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Abstract: In this paper, we review the dimension of the Lie symmetry of linear and nonlinear second order ordinary 

differential equations using the increasing of order approach to the well known Abel equation of first and second 

kinds. We report that the Lie point symmetry of the realized second order equations from the Abel equation using 

increasing of order is at least two and at most eight. 
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1. Introduction 

It is well known in the literature (Olver [1], [2]) that Lie point symmetry is a formidable tool for 

solving differential equations. Application of symmetry approach stimulates new research into 

development of new methods for constructing solutions of ordinary differential equations (ODEs) 

in the closed form. Symmetries of the first order ODEs are infinites so the direct application of 

Lie method is complicated in the general case. Indirect application of Lie method is to obtain a 

second order ODE which is related to the respective first order ODE by a change of variable; this 

induced equation of higher order admits nontrivial Lie symmetry (that generates nonlocal 

Available online at http://scik.org

J. Math. Comput. Sci. 4 (2014), No. 4, 689-697

ISSN: 1927-5307



690                             ARUNAYE FESTUS IRIMISOSE 

symmetry for the original equation). Abraham-Shrauner [3],[4],[5],[6] introduced this ad-hoc 

method popularly known as reduction or increasing of order. These further produced the concept 

of hidden symmetries in the form of loss or gain of point symmetries and later unveil the best 

choice of Lie symmetry for reducing or increasing of order of differential equations. Starting 

from some integrable Abel equation, Boyko [7],[8],[9] obtained new integrable cases of the Abel 

equation. It has been established however that the existence of solution of differential equations 

stem from the existence of infinite nonlocal symmetries of the differential equation even though 

there is no known algorithm for tracking them (Leach and Andropoulos [10]). The paper reviews 

the Lie point symmetry of the Abel equation, Lie point symmetry of linear and nonlinear second 

order differential equations in section 2. The main results are in section 3 where we utilized the 

point transformation to obtain Lie point symmetries of some nonlinear equations and conclusion. 

 

2. Preliminaries 

2.1  Abel equations 

The Abel equations of the first and second kind are respectively 
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while the change of variable )(xyx  reduces (2.3) and (2.4) to (2.1) and (2.2) respectively. 

Boyko [7], [9], [8] shown the normal Lie point symmetry tX 1 which corresponds to 

invariance of (2.3) and 2.4) with respect to translation variable t  which induced the Abel 

equations (2.1) and (2.2). They further inferred that when (2.3) and (2.4) admit two-dimensional 

Lie algebras, then (2.3) and (2.4) are integrable in the framework of Lie method; and in this way 

the exact solution of (2.1) and (2.2) were obtained. The analysis of (2.4) was on the 

understanding that (2.1) – (2.4) are interconnected and their work was based on the assumption 

that (2.4) admits a two-dimensional Lie algebra  

            tX 1  and xt xtxtX  ),(),(1  .                             (2.5)                                                                        

 From which the following realizations of two-dimensional Lie algebras were obtained: 

         tX 1 , txX  )(2  , .)( constx  ; 

         tX 1 , xt xxX  )()(2  , .)( constx   or 0)( x , 0)( x ; 

         tX 1 , txtX  ))((2  , .)( constx   or  0)( x ;                 (2.6) 

         tX 1 , xt xxtX  )())((2   ,  .)( constx   or  , 0)( x , 0)( x ; 

         tX 1 , t

t xeX  )(2   ,   0)( x  ; 

         tX 1 ,  ))()((2 xt

t xxeX   ,   0)( x .   

From (2.6), (2.4) admits the following canonical realizations respectively (Boyko [7], [9]): 

                                 tX 1 , txX 2 ; 

                                 tX 1 , xX 2 ; 

                                 tX 1 , ttX 2 ;                         (2.7) 

                                 tX 1 , xt xtX 2 ;  

                                 tX 1 , t

teX 2  ; 
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                                 tX 1 ,  )(2 xt

teX  .   

In accordance with (2.7) the following integrable cases for (2.4) were obtained: 

i)   3)( xxx   , 

ii)    xaxbxcxdexx   234)( , 

iii)   2)( xxx   , 

iv)    xaxbxcxdexxx   234)( , 

v)  xxxxxxxxxx  )())()(1()())(( 23   ,                        (2.8) 

vi)    1.  0)(0 xa : 

            ))1(()3)12(()3( 223 xxxxxxx aebedexxdecbexdecxdex    ,  

          2.  0)(0 xa : 

            xxxxxxxx  )())(1())(( 23   , 

where )(x  and )(x are arbitrary smooth functions, while edcba ,,,,  are constants. 

2.2 Infinitesimal Lie symmetry generator of second order differential equations 

In this section we summarize the Lie symmetry generators of Linear and nonlinear second order 

differential equations as in the literature below. The general second order equation is  

              ),,( xxtfx N
  .                                        (2.9) 

With the infinitesimal Lie point transformations 

                  ),( xttt  , ),( xtxx  ; . 10   . 

The Lie point symmetry generator is 

                       xt xtxtV  ),(),(   . 

And the second prolongation of the symmetry generator is 

             xxxtV   ]2[ ,                          (2.10) 
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where                  2)( xx xtxt
   , 

and                       

xxxxx xtxxxtxxxxxtxxx
 )32()2()2( 32   . 

The invariant action of (2.10) on (2.9)  

              0)),,((]2[  xxtfxV N
  ,                                     (2.11) 

  generates the over determined partial differential equation, 

                NxNtNxtxttxtxxttxttt fffxxxx   )3)2(()2()2( 32    

               0))(( 2  xNxtxt fxx    .                             (2.12)  

Note that Lie [11] had shown that (2.9) can be reduced to free fall particle equation ( 0u ) if it 

is at most cubic in the first derivative via point change of variables and that certain auxiliary 

system is compatible with a compatibility condition, see Boyko [7],[9] for details.  

For the purpose of nonlinear mechanics, it is general enough to assume a positive power series 

in x . 

       i.e       



N

k

k

k Nxxtx
0

,...2,1,0,),(                                   (2.13) 

The invariant property of (2.10) on (2.13) when 3N , produced over determined partial 

differential equation which separates into following PDEs:  

              xtxtxxx ,3,332 )2(  , 

            txtxxxtxx  3,2,221 32  ,                      (2.14) 

           txttxttxt  2,1,110 232  , 

            0)2( 1,0,00  txtxttt  , 

 where i  may be constant and eventually zero.  

The general solution of (2.14) can be formally written as a superposition of linearly independent 

basis solutions ),( xtk and ),( xtk  for 8,...,2,1  rk ; where xktkk xtxtV  ),(),(   is the 
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infinitesimal generator of the Lie symmetry group, and c

c

ijji VfVV ],[  is the algebraic structure 

(Aguirre and Krause [12],[13]). 

 

3. Main results 

3.1  Equations and their symmetries 

In this section we x-ray the literature and summarized the results pertaining to the admittance of 

Lie point symmetry of linear and nonlinear second order differential equations below. 

i.  When 3210 ,,,   are all zero constant, (2.13) becomes the well known equation of 

the free fall particle which admits the well known eight Lie point symmetries (Aguirre 

and Krause [13]). 

ii. The equation 3xxxx     where  , are constants admits only two Lie point 

symmetries. However if  92  the equation admits eight Lie point symmetries.  i.e 

33 xxxx    admits eight Lie symmetries (Sarlet, Mahomed and Leach [14]). 

iii. The equation )(xfx   , i.e cxbxaxgx   23 ; 0g , cba ,,  are constants is 

linearizable and so admits eight Lie symmetries. Also the equations 22  xx  , and  

22  xx   admit eight Lie point symmetries (Sarlet, Mahomed and Leach [14]). 

iv. The equation 3)( xxtx    admits eight Lie symmetries (Stephani [15]). 

v. The equation xxxx  )()( 10   , in the case of the Van der Pol oscillator 

0)1( 22  xxxx    admits only the point symmetry of time translation invariance. 

Remark: we observed that when )(t  or )(x  , (2.13) admits less than eight linearly 

independent Lie symmetries. 

3.2 Symmetries of some equations 
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In the following, we compute the symmetries of some linearizable equations by the method of 

change of variables.  

The change of variables ),(),( texTX  , )ln,(),( TXtx   transformed the equation xx    to 

a free fall particle equation, so that it admits the following eight Lie point symmetries: 

       xV 1 , xxV 2 , x

teV  

3  , t

teV 4 , tV 5 , t

txeV  

6 , 

       )(7 tx

t xeV   , )(8 txxxV                                     (3.1) 

The equation 2xAx    where A is a constant is linearizable with the change of variables   

),(),( txeTX t , ),(),( TXetx T and we obtain the following eight Lie point symmetries: 

               x

teV 1 , xxV 2 , x

tteV 3  , txxV 4 , tx ttxV 5 ,  

               t

t

x

t xeexV  2

6 , 

               ))((7 tx ttxxtV  , ))((8 tx

t ttxxxeV   .                 (3.2) 

The equation 3xx    is linearizable with change of variables ),(),( 21

2

2
1 ctctxTX  , 

),(),( TXtx    and we obtain the following eight Lie point symmetries: 

         tV 1 , xxV 2 , txV 3  , xV 4 , xctctV  )( 21

2

2
1

5 ,  

                tctctV  )( 21

2

2
1

6 , 

               ))(( 21

2

2
1

7 xt xctctxV  ,   

               xt ctctxctctV  )()( 21

2

2
12

21

2

2
1

8 ;                    (3.3) 

where 1c , 2c are constants. 

3.3  Conclusion 

We notice that the integrable cases of (2.4) fell within the purview of the linearizable nonlinear 

differential equations except the well known Van der Pol oscillator equation. The equations ii) 

and iv) in (2.8) admit eight Lie point symmetries while equations i) and iii) in (2.8) admit Lie 



696                             ARUNAYE FESTUS IRIMISOSE 

point symmetries of dimensions r , .82  r   In general (2.4) admits Lie point symmetries of 

dimension r ,  82  r  depending on the specific form of )(xak ; 4,...,1,0k ; which are not 

identically zero simultaneously. From the theory of increasing of order approach for solving for 

Lie symmetry of differential equations, it is well known that change of variables to the original 

variables produced symmetries of the original equation which are mostly nonlocal type. 

Following from the fact that the translation invariant t is preserved up to the point symmetry of 

the Abel equations (1.1) and (1.2) it is noted that the dimension of the Lie point symmetries of 

the Abel equation of first and second kind is more than one while the nonlocal symmetries are 

infinitely many except the Van der Pol oscillator equation which does not have active point 

transformation (which transforms one solution into another by means of continuous adjustment 

of a symmetry group parameter). 
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