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Abstract. In this paper, we investigate the properties of Alexandrov (fuzzy) topologies, fuzzy preorders and upper
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1. Introduction

Hijek [2] introduced a complete residuated lattice which is an algebraic structure for many
valued logic. Pawlak [11,12] introduced the rough set theory as a formal tool to deal with
imprecision and uncertainty in the data analysis. By using the concepts of lower and upper

approximation operators, information systems and decision rules are investigated in complete
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residuated lattices [1,2,9,10,13,14]. Kim [6,7] investigated the properties of Alexandrov (fuzzy)
topologies, fuzzy preorders and join-preserving maps in complete residuated lattices.

In this paper, we investigate the properties of Alexandrov (fuzzy) topologies, fuzzy preorders
and upper approximation operators in complete residuated lattices. Moreover, we investigate
the relations among Alexandrov (fuzzy) topologies, fuzzy preorders and upper approximation

operators. We give their examples.

2. Preliminaries

Definition 2.1. [1-3] A structure (L,V,A,®,—, L, T) is called a complete residuated lattice
iff it satisfies the following properties:

(L1) (L,V,A,L,T) is a complete lattice where L is the bottom element and T is the top
element;

(L2) (L,®, T) is a monoid,;

(L3) It has an adjointness, i.e.,

x<y—ziff xOy<z.

An operator * : L — L defined by a* = a — L is called strong negations if a** = a.

T, ify=x, .
Tx(y) = - T =
1, otherwise. T, otherwise.

1, ify=x,

In this paper, we assume that (L,V,A\,®,—,*, L, T) be a complete residuated lattice with a

strong negation *.

Definition 2.2. [6,7] Let X be a set. A function Ry : X x X — L is called a fuzzy preorder if
it satisfies the following conditions

(E1) reflexive if Rx (x,x) =1 for all x € X,

(E2) transitive if Ry (x,y) ® Rx(y,z) < Rx(x,z), for all x,y,z € X’

Lemma 2.3. [1,2] Let (L,V,N\,®,—,*, L, T) be a complete residuated lattice with a strong

negation *. For each x,y,z,x;,y; € L, the following properties hold.



560 YONG CHAN KIM
DIfy<z thenx®Oy<x®z
Q) Ilfy<z thenx —-y<x—zandz—>x<y—x.
G x—=y=TIifx<y.
@BHx—>T=Tand T =-x=x.
BO)xOy<xAy
(©) x® (Vieryi) = Vier(x©yi) and (Vicrxi) ©y = Vier (i ©y).

(7) x = (Nieryi) = Nier(x = i) and (Vjerxi) =y = Nier(xi = y).

(®) Vierxi = Vieryi > Nier(xi = yi) and Nicrxi = Nieryi > Nier(xi = yi)-

QO (x—=y)ox<yand (y—2)0(x—=y) < (x—2).
(1) x—y<(y—=z)=>(x—z)andx—>y<(z—x) = (z—=Y).

A1) Aierxi = (Vierx:)* and Vierx; = (Aierxi)™.

(12) (xOy) = z=x—=>(y—z)=y— (x—=27)and (xOy)" =x = y*".

(I13)x* = y*=y—xand (x = y)* =xOy*"

(1) y—=z<x0y—=x02z

Definition 2.4. [5] A map 7 : LX — LY is called an upper approximation operator if it

satisfies the following conditions, for all A,A; € LX, and a € L,
HD) A (a0A)=aeH(A),
(H2) A (Vie1Ai) = Vier 7 (Ai),
(H3)A <7 (A),
(H4) A (A (A)) < H(A).

Example 2.5. Let R € LX*X be a fuzzy preorder. Define % : LX — LX as follows

Hr(A) ) =\ (A(x) O R(x,y)).

xeX

Since Hg(00 ©A) = a © H#&(A) and FR(VcrAi) = Vier #&(Ai),

HARA)(y) = A(y) OR(y,y) =A(y),
HR(HAR(A))(2) = Vyex (HR(A
= Vyex (Viex (A(x) ©R(x,y))) ©R(y:2))
< Viex (A(x) OR(x,2)) = #R(A)(2).

then .7/% is an upper approximation operator.

~~

)
)

~—

x(
(

(v) ©R(y,2))
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Definition 2.6. [5] A subset T C LX is called an Alexandrov topology if it satisfies satisfies
the following conditions.

(O1) ax € T where ax(x) = o foreach x € X and a € L.

(02)IfA; e tfori €T, \V;crAi, NicrAi € 7.

O3))axoAetforallc e Land A € 7.

O4)a—Actforallae LandA € 7.

Definition 2.7. [4,6] An operator T : LX — L is called an Alexandrov fuzzy topology on X iff
it satisfies the following conditions, for all A,A; € [X,and o € L,

(TD) T(ax) =T,

(T2) T(Aier Ai) = Nier T(Ai) and T(VicrAi) = Aier T(Ai),

(T3) T(¢ ®A) > T(A),

(T4) T(ox — A) > T(A).

Theorem 2.8. [6] Let S be an upper approximation operator. Define T 4 : LX — L as

Then we have the following properties.
(1) Tz is an Alexander fuzzy topology on X.
)T (4) = A yex (Z(TO) = (A() = A()) such that T (A) = Apyex 2 (T) ().
() T (H(T) = T.
(4) If 227" is an upper approximation operator such that =1 (T ) (y) = 5(Ty)(x) for all
x,y € X. Define T%,(A) = T 5 (A*). Then T%, =T ,,-1 is an Alexander fuzzy topology.
) Ty (A~ (To) =Tt (A (To) =T

3. Relationships between Alexandrov (fuzzy) topologies and upper approx-

imation operators

Theorem 3.1. Let 57, 7~ : LX — LX be upper approximation operators such that (T ) (y) =
JC(Ty)(x) for all x,y € X. Then the following properties hold.
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(1) T0 = {A € LX | #(A) = A} is an Alexandrov topology on X such that T, = {(A) |
AeLX}.

(2) For each A € LX, 77 1(A) = A iff #(A*) = A*. Moreover, T,p 1 = T, = {A* € L¥ |
JC(A) =A}.

(3) Define Ryp : X x X — L as Ryp(x,y) = 7 (Tx)(y). Then R,y is a fuzzy preorder such
Hr,y = and Ry, = R .

DR yp1(x,y) =Rop(y,x) = A (Ty)(x), Hk , , = A~ and R, =Re | =Ryp1.

Proof. (1) (O1) Since oy < .7 (0x) and 7 (o) = 7 (a©T) =0T = o, then ax € 7.

(02) For A; € T4 for each i € I, by (H3), \;crAi € T. Since \;crAi < H(N\jerAi) <
Nier 7€ (Ai) = NicrAi, Thus, AjcrAi € T

(O3) For A € 70, by (H2), x ©A € T p.

(O4) For A € T, since a © H (o0 - A) = H(a© (a — A)) < H(A), (o — A) <
o — H(A)=a —A. Then @ — A € T . Hence 7, is an Alexandrov topology on X.
Let A € T,. Then A = J7(A) € {S#(A) | A € LX}. Let s2(A) € {#(A) | A € LX}. Since
H(H(A)=H(A), H(A) € Ty

(2)

H(A*) = A*

iff (A*)(y) = Viex (A"(x) © A (T2)(v)) <A*(y)
iff A(y) < Avex (F(To)(y) = A(x))

iff Vyex AY) @227 (Ty)(x) <A(x)

iff #71(A)(x) <A(x)

iff 77 1(A) =A.

(3) Since Ry (x,x) = 7 (Tx)(x) > Tx(x) =T and

Vyex (R (x,Y) OR (3,2)) = Vyex (F(T0) (0) ©5(T,)(2))
= (Vyex (A (Tx)(y) © Ty)(2) = A (A (T2))(2)
<A (To)(2) = R (x,2),
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then R ,~ is a fuzzy preorder. Moreover,

(A(
< Aeex (PO(T)(x) = H(T)())
H(Tx)(x) = A (Tx)(y))
<(To)(x) = A(TR)(y) =22(T)(),

Rey (%) = Naer, (Alx) = A(y))
= Naerx (FC(A)(x) = A (A)(y))
= /\AeLX(VzeX( ( ) ( z)
> Noex (H(T)(x) = ()
> H(Tx)().
Hence R;,, (x,y) = 7(Tx)(y) = R (x,y).
(4) It is similarly proved as (3).
Theorem 3.2. Let T be Alexandrov topology on X. Then the following properties hold.
(1) Define 7¢; - X > 1X as follows:

H:(A)= \{B|A<B, Be1}.

Then ¢; is an L-upper approximation operator such that Ty, = T, 7, = I .
(2) Define Ry : X x X — L as

Re(x,y) = N\ (A(x) = A®))

Aet

Then Ry is a fuzzy preorder such that T = Ty5,_. Moreover, 77 = HAR,.

B)Re =R; ', T =Ty =Ty, and o = g 1.

Proof. (1) We show J#7(A) = A\{B | A < B, B € t} is an L-upper approximation operator.

563
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(H1) We have o © 77 (A) < 77 (0c ©A) from:

a— A (aAOA)
=o— N{B|ao®A<B,Ber1}
=Na—B|A<oa—B,oa—Ber1}

> Hr(A).

Since  ©A < o0 ® 7 (A) and ¢ © H#7(A) € 1, then A7 (o ©A) < x ® H#7(A). Hence 7 (a©
A)=a oA (A).

(H2) Since 777 (A) < .77 (B) for A < B, we have ;. #7(A;) < 7 (\VicrAi). Since V;crAi <
Vier #:(A;) € 7, then

A\ &) < A\ H(A) = \] A4,

il iel il

(H3) It follows from the definition.

(H4) Since 7;(A) € 1, we have 777 (77(A)) = 72(A).

LetA € Ty,. Then A = 77 (A) € 7. Hence T, C 7.

Let A € . Then J(A) =A. So,A € Ty. Hence T C Ty

Since 7, (A) = N{B|A<B,Bcty}tand A < 7 (H(A)) = (A), we have 77, (A) <
J(A). For B; € T, since 7 (\;cr Bi) < Nier 7€ (Bi) = Nier Bi» then € (747, (A)) = 72, (A).
So, H(A) < Az, (A).

(2) We easily show that R; is a fuzzy preorder.

LetA € 7. Since g, (A)(¥) = Viex (A(x) O Rz (x,)) = Viex (A(x) © Aper (B(x) = B(y)) <
Viex(A(x) © (A(x) = A(y)) <A(y), then Ak, (A) = A. S0, T C T,

Let A= 7. (A). Then A = 7 (A) =V, ex (A(x) © Ager(B(x) = B)) € 7. So, Tz, C T

Since A < Sk, (A) € 7, then H7(A) < A, (A). Since g, (A)(y) = Viex (A(X) © Apec (B(x) =
B(y)) < Viex(H2(A)(x) © (A2 (A)(x) = H2(A)(y)) < H2(A)(y), then A, (A) < H7(A).

(3) Re(x,5) = Aaer: (A(x) = AY)) = Aaer(A*(x) = A*(1) = Aaec(AY) = A(x)) =R: ' (x,y).

Other cases are similarly proved as (3).

Theorem 3.3. Let 5, %’3(_1 : LX — LX be upper approximation operators such that %’3{1 (To)(y) =
Hx(Ty)(x) for all x,y € X. Let 5y, %’fl : LY — LY be upper approximation operators such
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that 4, (T4)(b) = #4(Ty)(a) for all a,b € Y. Let f : (X, #x) — (Y, ) be a map. Then
the following statements are equivalent.

(1) 5 (Tx) < fH A (T ) forall x € X.

2) Ay (T0)) < (G (T ) forall x € X.
(3) R (x,y) < R (f(x ) f()) forall x,y € X.
A R 1 (6,3) SR 1 (f(x), f(v)) for all x,y € X.
(5) f(f&( ) < A5 (f(A)) for all A € LX.

©6) (A5 (A) < 45 (f(A)) forall A € L¥.

(1) Hx(f~(B)) < f~1 (3 (B)) forall Be LY.

®) A (f71(B)) < f' (A ' (B)) forall BE LY.
9) f7U(B) € T, for all B € T,

(10) f~1(B) € Ty forall BE T, .

(1) Ty (f~1(B)) > T4 (B) forall B LY.
(2T, (f71(B) 2 T o 1(B) forall BE L.

Proof (1) < (3) From Theorem 3.1 (3), it follows from:

Ry (x,y) = 5 (Tx)(y) < Rog (f(0), £ ) = f (A5 (T ) (3)-

(1) =)

Ay (f(A) () =25 (Vaex FA)(F(X) O T 4 ()
= Viex(A(x) © 74 (T p1) ()
> Viex(Alx) © f( A% (Tx))(v)
= Vaiex (A(X) OV ep-1(4y) #x (Tx)(2)
= Ve 1) (Vaex (Alx) © #x(Tx)(2))
= Ve 1((y}) 7 (Vaex (A(x) © Ty))
= Ve 1y #x(A)(2) = f(Hx (A)

(5) = (7) By (5), put A = f~!(B). Then

(2)
)()-
f(A(f1(B)))

Ay (f(f1(B))) < 5 (B)
iff Ax(f~'(B) < f!

(A7 (B))-

<
<
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(7) = (9) For B € Ty, since 7 (B) = B, by (7), #(f'(B)) < f~ (24 (B)) = f~(B).
So, f71(B) € 14

(9) = (5) Since Jy = JKT%,Y and Jx = %’éﬁ,&, we have

H(f(A)) =B f(4) < B, Be T}
> MBIA< ' (B), /7 (B) € T}
> M B)IASFB), £7(B) € tg)
> f(MSU B A< (B), £ (B) € 1} )

> f(Ax(A)).
(7) = ()
T (f7'(B) = Neex (A& (f71(B))(x) = f1(B)(x)
> Neex (f 1 (5 (B))(x) = B(f(x))))
> Nyer (947 (B)(y) — B(y))
=T (B)
(11) = (9)

For all B € 1y, since Ty = Ty, . then Jg, (B) = B. Since T, (f~'(B) > Ty, (B)=T,
then T, (f~'(B))=T. So, f~'(B) € .

(11) = (1) Since a < (a — b) — b, we have

Hx(To) () < Aaerx (x(To) () = (Alx) = A(y)) = (Alx) = A(y)))
< Aserx (Ao (A& (T5)(1) = (A(s) = A1) = (A(x) = A(y)))
= Merx (T (A) = (Alx) = A(y)))-
Since T (Hx (Tx)) = Nyey (Hx (A (T2))(v) = H#x(Tx)(y)) = T, we have
Hx(T2)(¥) < Aaerx (T (A) = (Alx) = A(y)))
< Acex (Tosg (A (T2)) = (Hx (T2)(x) = Hx (T2)(v)))
= Neex (A (T2) (x) = Hx (T2)(y) < Tulx) = A& (To)(¥) = Hx(To)()-
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Hence 5 (T p() = f(f T (A5 (T p)) = £ (T)).
<@

For all x,z € X,

Hx(Tx))(2) <

(A
iff (T ))( )Sc%”y (Tf(z)))(f(X))=f’1(%*1(Tf(z)))(X)-

Other cases are similarly proved.

567

Theorem 3.4. Let tx and ty be Alexandrov topologies. Let f: (X,tx) — (Y, 1y) be a map.

Then the following statements are equivalent.
(1) f~Y(B) € tx forall B € 1y.
(2) f~1(B) € t§ forall B € t}.
(3) Ry (x,y) < Ry (f(x), /() for all x,y € X.

“4) RT}(XO)) :R‘?Xl (y7x> SRT{}(f(X)vf(y)) :R;;I(f(y),f(x))for all x,ye€X.

(5) f(Hay (4) <%<f< )) for al 4 € LX,

\_/\_/

(6) (A7 ' (A)) < A, (f(A)) forall A € LX.
(7) %fx( '(B)) < %Y( ) forall B€ LY.
@) A (f (B WA (B)) forall Be LY.

)
) Tz, (f~(B)

<f
> Ty, ( )forallBeLY
(10) T, 1 (f71(B)) 2 T,

( )forallBe LY.
Proof (1) = (3)

Ry (f(x),f () = Aper, (B(f(x)) = B(f(¥)))
= Nper, (f 1 (B)(x) = f~1(B)(¥))
> Mery (A(x) = A(y)) = Rey (x, ).

(3) = (5) Since %%TY = J7, and %Tx = J7, from Theorem 3.2(2), we have

Vier (f(A) (W) © Ry, (w, f(x)))
Veex (f(A)(f(2)) O Ry (f(2), f(x)))
V

2ex(A(2) O Rey (2,%)) = Hg,, (A)(x).

(5) = (7) and (7) = (9) are similarly proved as (5) = (7) and (7) = (9), respectively, in

Theorem 3.3.
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(9) = (1) For all B € 1y, since Ty = 7. form Theorem 3.2(2), then %TY (B) = B. Since
Ty, (f7'(B)) > T, (B) =T, then T, (f~'(B))=T. So, f'(B) € .

Other cases are similarly proved.

Theorem 3.5. Let Rx and Ry be fuzzy preordered sets. Then the following statements are
equivalent.

(1) Rx (x,y) < Ry (f(x), f()) for all x,y € X.

(2) Ry (x,y) <Ry (f(x), £(v)) for all x,y € X where Ry (x,y) = Rx (y,x).

(3) f(Hiy (A)) < Hiy (f(A)) for all A € LX where S, (A)(y) = Vyex (Ax) O R(x,y)).

4) f( ( ))§ (f( ) for all A € LX where%’je;l:%%;l.
() :%’iex( '(B)) < f~'(Hay(B)) forall Be L.
6) A, (f'(B)) < 1( % (B)) forall B LY.

(7 f~1(B) € Toty,, Jor all B € Ty, .

®) f1(B) € Ty forallBE T, 1.

9 T, ( f‘l(B)))( > Tz, (B) for ZzllB cL'.
A0 T, (r~(B)) > T (B) forall Be L.

Proof (1) = (3)

Hry (f(A))(f(x) =

5) = (1), (7) = (9) and (9) = (11) are similarly proved as (3) = (5), (5) = (7) and (7) =
(9), respectively, in Theorem 3.3.

(7) = (3) Put #x(A) = N{B; | A <B;,B; € T%X}. Since A < g, (A) = Iz, (Hr (A)),
then 7% (A) < &, (A).

For A < Bi,B; € Ty, since Hgy (Bi) = Bi, #ry (\Bi) < \ Hgy(Bi) = \Bi. Hence

ity (A) < Sy (H5(A)) = Ay (\Bi) = [\ Bi = Hx (A)

Thus 7% (A) = &, (A).
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Ky (F(A) = MBI f(4) <B, BE T, }
> NBIA<FUB), /71(B) € T, }
> MU B) A< (B), £ (B) € T, }
> F(MF B A< (B), £ (B) € T, })
> f(Hiy (A).

(9) = (1) Since a < (a — b) — b, we have
Rx(x,y) < Aserx((Rx(x,y) = (A(x) = A(y)) = (A(x) = A(y)))
< Maerx (Asi (Rx (s,1) = (A(s) = A(1))) = (A(x) = A(y)))
= Merx (Tog, (A) = (A(x) = A(y))).

Since Az, (Rx)(y) = V,ex (Rx(z) ®R(z,y)) = R(x,y) where R(y) = R(x,y) forall x,y € X,

T, (Re) = \ (Hiy (R (¥) = Re(y)) = \ (Re(y) = Re(y) = T
yeyY yey

Rx(x,y) < Aserx(Tog, (A) = (A(x) = A(y)))
< Mo (T, (R) = (Re(x) = R.(3)))
= Neex (Re(x) = Re(y)) < Tu(x) = Ru(y) = Rx (x, ).
Hence Rx (x,y) < Auerx (T, (A) — (A(x) — A(y))). Thus,

Ry(f(x),f(2)) = Aperr (T, (B) = (B(f(x)) = B(f(2))))
> Nperr (Tt (F1(B)) = (f1(B)(x) = f1(B)(2)))
> Merx (T, (A) = (A(x) = A(2))) = Rx (x,2).

Other cases are similarly proved.

Theorem 3.6. For B LY, we define
Ry(x,y) = B(x) = B(y)

Rx(a,b) = f~(B)(a) = £~ (B)(b).
Then the following properties hold.

(1) Rx and Ry are fuzzy preordered sets such that Rx (x,y) = Ry (f(x), f(y)) for all x,y € X.

(2) &y (C) = Vyey (C(y) © (B(y) — B)) is an upper approximation operator on Y.
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(3) #y (A) = V1ex (A(x) © (f1(B)(x) — £~ 1(B))) is an upper approximation operator on

X.
“4)
Tty = {Vyer (CO) @ (B(x) - B)) | C e LY}
= {(Sa, (C) | Ce 1Y)
—{CeL¥ |C= A (C))
&)

Tota, = {Vaex(AX) © (f ' (B)(x) = f~1(B))) |A € LX}
= { e (A) |A € LX)
—{AeLX | A= iy (A))
(6) Ry = Re,, and Ry =R, .
()
T, (C) = Acyer ((B(x) = B(y)) = (C(x) = C(y)))
Tz (D) = Aryex (7' (B)(x) = f~1(B)(y)) = (D(x) = D()))

Proof. (1) Ry(f(x), f(y)) = B(f(x)) = B(f(y)) = f~'(B)(x) = f~'(B)(y) = Rx (x,y). for all
x,yeX.

(2) and (3) are easily proved as Example 2.5.

(4) and (5). Since A, (C) = Vyey (C() @ (B(y) = B)) and Ay (A) =V ey (A(x) © (' (B) (x) —
f~Y(B))), by Theorem 3.1(2), the results hold.

(6)

Rey, (63) = Mety (A(x) = A(y))
= Mery, (Veex(A(2) © (B(2) = B(x))) = Veex(4(2) © (B(z) — B(y)))
> Mery, (AZ) O (B(z) = B(x))) = (A(2) © (B(z) = B(y)))
> Mery, ((B(z) = B(x)) = (B(z) = B(y)))
> B(x) — B(y).
Since B(x) ® (B(x) — B) < B and B < J#, (B), then B = 3, (B)iie. B € T . So,
Rey, (4.3) < B(x) = B(y). Thus, Re . (x.y) = B(x) > B().
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(7)
T, (C) = Nyex (Hay (C)(y) = C(y))
= NAyex (Vaex (C(x) © (B(x) = B(y)) — C(y))
= Acyex (B(x) = B(y)) = (C(x) = C(y))-

Example 3.7. Let (L = [0,1],®,—,*) be a complete residuated lattice with a strong negation
defined by

xOy=(x+y—1)V0, x—=y=(1-x+y)Al,x"=1-x

Let X = {a,b,c,d} and Y = {x,y,z} be a set. Define amap f: X — Y as

fla)=f()=x, flc)=y fld)=z.
(1) We define fuzzy preorders Ry and Ry as follows

1 08 0.7 0.5
05 1 06 0.7

Ry = Ry=1 08 1 07
04 08 1 0.6

0.7 0.8 09 1

1 0.8 0.7

0.8 0.9 1

By Theorem 3.1(3), we obtain 7z, (A)(y) = V,ex(A(x) ©Rx(x,y)). For B=(0.3,0.7,0.4)",
&, (B) = (0.5,0.7,0.4)". Then B ¢ Toth, /Ry (B) € Tog,. Since Rx(a,b) < Ry(f(a),f(D)),
by Theorem 3.5(7) , f~' (&, (B)) = (0.5,0.5,0.7,0.4)" € Ty, .

i (f71(B)) =(0.3,0.5,0.7,0.4)" < £~ 1(%,(B)) = (0.5,0.5,0.7,0.4)".

Ty(B) = Ayer (kR (B)(y) = B(y)) =0.8
Tx(f'(B)) = Acex(Hiy(f~'(B))(x) = f~(B)(x)) = 0.8
%;1 (B)=1(0.5,0.7,0.6)". Then B ¢ T ,%;1 (B) e T, - Since Rx (a,b) <Ry (f(a), f(D)),
by Theorem 3.5(8) , £~ (#4,.1(B)) = (05.0.5.0.7,0.6) € rj%xl .

i (f(B) = (0.4,03,0.7,0.4)" < f ! (H41(B)) = (05,0.5,0.7,0.6)".

TB) = Ner(H (BO) — BK) =08
T (B = A (g (7 (B)) = £ (B) () = 09.
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(2) For B = (0.3,0.7,0.4)" and f~!(B) = (0.3,0.3,0.7,0.4)", Ry(x,y) = B(x) — B(y) and
Ry(x,y) = f~(B)(x) = £~ (B)(y) as follows:

1 1 1 1
1 1 1
1 1 1 1
Rx = Ry=1| 06 1 0.7
06 06 1 07
09 1 1
09 09 1 1

T, =1\ (CO) O (B) = B)) | C e L'} = {4, (C) | Ce L}
yeyY

For A = (0.3,0.5,0.7,0.4)" and f(A) = (0.5,0.7,0.4)",
f(Hiry(A)) = (0.5,0.7,0.5)" = H, (f(A)).
For C = (0.8,0.2,0.6)" and f~'(C) = (0.8,0.8,0.2,0.6)’,
M (f(C)) = (0.8,0.8,0.8,0.8)" = £~ (H#, (C))
%’;e;l(f’I(C)) =(0.8,0.8,0.4,0.7) = f*l(,%;;l(C)).
Ty(C) = Ayer (& (C)(y) = C(y)) =04
Tx(f71(C)) = Acex(H (f1(C))(x) = f~1(C)(x)) = 04.

Ty'(0) = Aer (1 (O)3) = C(y) =08
Ty (/7€) = Awex (H 1 (f 1)) (x) = f71(C) () = 0.8.
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