Available online at http://scik.org
J. Math. Comput. Sci. 4 (2014), No. 4, 698-704
ISSN: 1927-5307

A NOTE ON DISTRIBUTIONAL LAPLACE-HARDY
INTEGRAL TRANSFORMATIONS

ANURUDRA Y. SHETE, BAPURAO C. DHAGE*, SIDHESHWAR S. BELLALE

Kasubai, Gurukul Colony, Ahmedpur-413 515, Dist: Latur, Maharashtra, India

Copyright © 2014 Shete, Dhage and Bellale. This is an open access article distributed under the Creative Commons Attribution License,

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. In this note, certain testing function spaces are constructed and classical Laplace-Hardy integral trans-
formation is extended to generalized functions. Our work corrects the errors contained in a paper of Ahirrao and

More (1987).
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1. Introduction

Given a continuous function ¢ : R — IR, the classical Laplace transform of a conventional

function ¢ on a (—oo, ) is defined by

F(s) = /w (1) dt, (1.1)

—o0

where s is given complex number. Similarly the classical Hardy transformation of a conven-

tional function ¢ on (0, o) is defined as

F(y) = /0 " Fy(ty)rdr /O " (1) (x) dx. (1.2)
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The details of these transformations and the functions involved in them may be found in
Watson [5] and Zemannian [6]. Ahirao and More [1] extended the classical Laplace-Hardy

transformation viz.,
F(s,y) = / / e *'Cy(xy)tx¢ (t,x) dxdt (1.3)
—J0

of a conventional function ¢ on Q,
Q={(1,x) —0 <t <o0,0<x< oo}

to generalized functions. But the paper of Ahirrao and More[1] contains several errors [3] and
under the given conditions the conventional Laplace-Hardy transformation does not exist as
a against the claim made by the authors. Consequently almost all the result of the paper of
Ahirrao and More [1] are not correct and need appropriate changes and corrections. This led to
give a set of sufficient conditions for the existence of classical and generalized transformation
of the function in the appropriate function spaces. We follow the definitions and notations of

Ahirrao and More [1] and the details may be found in the literature cited at the end of the paper.
2. Testing functions spaces

Let R denote the set of real numbers, R the set of nonnegative real numbers, C the set of
complex numbers. Denote by N the set of natural numbers Let a,b,c,d,t € R and s € C and let
K4 5(t,x) be a function defined by

(
at

e x®, 0<e,0<x<1,
Ka,b(tax) - (21>

xO2 —co <t < 0,x> 1,

\

where « is fixed positive real number satisfying |v| < o < % Now for each number K =
(k1,k2) € N x N. We define a space LG (Q) consisting of all infinitely differentiable functions

¢(t,x) defined over the domain Q given by

Q={(1,x)] —o0 <1 <00,0<x<oo} (2.2)
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satisfying
Yapi(D(6.x) = sup |Kyp(t,x)Df A2 (1,0)| < oo, (23)
—o<t<a
O<x<a
where
D, = J D, = J
oY ox
and A, is the Bessel’s differential operation defined by
1 v?
2

It can be proved by using the arguments similar to Ahirrao and More[1] that LGy (Q) is a
countably multi normed, Frechet and testing function space. Let LH 4 () denotes the space of

all infinitely differentiable functions ¢ over the domain Q such that
(P(t7x) € LHOC(Q)

if and only if [m/(¢,x)] "1 (t,x) € LGy (Q), where m'(t,x) = tx. The topology of LG(Q) is

defined by the collection of the semi-norms {B};_, given by

B 0(1.0) = e (20 ) 25)

for all ¢(¢,x) € LH (L) and for all numbers k = (kj,k») € N x N. The members of the space
LH o (Q) are called the generalized functions. For f € LH. (Q), we define m'f € LG4(Q) by
the relation
<m/f,¢>:<f,m'¢>,¢ € LGy(Q). (2.6)
We note that if
f(t,x) € LGL(Q)m' (t,x)¢(t,x) € LGL(Q).

We need the following result in the sequel.

Theorem 2.1. If |v| < a < % and a < R(s) < b, then for fixed s € C and y € R, y > 0,
e 1Cy(xy) € LGy (Q).

Proof. It can be easily seen that

sup [y*Cy(y)] < oo, (2.7)
0<y<eo

where |vV| < a < % (see [4], page 251).
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Now, we consider

Yapile ev(xy)) = sup Kavb(t,x)Dfl5f2e*Sth(xy)‘
—ooLf o0
0<x<oo

= sup [ (1) (— DM (<1252 0 ()|
[y

= swp [kp(t )90 C ()
—co<f <00
0<x<oo

= sup i (12)()1127 e (19)2Cy ()
—oo< <0
et

< sup e () e (1) ACy ()
[y

+  sup ‘ebtxa+2(s>k1y2k2—ae—st (xy)an (xy)‘
0ok

—  sup { ‘ pla=st)t y2k2—a‘

—ooLf o0
0<x<eo

+ sup {‘e(bfsz)’xzsklkazf(x
—ooLf <0
0<x<oo

(xy)*Cy (xy) ‘ }

(x9)*Cy (xy) ‘ }
<oo  [ra<R(s) < bl

Therefore, e*'Cy (xy) € LG(Q) and the proof of the theorem is complete.
3. Generalized Laplace-Hardy transformation

The conventional or classical Laplace-Hardy integral transformation F is a mapping % :
LHy — LA o(Q) defined by
F(5,y) =LA (9(1,%))
:/ e_”tdt/o Cy(xy)x¢(t,x)dx (3.1)

= / e 'Cy(xy)tx¢(t,x)dxdt.

Theorem 3.1. Let ¢ € LY (Q), then the Laplace-Hardy transformation (3.1) exists for a +
R(s) >0 and b+R(s) <0and |v| < a < 3.
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Proof. It can be readily seen that for an appropriate M > 0,
1
[Cv(xy)| < M(xy)~2 (3-2)
for x > 0,y > 0 (see [5], page 251). Therefore, one has

‘F(s,y)‘ = ‘/:o /Ome_s’Cv(xy)txq)(t,x) dxdt‘

§/ / ‘e_StCV(xy)tx¢(t,x)’dxdt
—J0

M {o'e} o0
< -

e*“tx%¢)(t,x) ’ dxdt

//]-w (1:3) o

(3.3)
s oc—l—l ’dx‘h
- Wé’,b,ow(r,x)) /0 /0 \x-“+%re—<a+s>f
oo [ [ ferrreect
Now consider the first integral in (3.3):
/Ooo/ol ‘xfowr%ef(aﬂ)t_t
= {/Ow ’e(a“)f.t‘dt} X [/01 ‘xfo”r% dx]
_ U e (a+R(s) t” " 1
—1(a+9t(s)).;<a+9t(s))t (a+R(s))? (3-a) (3.4)
= (%—a) [(a%—i)i(s))z] [ “a+R(s) >0

2
(3 —a))(a+R(s))?




A NOTE ON DISTRIBUTIONAL LAPLACE-HARDY INTEGRAL TRANSFORMATIONS 703

Again, for the second integral in (3.3), we have

/o /°° ‘x_a_gze(—bm(s))zj
—o0 J ]
0 ) 3
= [/ dt] X [/ ‘x_a_f dx}
oo 1
1

_ [ ! _ e(b-l—Re(s))t} ‘
(b+R(s))-eb+R(s)r  (b+R(s))? _

dxdt

e—(b+Re(s))z ¢

[}

y _x*a*2+%_a_2+% i
I —a—2+% ) 35
= {_—1.e(b+9i(s))t_ 1 e(b+9i(s))t 0
(b+Re(s)) (b+NR(s))? e
ot I b
|-l
(+3) 11
2 1
= . b+R(s) >0
RO @ty TR0
< oo,

Now from inequalities (3.4) and (3.5) we get |F(s,y)| < o for fixed s € C and y > 0. This
shows that the Laplace-Hardy transformation exists for a + R(s) > 0 and b+ R(s) < 0. This

completes the proof.

Now for f(t,x) € L#",(Q) we define its distributional Laplace-Hardy transformation by

the relation
F(s,y) = LA f(t,2)}
(3.6)
= (m/(1,2)f(1,2), ¢ Cy (),

where,s€ Candy e Ry, |[v|<a < %,a<9{(s) <band a+R(s) <0; b+ R(s) > 0.

By the Theorem 2.1, e *'Cy(xy) € L% 4(Q) and m/(1,x)f(t,x) € L4} (Q), and therefore
the relation (3.6) is meaningful.

All other properties of the distributional Laplace-Hardy transformation such as analyti-
cal,representation and boundedness theorems etc. can be proved by closely observing the proofs

giving in Ahirrao and More [1] with appropriate modifications. We omit the details.
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