielak-Orlicz space (or generalized orlicz space) Lϕ(Ω) is

the vector space generated by Kϕ(Ω), that is, Lϕ(Ω) is the smallest linear space containing the

set Kϕ(Ω). Equivalently:

Lϕ(Ω) =
{

u : Ω→ R measurable
/

ρϕ,Ω

( u
λ

)
< ∞ for some λ > 0

}
.

For a Musielak-Orlicz function ϕ we put

ψ(x,s) = sup
t≥0

(st−ϕ(x, t)).

ψ is called the Musielak-orlicz function complementary (or conjugate) to ϕ in the sense of Y-

oung with respect to s.

We say that a sequence of functions un ∈ Lϕ(Ω) is modular convergent to u ∈ Lϕ(Ω) if there

exists a constant λ > 0 such that

lim
n→∞

ρϕ,Ω

(
un−u

λ

)
= 0.

This implies convergence for σ(ΠLϕ ,ΠLψ) (Lemma 4.7 of [12]).

In the space Lϕ(Ω) we define the following two norms:

‖u‖ϕ,Ω = inf

λ > 0

/∫
Ω

ϕ

(
x,
|u(x)|

λ

)
dx≤ 1

 ,
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which is called the Luxemburg norm, and the so-called Orlicz norm by

|||u|||ϕ,Ω = sup
‖v‖ψ≤1

∫
Ω

|u(x)v(x)|dx,

where ψ is the Musielak-Orlicz function complementary to ϕ . These two norms are equivalents

[23]. Kϕ(Ω) is a convex subset of Lϕ(Ω).

The closure in Lϕ(Ω) of the set of bounded measurable functions with compact support in Ω

is denoted by Eϕ(Ω), it is a separable space and (Eψ(Ω))∗ = Lϕ(Ω) [23].

We have Eϕ(Ω) =Kϕ(Ω) if and only if Kϕ(Ω) = Lϕ(Ω) if and only if ϕ satisfy the ∆2-condition

(2.1) for large values of t or for all values of t, according to whether Ω has finite measure or not.

We define

W 1Lϕ(Ω) = {u ∈ Lϕ(Ω) : Dαu ∈ Lϕ(Ω), ∀|α| ≤ 1}

and

W 1Eϕ(Ω) = {u ∈ Eϕ(Ω) : Dαu ∈ Eϕ(Ω), ∀|α| ≤ 1},

where α = (α1, . . . ,αN), |α| = |α1|+ · · ·+ |αN | and Dαu denote the distributional derivatives.

The space W 1Lϕ(Ω) is called the Musielak-Orlicz-Sobolev space. Let

ρϕ,Ω(u) = ∑
|α|≤1

ρϕ,Ω(Dαu) and ‖u‖1
ϕ,Ω = inf

{
λ > 0 : ρϕ,Ω

( u
λ

)
≤ 1
}

for u ∈W 1Lϕ(Ω).

These functionals are convex modular and a norm on W 1Lϕ(Ω) respectively. The pair 〈W 1Lϕ(Ω),‖u‖1
ϕ,Ω〉

is a Banach space if ϕ satisfies the following condition [23]:

(2.3) there exists a constant c > 0 such that inf
x∈Ω

ϕ(x,1)≥ c.

The space W 1Lϕ(Ω) is identified to a subspace of the product Π|α|≤1Lϕ(Ω) = ΠLϕ ; this sub-

space is σ(ΠLϕ ,ΠEψ) closed.

We denote by D(Ω) the Schwartz space of infinitely smooth functions with compact support

in Ω and by D(Ω) the restriction of D(RN) on Ω. The space W 1
0 Lϕ(Ω) is defined as the

σ(ΠLϕ ,ΠEψ) closure of D(Ω) in W 1Lϕ(Ω) and the space W 1
0 Eϕ(Ω) as the (norm) closure of

the Schwartz space D(Ω) in W 1Lϕ(Ω).
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For two complementary Musielak-Orlicz functions ϕ and ψ, we have [23]:

i) The Young inequality: t.s≤ ϕ(x, t)+ψ(x,s) for all t,s≥ 0, x ∈Ω.(2.4)

ii) The Hölder inequality:∣∣∣∣∣∣
∫
Ω

u(x) v(x)dx

∣∣∣∣∣∣≤ ‖u‖ϕ,Ω |||v|||ψ,Ω, for all u ∈ Lϕ(Ω),v ∈ Lψ(Ω).(2.5)

We say that a sequence of functions un converges to u for the modular convergence in

W 1Lϕ(Ω) (respectively in W 1
0 Lϕ(Ω)) if, for some λ > 0,

lim
n→∞

ρϕ,Ω

(
un−u

λ

)
= 0.

The following spaces of distributions will also be used:

W−1Lψ(Ω) =

{
f ∈D′(Ω) : f = ∑

|α|≤1
(−1)|α|Dα fα where fα ∈ Lψ(Ω)

}

and

W−1Eψ(Ω) =

{
f ∈D′(Ω) : f = ∑

|α|≤1
(−1)|α|Dα fα where fα ∈ Eψ(Ω)

}
.

Lemma 2. [11] Let Ω be a bounded Lipschitz domain in RN and let ϕ and ψ be two comple-

mentary Musielak-Orlicz functions which satisfy the following conditions:

(i) There exist a constant c > 0 such that inf
x∈Ω

ϕ(x,1)≥ c; [(2.3)]

(ii) There exist a constant A > 0 such that for all x,y ∈Ω with |x− y| ≤ 1
2

we have

ϕ(x, t)
ϕ(y, t)

≤ t

(
A

log( 1
|x−y| )

)
for all t ≥ 1;(2.6)

(iii) If D⊂Ω is a bounded measurable set, then
∫
D

ϕ(x,1)dx < ∞;(2.7)

(iv) There exist a constant C > 0 such that ψ(x,1)≤C a.e in Ω.(2.8)

Under this assumptions, D(Ω) is dense in Lϕ(Ω) with respect to the modular topology, D(Ω)

is dense in W 1
0 Lϕ(Ω) for the modular convergence and D(Ω) is dense in W 1Lϕ(Ω) for the

modular convergence.
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Consequently, the action of a distribution S in W−1Lψ(Ω) on an element u of W 1
0 Lϕ(Ω) is

well defined. It will be denoted by 〈S,u〉.

Truncation Operator. For k > 0 we define the truncation at height k: Tk : R→ R by:

(2.9) Tk(s) =


s if |s| ≤ k,

k
s
|s|

if |s|> k.

Lemma 3. [12] Let F : R→ R be uniformly Lipschitzian, with F(0) = 0. Let ϕ be a Musielak-

Orlicz function and let u ∈W 1
0 Lϕ(Ω). Then F(u) ∈W 1

0 Lϕ(Ω). Moreover, if the set D of discon-

tinuity points of F ′ is finite, we have

∂

∂xi
F(u) =

 F ′(u) ∂u
∂xi

a.e in {x ∈Ω : u(x) /∈ D}

0 a.e in {x ∈Ω : u(x) ∈ D}.

Lemma 4. Let ( fn), f ⊂ L1(Ω) such that:

i) fn ≥ 0 a.e in Ω;

ii) fn→ f a.e in Ω;

iii)
∫
Ω

fn(x)dx→
∫
Ω

f (x)dx.

then fn→ f strongly in L1(Ω).

Proof. We have | f − fn| = 2( f − fn)
+− ( f − fn), where g+ = sup(g,0) for all measurable

function g. If f (x) > fn(x) then ( f − fn)
+(x) = f (x)− fn(x) ≤ f (x), consequently 0 ≤ ( f −

fn)
+≤ f . Since ( f − fn)

+→ 0 a.e. in Ω then by using Lebesgue’s theorem we have ( f − fn)
+→

0 strongly in L1(Ω). In view of (iii) we obtain∫
Ω

| f − fn|dx→ 0, which shows that fn→ f strongly in L1(Ω) as required.

Lemma 5. Suppose the Musielak-Orlicz function ϕ does not satisfy the ∆2-condition. Then

{u ∈ Lϕ/d(u,Eϕ)< 1} ⊂ Kϕ ⊂ {u ∈ Lϕ/d(u,Eϕ)< 1}

where d(u,Eϕ) = inf
v∈Eϕ

‖u− v‖ϕ .

Proof. It is easily adapted from that given in Theorem 10.1 of [21].
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Lemma 6. (The Nemytskii operator) Let Ω be an open susbset of RN with finite measure and

let ϕ and ψ be two Musielak-Orlicz functions. Let f : Ω×Rp→Rq be a Caratheodory function

such that for a.e. x ∈Ω and all s ∈ Rp:

(2.10) | f (x,s)| ≤ c(x)+ k1 ψ
−1
x ϕ(x,k2|s|),

where k1, k2 are real positive constants and c ∈ Eψ(Ω).

Then The Nemytskii operator N f defined by N f (u)(x) = f (x,u(x)), is continuous from

(P(Eϕ(Ω), 1
k2
))p = Π{u ∈ Lϕ(Ω) : d(u,Eϕ(Ω))< 1

k2
} into (Lψ(Ω))q for the modular conver-

gence. Furthermore if c∈Eγ(Ω) and γ ≺≺ψ then N f is strongly continuous from (P(Eϕ(Ω), 1
k2
))p

into (Eγ(Ω))q.

Proof. Let λ ≥ 2k1 such that 2c
λ
∈ Kψ(Ω) and let u = (u1, . . . ,up) ∈ (P(Eϕ(Ω), 1

k2
))p i.e.

d(ui,Eϕ(Ω))< 1
k2
, then

∫
Ω

ϕ(x,k2|u(x)|)dx≤ 1 (by using Lemma 5). We have

ψ(x,
| f (x,u(x))|

λ
) ≤ ψ(x,

c(x)
λ

+
1
2

ψ
−1
x ϕ(x,k2|u(x)|))

≤ 1
2

ψ(x,
2c(x)

λ
)+

1
2

ϕ(x,k2|u(x)|).

Integrating over Ω, we deduce that | f (x,u)| ∈ Lψ(Ω) and thus f (x,u) ∈ (Lϕ(Ω))q.

On the other hand, assume that un→ u strongly in (Lϕ(Ω))p with u ∈ (P(Eϕ(Ω), 1
k2
))p. Let

α > 0 such that d(k2|u|,Eϕ(Ω))< α < 1, by using Lemma 5, we have

k2

α
|u| ∈ Kϕ(Ω).
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For λ ≥ 4k1 such that 4c
λ
∈ Kψ(Ω) we have

ψ

(
x,
| f (x,un(x))− f (x,u(x))|

λ

)
≤ ψ

(
x,

2c(x)+ k1ψ−1
x ϕ(x,k2|un(x)|)+ k1ψ−1

x ϕ(x,k2|u(x)|)
λ

)
≤ ψ

(
x,

1
2

4c(x)
λ

+
1
4

ψ
−1
x ϕ(x,k2|un(x)|)+

1
4

ψ
−1
x ϕ(x,k2|u(x)|)

)
≤ 1

2
ψ

(
x,

4c(x)
λ

)
+

1
4

ϕ (x,k2|un(x)|)+
1
4

ϕ (x,k2|u(x)|)

≤ 1
2

ψ

(
x,

4c(x)
λ

)
+

1
4
(1−α)ϕ

(
x,

k2

1−α
|un(x)−u(x)|

)
+

1
4

αϕ

(
x,

k2

α
|u(x)|

)
+

1
4

ϕ (x,k2|u(x)|)

≤ 1
2

ψ

(
x,

4c(x)
λ

)
+ϕ

(
x,

k2

1−α
|un(x)−u(x)|

)
+ϕ

(
x,

k2

α
|u(x)|

)
,

we used the fact that ϕ(x,k2|u(x)|)≤ ϕ(x, k2
α
|u(x)|).

Note that ψ(x, 4c
λ
), ϕ(x, k2

α
|u|) ∈ L1(Ω) and

∫
Ω

ϕ(x, k2
1−α
|un(x)−u(x)|)dx→ 0 as n→ ∞.

Consequently, for ε > 0, there exists δ > 0 such that

|E|< δ ⇒
∫
E

ψ(x,
4c(x)

λ
)dx < ε,

∫
E

ϕ(x,
k2

α
|u(x)|)dx <

ε

4

and
∫
E

ϕ(x,
k2

1−α
|un(x)−u(x)|)dx <

ε

4
, ∀n≥ n0.

Thus

|E|< δ ⇒
∫
E

ψ(x,
| f (x,un(x))− f (x,u(x))|

λ
)dx < ε, ∀n≥ n0.

For a subsequence, we can assume that un→ u almost everywhere in Ω. So f (x,un)→ f (x,u)

and ψ

(
x, | f (x,un)− f (x,u)|

λ

)
→ 0 almost everywhere in Ω. By using Vitali’s theorem, we deduce

that ∫
Ω

ψ(x,
| f (x,un(x))− f (x,u(x))|

λ
)dx→ 0 as n→ 0

which implies that f (x,un)→ f (x,u) in (Lψ(Ω))q for the modular convergence. Since the limit

f (x,u) is independent of the subsequence, this convergence is, also, true for the sequence.
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Now we shall prove that N f is bounded in the ball (BLϕ (Ω)(0,
1
k2
))p.

Let u ∈ (Lϕ(Ω))p with ‖u‖ϕ,Ω ≤ 1
k2

and let λ ≥ 2k1 such that∫
Ω

ψ

(
x,

2c(x)
λ

)
dx≤ 1.

Then ∫
Ω

ψ

(
x,
| f (x,u(x))|

λ

)
dx≤ 1

2

∫
Ω

ψ

(
x,

2c(x)
λ

)
dx+

1
2

∫
Ω

ϕ(x,k2|u(x)|)dx≤ 1.

Consequently ‖ f (x,u)‖ψ,Ω ≤ λ , ∀u ∈ (BLϕ (Ω)(0,
1
k2
))p.

Finally, we assume that c ∈ Eγ(Ω) with γ ≺≺ ψ. Let u ∈ (P(Eϕ(Ω), 1
k2
))p and we shall

prove that f (x,u) ∈ (Eγ(Ω))q. Remark that ψ−1
x ϕ(x,k2|u|) ∈ Lψ(Ω)⊂ Eγ(Ω). By using (2.10)

and the fact that c ∈ Eγ(Ω) we obtain f (x,u) ∈ (Eγ(Ω))q.

Now, we assume that un→ u strongly in (Lϕ(Ω))p with u ∈ (P(Eϕ(Ω), 1
k2
))p and un→ u (for

a subsequence) almost everywhere in Ω.

Let α such that d(k2|u|,Eϕ(Ω))< α < 1. For a fixed ε > 0 we have

| f (x,un(x))− f (x,u(x))|
ε

≤ 1
2

4c(x)
ε

+
1
4

4k1

ε
ψ
−1
x ϕ(x,k2|un(x)|)+

1
4

4k1

ε
ψ
−1
x ϕ(x,k2|u(x)|).

Then

γ

(
x,
| f (x,un(x))− f (x,u(x))|

ε

)
≤ 1

2
γ

(
x,

4c(x)
ε

)
+

1
4

γ

(
x,

4k1

ε
ψ
−1
x ϕ(x,k2|un(x)|)

)
+

1
4

γ

(
x,

4k1

ε
ψ
−1
x ϕ(x,k2|u(x)|)

)
.

Since γ ≺≺ ψ and remark 1 then there exists k(ε)≥ 0 such that

γ

(
x,

4k1

ε
t
)
≤ k(ε)ψ(x, t), ∀t ≥ 0.

Then:

γ

(
x,
| f (x,un(x))− f (x,u(x))|

ε

)
≤ 1

2
γ

(
x,

4c(x)
ε

)
+

1
4

k(ε)ϕ (x,k2|un(x)|)+
1
4

k(ε)ϕ (x,k2|u(x)|) .

and thus

γ

(
x,
| f (x,un(x))− f (x,u(x))|

ε

)
≤ 1

2
γ

(
x,

4c(x)
ε

)
+k(ε)ϕ

(
x,

k2

1−α
|un(x)|

)
+k(ε)ϕ

(
x,

k2

α
|u(x)|

)
.
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By using the same technique as above and Vitali’s theorem we conclude that∫
Ω

γ

(
x,
| f (x,un(x))− f (x,u(x))|

ε

)
dx→ 0 as n→ ∞.

Then, there exists n0 such that for n≥ n0, we have∫
Ω

γ

(
x,
| f (x,un(x))− f (x,u(x))|

ε

)
dx≤ 1.

And so

|| f (x,un)− f (x,u)||γ,Ω ≤ ε for all n≥ n0.

Finally f (x,un)→ f (x,u) strongly in (Eγ(Ω))q.

3. THE MAIN RESULT

Let Ω be a bounded Lipschitz domain in RN (N ≥ 2), and let ϕ and γ be two Musielak-Orlicz

functions such that ϕ and its complementary ψ satisfies conditions of Lemma 2 and γ ≺≺ ϕ .

Let A : D(A)⊂W 1
0 Lϕ(Ω)→W−1Lψ(Ω) be a mapping (not everywhere defined) given by

A(u) =−diva(x,u,∇u),

where a : Ω×R×RN → RN is a caratheodory function satisfying, for a.e x ∈ Ω and for all

s ∈ R and all ξ ,ξ∗ ∈ RN , ξ 6= ξ∗:

(3.1) |a(x,s,ξ )| ≤ k1 (c(x)+ψ
−1
x (γ(x,k2|s|))+ψ

−1
x (ϕ(x,k3|ξ |))

(3.2) (a(x,s,ξ )−a(x,s,ξ∗)) (ξ −ξ∗)> 0

(3.3) a(x,s,ξ ) ξ ≥ α ϕ(x, |ξ |)

where c(.) belongs to Eψ(Ω), c≥ 0 and ki > 0, i = 1,2,3, α ∈ R∗+.

Furthermore, let g : Ω×R×RN → R be a caratheodory function such that, for a.e x ∈ Ω and

for all s ∈ R, ξ ∈ RN

(3.4) g(x,s,ξ )s≥ 0

(3.5) |g(x,s,ξ )| ≤ b(|s|)(c′(x)+ϕ(x, |ξ |))
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where b : R→ R is a continuous and non-decreasing function and c′(.) is a given non-negative

function in L1(Ω).

Finally we assume that

(3.6) f ∈W−1Eψ(Ω)

Consider the following elliptic problem, with Dirichlet boundary condition,

(3.7)


u ∈W 1

0 Lϕ(Ω),g(x,u,∇u) ∈ L1(Ω),g(x,u,∇u)u ∈ L1(Ω)

〈A(u),v〉+
∫
Ω

g(x,u,∇u) vdx = 〈 f ,v〉

for all v ∈W 1
0 Lϕ(Ω)∩L∞(Ω) and for v = u.

We shall prove the following existence theorem:

Theorem 7. Assume that (3.1)-(3.6) hold true, then there exists at least one solution of the

elliptic problem (3.7).

Proof.

Step 1 : A priori estimates.

Consider the following approximate problems:

(3.8)

 un ∈W 1
0 Lϕ(Ω)

〈A(un),v〉+
∫

Ω

gn(x,un,∇un) vdx = 〈 f ,v〉, ∀v ∈W 1
0 Lϕ(Ω),

where gn(x,s,ξ ) = Tn(g(x,s,ξ )).

Note that gn(x,s,ξ )s≥ 0, |gn(x,s,ξ )| ≤ |g(x,s,ξ )| and |gn(x,s,ξ )| ≤ n. Since gn is bounded

for any fixed n > 0, there exists at least one solution un of (3.8). (see Proposition 1 of [19] and

Theorem 4.4 of [12])

Using in (3.8) the test function v = un, we get

∫
Ω

a(x,un,∇un) ∇un dx≤ 〈 f ,un〉.
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Consequently, by Theorem 4.4 of [12], one has that (un) is bounded in W 1
0 Lϕ(Ω), (a(x,un,∇un))n

is bounded in (Lψ(Ω))N , and

(3.9)
∫
Ω

gn(x,un,∇un) un dx≤C,

Where C is a real constant which does not depend on n. Passing to a subsequence, if necessary,

we can assume that

(3.10) un ⇀ u weakly in W 1
0 Lϕ(Ω) for σ(ΠLϕ ,ΠEψ), strongly in Eϕ(Ω) and a.e. in Ω,

a(x,un,∇un)⇀ h and a(x,Tk(un),∇Tk(un))⇀ hk weakly in (Lψ(Ω))N

for σ(ΠLψ ,ΠEϕ) for some h and hk ∈ (Lψ(Ω))N .

Step 2 : Almost everywhere convergence of the gradients.

Let µ(t) = teσt2
,σ > 0. It is well known that when σ ≥ (b(k)

2α
)2 one has

(3.11) µ
′(t)− b(k)

α
|µ(t)| ≥ 1

2
for all t ∈ R,

where k > 0 is a fixed real number which will be used as a level of the truncation.

Let (v j)⊂D(Ω) be a sequence which converges to u for the modular convergence in W 1
0 Lϕ(Ω)

and set θ
j

n = Tk(un)−Tk(v j),θ
j = Tk(u)−Tk(v j) and z j

n = µ(θ
j

n ).

Using in (3.8) the test function z j
n, we get

〈A(un),z j
n〉+

∫
Ω

gn(x,un,∇un)z j
n dx = 〈 f ,z j

n〉.

Denote by εi(n, j) (i = 0,1,2, . . .) various sequences of real numbers which tend to 0 when n

and j→ ∞, i.e.

lim
j→∞

lim
n→∞

εi(n, j) = 0.

In view of (3.10), we have z j
n → µ(θ j) weakly in W 1

0 Lϕ(Ω) for σ(ΠLϕ ,ΠEψ) as n→ ∞

and then 〈 f ,z j
n〉 → 〈 f ,µ(θ j)〉 as n→ ∞. Using, now, the modular convergence of v j, we get

〈 f ,µ(θ j)〉 → 0 as j→ ∞ so that

〈 f ,z j
n〉= ε0(n, j).
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Since gn(x,un,∇un)z
j
n ≥ 0 on the subset {x ∈Ω : |un|> k} we have

(3.12) 〈A(un),z j
n〉+

∫
{|un|≤k}

gn(x,un,∇un) z j
n dx≤ ε0(n, j).

The first term of the left-hand side of (3.12) reads as

〈A(un),z j
n〉 =

∫
{|un|≤k}

a(x,un,∇un) [∇Tk(un)−∇Tk(v j)] µ
′(θ j

n )dx

−
∫

{|un|>k}

a(x,un,∇un) ∇Tk(v j) µ
′(θ j

n )dx

=
∫
Ω

a(x,Tk(un),∇Tk(un)) [∇Tk(un)−∇Tk(v j)] µ
′(θ j

n )dx

−
∫

{|un|>k}

a(x,un,∇un) ∇Tk(v j) µ
′(θ j

n )dx,

and then

〈A(un),z j
n〉 =

∫
Ω

[a(x,Tk(un),∇Tk(un))−a(x,Tk(un), Tk(v j)χ
s
j)]

×[∇Tk(un)−∇Tk(v j)χ
s
j ] µ

′(θ j
n )dx

+
∫
Ω

a(x,Tk(un),∇Tk(v j)χ
s
j) [∇Tk(un)−∇Tk(v j)χ

s
j ] µ

′(θ j
n )dx

−
∫

Ω\Ωs
j

a(x,Tk(un),∇Tk(un)) ∇Tk(v j) µ
′(θ j

n )dx

−
∫

{|un|>k}

a(x,un,∇un) ∇Tk(v j) µ
′(θ j

n )dx,(3.13)

where χs
j denotes the characteristic function of the subset Ωs

j = {x ∈Ω : |∇Tk(v j)| ≤ s}.

We shall pass to the limit in n and in j for s and m fixed in the last three terms of the right-

hand side of (3.13). We start with the fourth term,

Observe that, since

|∇Tk(v j)χ{|un|>k}µ
′(θ j

n )| ≤ µ
′(2k)|∇Tk(v j)| ≤ µ

′(2k)‖∇v j‖∞ = a j ∈ R

we have

∇Tk(v j)χ{|un|>k}µ
′(θ j

n )→ ∇Tk(v j)χ{|u|>k}µ
′(θ j) strongly in (Eϕ(Ω))N as n→ ∞
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and hence∫
{|un|>k}

a(x,un,∇un)∇Tk(v j)µ
′(θ j

n )dx→
∫
{|u|>k}

h∇Tk(v j)µ
′(θ j)dx as n→ ∞,

Observe that

|∇Tk(v j)χ{|u|>k}µ
′(θ j)| ≤ µ

′(2k)|∇Tk(v j)| ≤ µ
′(2k)|∇v j|

then, by using the modular convergence of |∇v j| in Lϕ(Ω) and the Vitali’s theorem, we get

∇Tk(v j)χ{|u|>k}µ
′(θ j)→ 0

for the modular convergence in (Lϕ(Ω))N and thus∫
{|u|>k}

h∇Tk(v j)µ
′(θ j) dx→ 0 as j→ ∞.

We have then proved that

(3.14)
∫

{|un|>k}

a(x,un,∇un) ∇Tk(v j) µ
′(θ j

n )dx = ε1(n, j).

The second term on the right hand side of (3.13) tends to by letting n→ ∞∫
Ω

a(x,Tk(u),∇Tk(v j)χ
s
j) [∇Tk(u)−∇Tk(v j)χ

s
j ] µ

′(θ j)dx

Since a(x,Tk(un),∇Tk(v j)χ
s
j) µ ′(θ j

n ) → a(x,Tk(u),∇Tk(v j)χ
s
j) µ ′(θ j) strongly in (Eψ(Ω))N

as n → ∞, by Lemma 6, while ∇Tk(un) ⇀ ∇Tk(u) weakly in (Lϕ(Ω))N , by (3.10). Since

∇Tk(v j)χ
s
j → ∇Tk(u)χs strongly in (Eϕ(Ω))N as j→ ∞, where χs denotes the characteristic

function of Ωs = {x ∈Ω : |∇Tk(u)| ≤ s}, it is easy to see that∫
Ω

a(x,Tk(u),∇Tk(v j)χ
s
j) [∇Tk(u)−∇Tk(v j)χ

s
j ] µ

′(θ j)dx→ 0 as j→ ∞,

and thus

(3.15)
∫
Ω

a(x,Tk(un),∇Tk(v j)χ
s
j) [∇Tk(un)−∇Tk(v j)χ

s
j ] µ

′(θ j
n )dx = ε2(n, j).
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Concerning the third term on the right-hand side of (3.13), we have

−
∫

Ω\Ωs
j

a(x,Tk(un),∇Tk(un)) ∇Tk(v j) µ
′(θ j

n )dx→−
∫

Ω\Ωs
j

hk ∇Tk(v j) µ
′(θ j)dx.

as n→ ∞ by the fact that ∇Tk(v j) belongs to (Eϕ(Ω))N . Using now, the modular convergence

of (∇v j) in (Lϕ(Ω))N we get

−
∫

Ω\Ωs
j

hk ∇Tk(v j) µ
′(θ j)dx→−

∫
Ω\Ωs

hk ∇Tk(u)dx as j→ ∞,

and thus

(3.16) −
∫

Ω\Ωs
j

a(x,Tk(un),∇Tk(un)) ∇Tk(v j) µ
′(θ j

n )dx = ε3(n, j)−
∫

Ω\Ωs

hk ∇Tk(u)dx.

Now combining equations (3.14), (3.15), and (3.16), we obtain

〈A(un),z j
n〉 =

∫
Ω

[a(x,Tk(un),∇Tk(un))−a(x,Tk(un),∇Tk(v j)χ
s
j)](3.17)

×[∇Tk(un)−∇Tk(v j)χ
s
j ] µ

′(θ j
n )dx−

∫
Ω\Ωs

hk ∇Tk(u)dx+ ε4(n, j).

We now turn to the second term of the left-hand side of (3.12). We have

∣∣∣∣∣∣∣
∫

{|un|≤k}

gn(x,un,∇un)z j
n dx

∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣
∫

{|un|≤k}

gn(x,Tk(un),∇Tk(un)) z j
n dx

∣∣∣∣∣∣∣
≤
∫
Ω

b(k) c′(x) |µ(θ j
n )|dx+b(k)

∫
Ω

ϕ(x, |∇Tk(un)|) |µ(θ j
n )|dx

≤ b(k)
α

∫
Ω

a(x,Tk(un),∇Tk(un)) ∇Tk(un) |µ(θ j
n )|dx+ ε5(n, j).
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The first term of the right-hand side of this inequality reads as

(3.18)
b(k)

α

∫
Ω

[a(x,Tk(un),∇Tk(un))−a(x,Tk(un),∇Tk(v j)χ
s
j)]

× [∇Tk(un)−∇Tk(v j)χ
s
j ] |µ(θ j

n )|dx

+
b(k)

α

∫
Ω

a(x,Tk(un),∇Tk(v j)χ
s
j)[∇Tk(un)−∇Tk(v j)χ

s
j ] |µ(θ j

n )|dx

− b(k)
α

∫
Ω

a(x,Tk(un),∇Tk(un)) ∇Tk(v j)χ
s
j |µ(θ j

n )|dx

and, as above, it is easy to see that

b(k)
α

∫
Ω

a(x,Tk(un),∇Tk(v j)χ
s
j)[∇Tk(un)−∇Tk(v j)χ

s
j ] |µ(θ j

n )|dx = ε6(n, j)

and that

−b(k)
α

∫
Ω

a(x,Tk(un),∇Tk(un)) ∇Tk(v j)χ
s
j |µ(θ j

n )|dx = ε7(n, j).

So that

∣∣∣∣∣∣∣
∫

{|un|≤k}

gn(x,un,∇un)z j
n dx

∣∣∣∣∣∣∣
≤ b(k)

α

∫
Ω

[a(x,Tk(un),∇Tk(un))−a(x,Tk(un),∇Tk(v j)χ
s
j)]

× [∇Tk(un)−∇Tk(v j)χ
s
j ] |µ(θ j

n )|dx + ε8(n, j).

Combining this inequality with (3.12) and (3.17), we obtain

∫
Ω

[a(x,Tk(un),∇Tk(un))−a(x,Tk(un),∇Tk(v j)χ
s
j)]× [∇Tk(un)−∇Tk(v j)χ

s
j ]

×
[

µ
′(θ j

n )−
b(k)

α
|µ(θ j

n )|
]

dx≤ ε9(n, j)+
∫

Ω\Ωs

hk ∇Tk(u)dx.
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Consequently, by using (3.11), we conclude that

(3.19)
∫
Ω

[a(x,Tk(un),∇Tk(un))−a(x,Tk(un),∇Tk(v j)χ
s
j)]× [∇Tk(un)−∇Tk(v j)χ

s
j ]dx

≤ 2 ε9(n, j)+2
∫

Ω\Ωs

hk ∇Tk(u)dx.

On the other hand

∫
Ω

[a(x,Tk(un),∇Tk(un))−a(x,Tk(un),∇Tk(u)χs)]× [∇Tk(un)−∇Tk(u)χs]dx

=
∫
Ω

[a(x,Tk(un),∇Tk(un))−a(x,Tk(un),∇Tk(v j)χ
s
j)]×[∇Tk(un)−∇Tk(v j)χ

s
j ]dx

+
∫
Ω

a(x,Tk(un),∇Tk(un)) [∇Tk(v j)χ
s
j −∇Tk(u)χ

s]dx

−
∫
Ω

a(x,Tk(un),∇Tk(u)χ
s) [∇Tk(un)−∇Tk(u)χ

s]dx

+
∫
Ω

a(x,Tk(un),∇Tk(v j)χ
s
j) [∇Tk(un)−∇Tk(v j)χ

s
j ]dx.

We will pass to the limit in n and in j in the last three terms of the right-hand side of the

above equality. Similar tools as in (3.13) and (3.18) give

∫
Ω

a(x,Tk(un),∇Tk(un))[∇Tk(v j)χ
s
j −∇Tk(u)χs]dx = ε10(n, j)

and ∫
Ω

a(x,Tk(un),∇Tk(u)χs)[∇Tk(un)−∇Tk(u)χs]dx = ε11(n, j)

and

(3.20)
∫
Ω

a(x,Tk(un),∇Tk(v j)χ
s
j)[∇Tk(un)−∇Tk(v j)χ

s
j ]dx = ε12(n, j),
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which imply that

∫
Ω

[a(x,Tk(un),∇Tk(un))−a(x,Tk(un),∇Tk(u)χs)]× [∇Tk(un)−∇Tk(u)χs]dx

=
∫
Ω

[a(x,Tk(un),∇Tk(un))−a(x,Tk(un),∇Tk(v j)χ
s
j)]×[∇Tk(un)−∇Tk(v j)χ

s
j ]dx

+ ε13(n, j).

For r ≤ s one has

0≤
∫
Ωr

[a(x,Tk(un),∇Tk(un))−a(x,Tk(un),∇Tk(u))]×[∇Tk(un)−∇Tk(u)]dx

≤
∫
Ωs

[a(x,Tk(un),∇Tk(un))−a(x,Tk(un),∇Tk(u))]×[∇Tk(un)−∇Tk(u)]dx

=
∫
Ωs

[a(x,Tk(un),∇Tk(un))−a(x,Tk(un),∇Tk(u)χs)]×[∇Tk(un)−∇Tk(u)χs]dx

≤
∫
Ω

[a(x,Tk(un),∇Tk(un))−a(x,Tk(un),∇Tk(u)χs)]×[∇Tk(un)−∇Tk(u)χs]dx

=
∫
Ω

[a(x,Tk(un),∇Tk(un))−a(x,Tk(un),∇Tk(v j)χ
s
j)]×[∇Tk(un)−∇Tk(v j)χ

s
j ]dx

+ ε13(n, j)

≤ ε14(n, j)+2
∫

Ω\Ωs

hk ∇Tk(u)dx.

This implies that, by passing at first to the limit sup over n and then over j,

0≤ limsup
n→∞

∫
Ωr

[a(x,Tk(un),∇Tk(un))−a(x,Tk(un),∇Tk(u))]

×[∇Tk(un)−∇Tk(u)]dx

≤ 2
∫

Ω\Ωs

hk ∇Tk(u)dx.

Using the fact that hk ∇Tk(u) ∈ L1(Ω) and letting s → ∞, we get, since |Ω\Ωs| → 0,∫
Ωr

[a(x,Tk(un),∇Tk(un))−a(x,Tk(un),∇Tk(u))]× [∇Tk(un)−∇Tk(u)]dx→ 0 as n→ ∞.
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As in [5], we deduce that there exists a subsequence still denoted by un such that

(3.21) ∇un −→ ∇u a.e in Ω,

which implies that

a(x,un,∇un)⇀ a(x,u,∇u) weakly in (Lψ(Ω))N for σ(ΠLψ ,ΠEϕ).

Step 3 : Modular convergence of the truncations.

We turn now to equation(3.19), we can write∫
Ω

a(x,Tk(un),∇Tk(un))∇Tk(un)dx≤
∫
Ω

a(x,Tk(un),∇Tk(un))∇Tk(v j)χ
s
j dx

+
∫
Ω

a(x,Tk(un),∇Tk(v j)χ
s
j)

×[∇Tk(un)−∇Tk(v j)χ
s
j ]dx+2ε9(n, j)

+2
∫

Ω\Ωs

hk ∇Tk(u)dx,

which implies, by using (3.20), that∫
Ω

a(x,Tk(un),∇Tk(un)) ∇Tk(un)dx≤
∫
Ω

a(x,Tk(un),∇Tk(un)) ∇Tk(v j) χ
s
j dx+ ε15(n, j)

+2
∫

Ω\Ωs

hk ∇Tk(u)dx.

Passing to the limit sup over n in both sides of this inequality yields

limsup
n→∞

∫
Ω

a(x,Tk(un),∇Tk(un)) ∇Tk(un)dx≤
∫
Ω

a(x,Tk(u),∇Tk(u)) ∇Tk(v j) χ
s
j dx

+ lim
n→∞

ε15(n, j)+2
∫

Ω\Ωs

hk ∇Tk(u)dx,

in which, we can pass to the limit in j, to obtain

limsup
n→∞

∫
Ω

a(x,Tk(un),∇Tk(un)) ∇Tk(un)dx≤
∫
Ω

a(x,Tk(u),∇Tk(u)) ∇Tk(u) χ
s dx

+2
∫

Ω\Ωs

hk ∇Tk(u)dx.
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Letting s→ ∞ gives

limsup
n→∞

∫
Ω

a(x,Tk(un),∇Tk(un)) ∇Tk(un)dx≤
∫
Ω

a(x,Tk(u),∇Tk(u)) ∇Tk(u)dx

On the other hand we have, by using Fatou’s lemma,∫
Ω

a(x,Tk(u),∇Tk(u)) ∇Tk(u)dx≤ liminf
n→∞

∫
Ω

a(x,Tk(un),∇Tk(un)) ∇Tk(un)dx,

Which implies that∫
Ω

a(x,Tk(un),∇Tk(un)) ∇Tk(un)dx→
∫
Ω

a(x,Tk(u),∇Tk(u)) ∇Tk(u)dx

as n→ ∞ and, by using Lemma 4, we conclude that

(3.22) a(x,Tk(un),∇Tk(un)) ∇Tk(un)→ a(x,Tk(u),∇Tk(u)) ∇Tk(u) in L1(Ω).

This implies, by using (3.3), that

Tk(un)→ Tk(u) in W 1
0 Lϕ(Ω) for the modular convergence.

Step 4 : Equi-integrability of the non-linearities and passage to the limit.

We shall prove that gn(x,un,∇un)→ g(x,u,∇u) strongly in L1(Ω) by using Vitali’s theorem. S-

ince gn(x,un,∇un)→ g(x,u,∇u) a.e in Ω, thanks to (3.21), it suffices to prove that gn(x,un,∇un)

are uniformly equi-integrable in Ω.

Let E ⊂Ω be a measurable subset of Ω. We have for any m > 0,

∫
E

|gn(x,un,∇un)|dx =
∫

E∩{|un|≤m}

|gn(x,un,∇un)|dx+
∫

E∩{|un|>m}

|gn(x,un,∇un)|dx

≤ b(m)

α

∫
E

a(x,Tm(un),∇Tm(un)) ∇Tm(un)dx

+b(m)
∫
E

c′(x)dx+
1
m

∫
Ω

gn(x,un,∇un) un dx.

By virtue of the strong convergence (3.22) and the fact that c′ ∈ L1(Ω), there exists η > 0

such that

|E|< η implies
∫
E

|gn(x,un,∇un)|dx≤ ε, ∀n,
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Which shows that gn(x,un,∇un) are uniformly equi-integrable in Ω as required.

In order to pass to the limit, we have, by going back to approximate equations (3.8),∫
Ω

a(x,un,∇un) ∇wdx+
∫
Ω

gn(x,un,∇un) wdx = 〈 f ,w〉

for all w ∈D(Ω), in which, we can easily pass to the limit as n→ ∞ to get

(3.23)
∫
Ω

a(x,u,∇u) ∇wdx+
∫
Ω

g(x,u,∇u) wdx = 〈 f ,w〉.

Let v ∈W 1
0 Lϕ(Ω)∩L∞(Ω). By Theorem 2.5 of [11], there exists a sequence (w j) ⊂D(Ω)

such that w j → v in W 1
0 Lϕ(Ω) for the modular convergence and ‖w j‖∞,Ω ≤ (N +1)‖v‖∞,Ω for

all j ∈ N. Taking w = w j in (3.23) and letting j→ ∞ yields∫
Ω

a(x,u,∇u) ∇vdx+
∫
Ω

g(x,u,∇u) vdx = 〈 f ,v〉.

By choosing v = Tk(u) in the last equality, we get

(3.24)
∫
Ω

a(x,u,∇u) ∇Tk(u)dx+
∫
Ω

g(x,u,∇u) Tk(u)dx = 〈 f ,Tk(u)〉.

From (3.9), we deduce by Fatou’s lemma that g(x,u,∇u) u ∈ L1(Ω) and since

|g(x,u,∇u) Tk(u)| ≤ g(x,u,∇u) u and Tk(u)→ u in W 1
0 Lϕ(Ω) for the modular convergence and

a.e. in Ω as k→ ∞, it is easy to pass to the limit in both sides of (3.24) (by using Lebesgue

theorem) to obtain ∫
Ω

a(x,u,∇u) ∇udx+
∫
Ω

g(x,u,∇u) udx = 〈 f ,u〉.

This completes the proof of Theorem 7.
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