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1. Introduction

Hájek [2] introduced a complete residuated lattice which is an algebraic structure for many

valued logic. Pawlak [11,12] introduced the rough set theory as a formal tool to deal with

imprecision and uncertainty in the data analysis. By using the concepts of lower and upper

approximation operators, information systems and decision rules are investigated in complete
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residuated lattices [1,2,9,10,13,14]. Kim [6,7] investigated the properties of Alexandrov (fuzzy)

topologies, fuzzy preorders and join-preserving maps in complete residuated lattices.

In this paper, we investigate the properties of Alexandrov (fuzzy) topologies, fuzzy preorders

and upper approximation operators in complete residuated lattices. Moreover, we investigate

the relations among Alexandrov (fuzzy) topologies, fuzzy preorders and upper approximation

operators. We give their examples.

2. Preliminaries

Definition 2.1. [1-3] A structure (L,∨,∧,�,→,⊥,>) is called a complete residuated lattice

iff it satisfies the following properties:

(L1) (L,∨,∧,⊥,>) is a complete lattice where ⊥ is the bottom element and > is the top

element;

(L2) (L,�,>) is a monoid;

(L3) It has an adjointness, i.e.,

x≤ y→ z iff x� y≤ z.

An operator ∗ : L→ L defined by a∗ = a→⊥ is called strong negations if a∗∗ = a.

>x(y) =

 >, if y = x,

⊥, otherwise.
>∗x(y) =

 ⊥, if y = x,

>, otherwise.

In this paper, we assume that (L,∨,∧,�,→,∗ ,⊥,>) be a complete residuated lattice with a

strong negation ∗.

Definition 2.2. [6,7] Let X be a set. A function RX : X ×X → L is called a fuzzy preorder if

it satisfies the following conditions

(E1) reflexive if RX(x,x) = 1 for all x ∈ X ,

(E2) transitive if RX(x,y)�RX(y,z)≤ RX(x,z), for all x,y,z ∈ X’

Lemma 2.3. [1,2] Let (L,∨,∧,�,→,∗ ,⊥,>) be a complete residuated lattice with a strong

negation ∗. For each x,y,z,xi,yi ∈ L, the following properties hold.
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(1) If y≤ z, then x� y≤ x� z.

(2) If y≤ z, then x→ y≤ x→ z and z→ x≤ y→ x.

(3) x→ y => iff x≤ y.

(4) x→>=> and >→ x = x.

(5) x� y≤ x∧ y.

(6) x� (
∨

i∈Γ yi) =
∨

i∈Γ(x� yi) and (
∨

i∈Γ xi)� y =
∨

i∈Γ(xi� y).

(7) x→ (
∧

i∈Γ yi) =
∧

i∈Γ(x→ yi) and (
∨

i∈Γ xi)→ y =
∧

i∈Γ(xi→ y).

(8)
∨

i∈Γ xi→
∨

i∈Γ yi ≥
∧

i∈Γ(xi→ yi) and
∧

i∈Γ xi→
∧

i∈Γ yi ≥
∧

i∈Γ(xi→ yi).

(9) (x→ y)� x≤ y and (y→ z)� (x→ y)≤ (x→ z).

(10) x→ y≤ (y→ z)→ (x→ z) and x→ y≤ (z→ x)→ (z→ y).

(11)
∧

i∈Γ x∗i = (
∨

i∈Γ xi)
∗ and

∨
i∈Γ x∗i = (

∧
i∈Γ xi)

∗.

(12) (x� y)→ z = x→ (y→ z) = y→ (x→ z) and (x� y)∗ = x→ y∗.

(13) x∗→ y∗ = y→ x and (x→ y)∗ = x� y∗.

(14) y→ z≤ x� y→ x� z.

Definition 2.4. [5] A map H : LX → LY is called an upper approximation operator if it

satisfies the following conditions, for all A,Ai ∈ LX , and α ∈ L,

(H1) H (α�A) = α�H (A),

(H2) H (
∨

i∈I Ai) =
∨

i∈I H (Ai),

(H3) A≤H (A),

(H4) H (H (A))≤H (A).

Example 2.5. Let R ∈ LX×X be a fuzzy preorder. Define HR : LX → LX as follows

HR(A)(y) =
∨
x∈X

(A(x)�R(x,y)).

Since HR(α�A) = α�HR(A) and HR(
∨

i∈Γ Ai) =
∨

i∈Γ HR(Ai),

HR(A)(y)≥ A(y)�R(y,y) = A(y),

HR(HR(A))(z) =
∨

y∈X(HR(A)(y)�R(y,z))

=
∨

y∈X((
∨

x∈X(A(x)�R(x,y)))�R(y,z))

≤
∨

x∈X(A(x)�R(x,z)) = HR(A)(z).

then HR is an upper approximation operator.
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Definition 2.6. [5] A subset τ ⊂ LX is called an Alexandrov topology if it satisfies satisfies

the following conditions.

(O1) αX ∈ τ where αX(x) = α for each x ∈ X and α ∈ L.

(O2) If Ai ∈ τ for i ∈ Γ,
∨

i∈Γ Ai,
∧

i∈Γ Ai ∈ τ .

(O3) α�A ∈ τ for all α ∈ L and A ∈ τ .

(O4) α → A ∈ τ for all α ∈ L and A ∈ τ .

Definition 2.7. [4,6] An operator T : LX → L is called an Alexandrov fuzzy topology on X iff

it satisfies the following conditions, for all A,Ai ∈ LX , and α ∈ L,

(T1) T(αX) =>,

(T2) T(
∧

i∈Γ Ai)≥
∧

i∈Γ T(Ai) and T(
∨

i∈Γ Ai)≥
∧

i∈Γ T(Ai),

(T3) T(α�A)≥ T(A),

(T4) T(α → A)≥ T(A).

Theorem 2.8. [6] Let H be an upper approximation operator. Define TH : LX → L as

TH (A) =
∧
x∈X

(H (A)(x)→ A(x)).

Then we have the following properties.

(1) TH is an Alexander fuzzy topology on X.

(2) TH (A) =
∧

x,y∈X(H (>x)(y)→ (A(x)→ A(y)) such that TH (A)≥
∧

x 6=y∈X H ∗(>x)(y).

(3) TH (H (>x)) =>.

(4) If H −1 is an upper approximation operator such that H −1(>x)(y) = H (>y)(x) for all

x,y ∈ X. Define T∗H (A) = TH (A∗). Then T∗H = TH −1 is an Alexander fuzzy topology.

(5) TH (H −1∗(>x)) = TH −1(H ∗(>x)) =>.

3. Relationships between Alexandrov (fuzzy) topologies and upper approx-
imation operators

Theorem 3.1. Let H ,H −1 : LX→LX be upper approximation operators such that H −1(>x)(y)=

H (>y)(x) for all x,y ∈ X. Then the following properties hold.
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(1) τH = {A ∈ LX |H (A) = A} is an Alexandrov topology on X such that τH = {H (A) |

A ∈ LX}.

(2) For each A ∈ LX , H −1(A) = A iff H (A∗) = A∗. Moreover, τH −1 = τ∗H = {A∗ ∈ LX |

H (A) = A}.

(3) Define RH : X ×X → L as RH (x,y) = H (>x)(y). Then RH is a fuzzy preorder such

HRH = H and RτH = RH .

(4) RH −1(x,y) = RH (y,x) = H (>y)(x), HR
H −1 = H −1 and Rτ∗H

= Rτ
H −1 = RH −1 .

Proof. (1) (O1) Since αX ≤H (αX) and H (αX) =H (α�>) = α�>= αX , then αX ∈ τH .

(O2) For Ai ∈ τH for each i ∈ Γ, by (H3),
∨

i∈Γ Ai ∈ τH . Since
∧

i∈Γ Ai ≤H (
∧

i∈Γ Ai) ≤∧
i∈Γ H (Ai) =

∧
i∈Γ Ai, Thus,

∧
i∈Γ Ai ∈ τH .

(O3) For A ∈ τH , by (H2), α�A ∈ τH .

(O4) For A ∈ τH , since α �H (α → A) = H (α � (α → A)) ≤ H (A), H (α → A) ≤

α → H (A) = α → A. Then α → A ∈ τH . Hence τH is an Alexandrov topology on X .

Let A ∈ τH . Then A = H (A) ∈ {H (A) | A ∈ LX}. Let H (A) ∈ {H (A) | A ∈ LX}. Since

H (H (A)) = H (A), H (A) ∈ τH .

(2)

H (A∗) = A∗

iff H (A∗)(y) =
∨

x∈X(A
∗(x)�H (>x)(y))≤ A∗(y)

iff A(y)≤
∧

x∈X(H (>x)(y)→ A(x))

iff
∨

y∈X A(y)�H −1(>y)(x)≤ A(x)

iff H −1(A)(x)≤ A(x)

iff H −1(A) = A.

(3) Since RH (x,x) = H (>x)(x)≥>x(x) => and

∨
y∈X(RH (x,y)�RH (y,z)) =

∨
y∈X(H (>x)(y)�H (>y)(z))

= H (
∨

y∈X(H (>x)(y)�>y)(z)) = H (H (>x))(z)

≤H (>x)(z) = RH (x,z),
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then RH is a fuzzy preorder. Moreover,

HRH (A)(y) =
∨

x∈X(A(x)�RH (x,y)))

=
∨

x∈X(A(x)�H (>x)(y))

= H (
∨

x∈X(A(x)�>x))(y) = H (A)(y),

RτH (x,y) =
∧

A∈τH
(A(x)→ A(y))

≤
∧

z∈X(H (>z)(x)→H (>z)(y))

≤H (>x)(x)→H (>x)(y))

≤ (>x)(x)→H (>x)(y) = H (>x)(y),

RτH (x,y) =
∧

A∈τH
(A(x)→ A(y))

=
∧

A∈LX (H (A)(x)→H (A)(y))

=
∧

A∈LX (
∨

z∈X(A(z)�H (>z)(x))→
∨

z∈X(A(z)�H (>z)(y)))

≥
∧

z∈X(H (>z)(x)→H (>z)(y))

≥H (>x)(y).

Hence RτH (x,y) = H (>x)(y) = RH (x,y).

(4) It is similarly proved as (3).

Theorem 3.2. Let τ be Alexandrov topology on X. Then the following properties hold.

(1) Define Hτ : LX → LX as follows:

Hτ(A) =
∧
{B | A≤ B, B ∈ τ}.

Then Hτ is an L-upper approximation operator such that τHτ
= τ, HτH = H .

(2) Define Rτ : X×X → L as

Rτ(x,y) =
∧
A∈τ

(A(x)→ A(y))

Then Rτ is a fuzzy preorder such that τ = τHRτ
. Moreover, Hτ = HRτ

.

(3) Rτ∗ = R−1
τ , τ∗ = τHR

τ∗
= τH

R−1
τ

and Hτ∗ = HR−1
τ
.

Proof. (1) We show Hτ(A) =
∧
{B | A≤ B, B ∈ τ} is an L-upper approximation operator.



564 YONG CHAN KIM

(H1) We have α�Hτ(A)≤Hτ(α�A) from:

α →Hτ(α�A)

= α →
∧
{B | α�A≤ B, B ∈ τ}

=
∧
{α → B | A≤ α → B, α → B ∈ τ}

≥Hτ(A).

Since α�A≤ α�Hτ(A) and α�Hτ(A) ∈ τ , then Hτ(α�A)≤ α�Hτ(A). Hence Hτ(α�

A) = α�Hτ(A).

(H2) Since Hτ(A)≤Hτ(B) for A≤B, we have
∨

i∈Γ Hτ(Ai)≤Hτ(
∨

i∈Γ Ai). Since
∨

i∈Γ Ai≤∨
i∈Γ Hτ(Ai) ∈ τ , then

Hτ(
∨
i∈Γ

Ai)≤Hτ(
∨
i∈Γ

Hτ(Ai)) =
∨
i∈Γ

Hτ(Ai).

(H3) It follows from the definition.

(H4) Since Hτ(A) ∈ τ , we have Hτ(Hτ(A)) = Hτ(A).

Let A ∈ τHτ
. Then A = Hτ(A) ∈ τ . Hence τHτ

⊂ τ .

Let A ∈ τ . Then Hτ(A) = A. So, A ∈ τHτ
. Hence τ ⊂ τHτ

.

Since HτH (A) =
∧
{B | A≤ B, B ∈ τH } and A≤H (H (A)) =H (A), we have HτH (A)≤

H (A). For Bi ∈ τH , since H (
∧

i∈Γ Bi)≤
∧

i∈Γ H (Bi)=
∧

i∈Γ Bi, then H (HτH (A))=HτH (A).

So, H (A)≤HτH (A).

(2) We easily show that Rτ is a fuzzy preorder.

Let A ∈ τ . Since HRτ
(A)(y) =

∨
x∈X(A(x)�Rτ(x,y)) =

∨
x∈X(A(x)�

∧
B∈τ(B(x)→ B(y))≤∨

x∈X(A(x)� (A(x)→ A(y))≤ A(y), then HRτ
(A) = A. So, τ ⊂ τHRτ

Let A = HRτ
(A). Then A = HRτ

(A) =
∨

x∈X(A(x)�
∧

B∈τ(B(x)→ B)) ∈ τ . So, τHRτ
⊂ τ.

Since A≤HRτ
(A)∈ τ , then Hτ(A)≤HRτ

(A). Since HRτ
(A)(y)=

∨
x∈X(A(x)�

∧
B∈τ(B(x)→

B(y))≤
∨

x∈X(Hτ(A)(x)� (Hτ(A)(x)→Hτ(A)(y))≤Hτ(A)(y), then HRτ
(A)≤Hτ(A).

(3) Rτ∗(x,y)=
∧

A∈τ∗(A(x)→A(y))=
∧

A∈τ(A
∗(x)→A∗(y))=

∧
A∈τ(A(y)→A(x))=R−1

τ (x,y).

Other cases are similarly proved as (3).

Theorem 3.3. Let HX ,H
−1

X : LX→LX be upper approximation operators such that H −1
X (>x)(y)=

HX(>y)(x) for all x,y ∈ X. Let HY ,H
−1

Y : LY → LY be upper approximation operators such
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that H −1
Y (>a)(b) = HY (>b)(a) for all a,b ∈ Y . Let f : (X ,HX)→ (Y,HY ) be a map. Then

the following statements are equivalent.

(1) HX(>x)≤ f−1(HY (> f (x))) for all x ∈ X.

(2) H −1
X (>x))≤ f−1(H −1

Y (> f (x))) for all x ∈ X.

(3) RHX (x,y)≤ RHY ( f (x), f (y)) for all x,y ∈ X.

(4) RH −1
X

(x,y)≤ RH −1
Y

( f (x), f (y)) for all x,y ∈ X.

(5) f (HX(A))≤HY ( f (A)) for all A ∈ LX .

(6) f (H −1
X (A))≤H −1

Y ( f (A)) for all A ∈ LX .

(7) HX( f−1(B))≤ f−1(HY (B)) for all B ∈ LY .

(8) H −1
X ( f−1(B))≤ f−1(H −1

Y (B)) for all B ∈ LY .

(9) f−1(B) ∈ τHX for all B ∈ τHY .

(10) f−1(B) ∈ τH −1
X

for all B ∈ τH −1
Y

.

(11) THX ( f−1(B))≥ THY (B) for all B ∈ LY .

(12) TH −1
X

( f−1(B))≥ TH −1
Y

(B) for all B ∈ LY .

Proof (1)⇔ (3) From Theorem 3.1 (3), it follows from:

RHX (x,y) = HX(>x)(y)≤ RHY ( f (x), f (y)) = f−1(HY (> f (x)))(y).

(1)⇒ (5)

HY ( f (A))(y) = HY (
∨

x∈X f (A)( f (x))�> f (x))(y)

=
∨

x∈X(A(x)�HY (> f (x))(y)

≥
∨

x∈X(A(x)� f (HX(>x))(y)

=
∨

x∈X(A(x)�
∨

z∈ f−1({y})HX(>x)(z))

=
∨

z∈ f−1({y})(
∨

x∈X(A(x)�HX(>x)(z))

=
∨

z∈ f−1({y})HX(
∨

x∈X(A(x)�>x))(z)

=
∨

z∈ f−1({y})HX(A)(z) = f (HX(A))(y).

(5)⇒ (7) By (5), put A = f−1(B). Then

f (HX( f−1(B)))≤HY ( f ( f−1(B)))≤HY (B)

iff HX( f−1(B))≤ f−1(HY (B)).
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(7) ⇒ (9) For B ∈ τHY , since HY (B) = B, by (7), HX( f−1(B)) ≤ f−1(HY (B)) = f−1(B).

So, f−1(B) ∈ τHX .

(9)⇒ (5) Since HY = HτHY
and HX = HτHX

, we have

HY ( f (A)) =
∧
{B | f (A)≤ B, B ∈ τHY }

≥
∧
{B | A≤ f−1(B), f−1(B) ∈ τHX}

≥
∧
{ f ( f−1(B)) | A≤ f−1(B), f−1(B) ∈ τHX}

≥ f
(∧
{ f−1(B) | A≤ f−1(B), f−1(B) ∈ τHX}

)
≥ f (HX(A)).

(7)⇒ (5)

THX ( f−1(B)) =
∧

x∈X(HX( f−1(B))(x)→ f−1(B)(x)

≥
∧

x∈X( f−1(HY (B))(x)→ B( f (x))))

≥
∧

y∈Y (HY (B)(y)→ B(y))

= THY (B).

(11)⇒ (9)

For all B ∈ τY , since τY = τHRτY
, then HRτY

(B) = B. Since THτX
( f−1(B))≥ THτY

(B) =>,

then THτX
( f−1(B)) =>. So, f−1(B) ∈ τX .

(11)⇒ (1) Since a≤ (a→ b)→ b, we have

HX(>x)(y) ≤
∧

A∈LX ((HX(>x)(y)→ (A(x)→ A(y))→ (A(x)→ A(y)))

≤
∧

A∈LX (
∧

s,t((HX(>s)(t)→ (A(s)→ A(t)))→ (A(x)→ A(y)))

=
∧

A∈LX (THX (A)→ (A(x)→ A(y))).

Since THX (HX(>x)) =
∧

y∈Y (HX(HX(>x))(y)→HX(>x)(y)) =>, we have

HX(>x)(y)≤
∧

A∈LX (THX (A)→ (A(x)→ A(y)))

≤
∧

z∈X(THX (HX(>z))→ (HX(>z)(x)→HX(>z)(y)))

=
∧

z∈X(HX(>z)(x)→HX(>z)(y))≤>x(x)→HX(>x)(y) = HX(>x)(y).

f−1(HY (> f (x)))(z) = HY (> f (x))( f (z))

=
∧

B∈LY (THY (B)→ (B( f (x))→ B( f (z))))

≥
∧

B∈LY (THX ( f−1(B))→ ( f−1(B)(x)→ f−1(B)(z)))

≥
∧

A∈LX (THX (A)→ (A(x)→ A(z))) = HX(>x)(z).
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Hence HY (> f (x))≥ f ( f−1(HY (> f (x))))≥ f (HX(>x)).

(1)⇔ (2)

For all x,z ∈ X ,

HX(>x))(z)≤ f−1(HY (> f (x)))(z) = HY (> f (x)))( f (z))

iff H −1
X (>z))(x)≤H −1

Y (> f (z)))( f (x)) = f−1(H −1
Y (> f (z)))(x).

Other cases are similarly proved.

Theorem 3.4. Let τX and τY be Alexandrov topologies. Let f : (X ,τX)→ (Y,τY ) be a map.

Then the following statements are equivalent.

(1) f−1(B) ∈ τX for all B ∈ τY .

(2) f−1(B) ∈ τ∗X for all B ∈ τ∗Y .

(3) RτX (x,y)≤ RτY ( f (x), f (y)) for all x,y ∈ X.

(4) Rτ∗X
(x,y) = R−1

τX
(y,x)≤ Rτ∗Y

( f (x), f (y)) = R−1
τ∗Y
( f (y), f (x)) for all x,y ∈ X.

(5) f (HτX (A))≤HτY ( f (A)) for all A ∈ LX .

(6) f (H −1
τX

(A))≤H −1
τY

( f (A)) for all A ∈ LX .

(7) HτX ( f−1(B))≤ f−1(HτY (B)) for all B ∈ LY .

(8) H −1
τX

( f−1(B))≤ f−1(H −1
τY

(B)) for all B ∈ LY .

(9) THτX
( f−1(B))≥ THτY

(B) for all B ∈ LY .

(10) TH −1
τX

( f−1(B))≥ TH −1
τY

(B) for all B ∈ LY .

Proof (1)⇒ (3)

RτY ( f (x), f (y)) =
∧

B∈τY
(B( f (x))→ B( f (y)))

=
∧

B∈τY
( f−1(B)(x)→ f−1(B)(y))

≥
∧

A∈τX
(A(x)→ A(y)) = RτX (x,y).

(3)⇒ (5) Since HRτY
= HτY and HRτX

= HτX from Theorem 3.2(2), we have

HRτY
( f (A))( f (x)) =

∨
w∈Y ( f (A)(w)�RτY (w, f (x)))

≥
∨

z∈X( f (A)( f (z))�RτY ( f (z), f (x)))

≥
∨

z∈X(A(z)�RτX (z,x)) = HRτX
(A)(x).

(5) ⇒ (7) and (7) ⇒ (9) are similarly proved as (5) ⇒ (7) and (7) ⇒ (9), respectively, in

Theorem 3.3.
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(9)⇒ (1) For all B ∈ τY , since τY = τHRτY
form Theorem 3.2(2), then HRτY

(B) = B. Since

THτX
( f−1(B))≥ THτY

(B) =>, then THτX
( f−1(B)) =>. So, f−1(B) ∈ τX .

Other cases are similarly proved.

Theorem 3.5. Let RX and RY be fuzzy preordered sets. Then the following statements are

equivalent.

(1) RX(x,y)≤ RY ( f (x), f (y)) for all x,y ∈ X.

(2) R−1
X (x,y)≤ R−1

Y ( f (x), f (y)) for all x,y ∈ X where R−1
X (x,y) = RX(y,x).

(3) f (HRX (A))≤HRY ( f (A)) for all A ∈ LX where HRX (A)(y) =
∨

x∈X(A(x)�R(x,y)).

(4) f (H −1
RX

(A))≤H −1
RY

( f (A)) for all A ∈ LX where H −1
RX

= HR−1
X

.

(5) HRX ( f−1(B))≤ f−1(HRY (B)) for all B ∈ LY .

(6) H −1
RX

( f−1(B))≤ f−1(H −1
RY

(B)) for all B ∈ LY .

(7) f−1(B) ∈ τHRX
for all B ∈ τHRY

.

(8) f−1(B) ∈ τH −1
RX

for all B ∈ τH −1
RY

.

(9) THRX
( f−1(B))≥ THRY

(B) for all B ∈ LY .

(10) TH −1
RX

( f−1(B))≥ TH −1
RX

(B) for all B ∈ LY .

Proof (1)⇒ (3)

HRY ( f (A))( f (x)) =
∨

w∈Y ( f (A)(w)�RY (w, f (x)))

≥
∨

z∈X( f (A)( f (z))�RY ( f (z), f (x)))

≥
∨

z∈X(A(z)�RX(z,x)) = HRX (A)(x).

(5)⇒ (7), (7)⇒ (9) and (9)⇒ (11) are similarly proved as (3)⇒ (5), (5)⇒ (7) and (7)⇒

(9), respectively, in Theorem 3.3.

(7) ⇒ (3) Put HX(A) =
∧
{Bi | A ≤ Bi,Bi ∈ τHRX

}. Since A ≤HRX (A) = HRX (HRX (A)),

then HX(A)≤HRX (A).

For A≤ Bi,Bi ∈ τHRX
, since HRX (Bi) = Bi, HRX (

∧
Bi)≤

∧
HRX (Bi) =

∧
Bi. Hence

HRX (A)≤HRX (HX(A)) = HRX (
∧

Bi) =
∧

Bi = HX(A)

Thus HX(A) = HRX (A).
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HRY ( f (A)) =
∧
{B | f (A)≤ B, B ∈ τHRY

}

≥
∧
{B | A≤ f−1(B), f−1(B) ∈ τHRX

}

≥
∧
{ f ( f−1(B)) | A≤ f−1(B), f−1(B) ∈ τHRX

}

≥ f
(∧
{ f−1(B) | A≤ f−1(B), f−1(B) ∈ τHRX

}
)

≥ f (HRY (A)).

(9)⇒ (1) Since a≤ (a→ b)→ b, we have

RX(x,y) ≤
∧

A∈LX ((RX(x,y)→ (A(x)→ A(y))→ (A(x)→ A(y)))

≤
∧

A∈LX (
∧

s,t((RX(s, t)→ (A(s)→ A(t)))→ (A(x)→ A(y)))

=
∧

A∈LX (THRX
(A)→ (A(x)→ A(y))).

Since HRX (Rx)(y) =
∨

z∈X(Rx(z)�R(z,y)) = R(x,y) where Rx(y) = R(x,y) for all x,y ∈ X ,

THRX
(Rx) =

∧
y∈Y

(HRX (Rx)(y)→ Rx(y)) =
∧
y∈Y

(Rx(y)→ Rx(y)) =>.

RX(x,y) ≤
∧

A∈LX (THRX
(A)→ (A(x)→ A(y)))

≤
∧

z∈X(THRX
(Rz)→ (Rz(x)→ Rz(y)))

=
∧

z∈X(Rz(x)→ Rz(y))≤>x(x)→ Rx(y) = RX(x,y).

Hence RX(x,y)≤
∧

A∈LX (THRX
(A)→ (A(x)→ A(y))). Thus,

RY ( f (x), f (z)) =
∧

B∈LY (THRY
(B)→ (B( f (x))→ B( f (z))))

≥
∧

B∈LY (THRX
( f−1(B))→ ( f−1(B)(x)→ f−1(B)(z)))

≥
∧

A∈LX (THRX
(A)→ (A(x)→ A(z))) = RX(x,z).

Other cases are similarly proved.

Theorem 3.6. For B ∈ LY , we define

RY (x,y) = B(x)→ B(y)

RX(a,b) = f−1(B)(a)→ f−1(B)(b).

Then the following properties hold.

(1) RX and RY are fuzzy preordered sets such that RX(x,y) = RY ( f (x), f (y)) for all x,y ∈ X.

(2) HRY (C) =
∨

y∈Y (C(y)� (B(y)→ B)) is an upper approximation operator on Y .
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(3) HRX (A) =
∨

x∈X(A(x)� ( f−1(B)(x)→ f−1(B))) is an upper approximation operator on

X.

(4)

τHRY
= {

∨
y∈Y (C(y)� (B(x)→ B)) |C ∈ LY}

= {HRY (C) |C ∈ LY}

= {C ∈ LY |C = HRY (C)}

(5)

τHRX
= {

∨
x∈X(A(x)� ( f−1(B)(x)→ f−1(B))) | A ∈ LX}

= {HRX (A) | A ∈ LX}

= {A ∈ LX | A = HRX (A)}

(6) RY = RτHRY
and RX = RτHRX

.

(7)

THRY
(C) =

∧
x,y∈Y ((B(x)→ B(y))→ (C(x)→C(y)))

THRX
(D) =

∧
x,y∈X(( f−1(B)(x)→ f−1(B)(y))→ (D(x)→ D(y)))

Proof. (1) RY ( f (x), f (y)) = B( f (x))→ B( f (y)) = f−1(B)(x)→ f−1(B)(y) = RX(x,y), for all

x,y ∈ X .

(2) and (3) are easily proved as Example 2.5.

(4) and (5). Since HRY (C)=
∨

y∈Y (C(y)�(B(y)→B)) and HRX (A)=
∨

x∈Y (A(x)�( f−1(B)(x)→

f−1(B))), by Theorem 3.1(2), the results hold.

(6)

RτHRY
(x,y) =

∧
A∈τHRY

(A(x)→ A(y))

=
∧

A∈τHRY
(
∨

z∈X(A(z)� (B(z)→ B(x)))→
∨

z∈X(A(z)� (B(z)→ B(y)))

≥
∧

A∈τHRY
((A(z)� (B(z)→ B(x)))→ (A(z)� (B(z)→ B(y)))

≥
∧

A∈τHRY
((B(z)→ B(x)))→ (B(z)→ B(y)))

≥ B(x)→ B(y).

Since B(x)� (B(x) → B) ≤ B and B ≤ HRY (B), then B = HRY (B);i.e. B ∈ τHRY
. So,

RτHRY
(x,y)≤ B(x)→ B(y). Thus, RτHRY

(x,y) = B(x)→ B(y).
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(7)

THRY
(C) =

∧
y∈X(HRY (C)(y)→C(y))

=
∧

y∈X(
∨

x∈X(C(x)� (B(x)→ B(y))→C(y))

=
∧

x,y∈X((B(x)→ B(y))→ (C(x)→C(y)).

Example 3.7. Let (L = [0,1],�,→,∗ ) be a complete residuated lattice with a strong negation

defined by

x� y = (x+ y−1)∨0, x→ y = (1− x+ y)∧1, x∗ = 1− x.

Let X = {a,b,c,d} and Y = {x,y,z} be a set. Define a map f : X → Y as

f (a) = f (b) = x, f (c) = y, f (d) = z.

(1) We define fuzzy preorders RX and RY as follows

RX =


1 0.8 0.7 0.5

0.5 1 0.6 0.7

0.4 0.8 1 0.6

0.7 0.8 0.9 1

 RY =


1 0.8 0.7

0.8 1 0.7

0.8 0..9 1

 .

By Theorem 3.1(3), we obtain HRX (A)(y) =
∨

x∈X(A(x)�RX(x,y)). For B = (0.3,0.7,0.4)t ,

HRY (B) = (0.5,0.7,0.4)t . Then B 6∈ τHRY
,HRY (B) ∈ τHRY

. Since RX(a,b) ≤ RY ( f (a), f (b)),

by Theorem 3.5(7) , f−1(HRY (B)) = (0.5,0.5,0.7,0.4)t ∈ τHRX
.

HRX ( f−1(B)) = (0.3,0.5,0.7,0.4)t ≤ f−1(HRY (B)) = (0.5,0.5,0.7,0.4)t .

TY (B) =
∧

y∈Y (HRY (B)(y)→ B(y)) = 0.8

TX( f−1(B)) =
∧

x∈X(HRX ( f−1(B))(x)→ f−1(B)(x)) = 0.8

HR−1
Y
(B)= (0.5,0.7,0.6)t . Then B 6∈ τH

R−1
Y
,HR−1

Y
(B)∈ τH

R−1
Y

. Since RX(a,b)≤RY ( f (a), f (b)),

by Theorem 3.5(8) , f−1(HR−1
Y
(B)) = (0.5,0.5,0.7,0.6)t ∈ τH

R−1
X
.

HR−1
X
( f−1(B)) = (0.4,0.3,0.7,0.4)t ≤ f−1(HR−1

Y
(B)) = (0.5,0.5,0.7,0.6)t .

T−1
Y (B) =

∧
y∈Y (HR−1

Y
(B)(y)→ B(y)) = 0.8

T−1
X ( f−1(B)) =

∧
x∈X(HR−1

X
( f−1(B))(x)→ f−1(B)(x)) = 0.9.
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(2) For B = (0.3,0.7,0.4)t and f−1(B) = (0.3,0.3,0.7,0.4)t , RY (x,y) = B(x)→ B(y) and

RY (x,y) = f−1(B)(x)→ f−1(B)(y) as follows:

RX =


1 1 1 1

1 1 1 1

0.6 0.6 1 0.7

0.9 0.9 1 1

 RY =


1 1 1

0.6 1 0.7

0.9 1 1


τHRY

= {
∨
y∈Y

(C(y)� (B(y)→ B)) |C ∈ LY}= {HRY (C) |C ∈ LY}

For A = (0.3,0.5,0.7,0.4)t and f (A) = (0.5,0.7,0.4)t ,

f (HRX (A)) = (0.5,0.7,0.5)t = HRY ( f (A)).

For C = (0.8,0.2,0.6)t and f−1(C) = (0.8,0.8,0.2,0.6)t ,

HRX ( f−1(C)) = (0.8,0.8,0.8,0.8)t = f−1(HRY (C))

HR−1
X
( f−1(C)) = (0.8,0.8,0.4,0.7)t = f−1(HR−1

Y
(C)).

TY (C) =
∧

y∈Y (HRY (C)(y)→C(y)) = 0.4

TX( f−1(C)) =
∧

x∈X(HRX ( f−1(C))(x)→ f−1(C)(x)) = 0.4.

T−1
Y (C) =

∧
y∈Y (HR−1

Y
(C)(y)→C(y)) = 0.8

T−1
X ( f−1(C)) =

∧
x∈X(HR−1

X
( f−1(C))(x)→ f−1(C)(x)) = 0.8.
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