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Abstract. The purpose of this paper is to investigate some relevant properties of semireal modules. By introducing

the notion of preorderings on modules over commutative rings, we discuss the interplay between semireality,

preorderings and orderings on modules. In particular, we obtain that an R−module M is semireal if and only if M

possesses a preordering. We also give some necessary and sufficient conditions for a preordering to be an ordering

on modules.

Keywords: semireal module; ordering; preordering.

2010 AMS Subject Classification: 13J30,16W80.

1. Introduction

In Artin’s solution to the Hilbert’s 17th problem, the notion of orderings on fields played an

important role. The notion of orderings on fields was first studied by Artin and Schreier [1,2].

Later, the notion of orderings was generalized to the category of commutative rings by Coste

and Roy [4]; see also [5]. Recently, it was further generalized to the category of modules by

Zeng[9]. It’s well known that the notion of preorderings plays an important role in the study

of real algebra in the categories of fields and commutative rings. Naturally, such a question
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arises: can we introduce preorderings on modules over commutative rings? This paper is aimed

to answer this question.

Throughout this paper,”ring” means ”commutative ring with identity 1”, and all modules

are unitary. For two subsets A and B of a set S, denote by A \B the complement of B in A,

i.e. A \B = {x ∈ S|x ∈ A but x /∈ B}. Let M be an R−module. For nonempty subsets S,T

of R, set S + T = {s+ t|s ∈ S and t ∈ T}. In particular, if S = {s}, we write s+ T instead

of S + T . For nonempty subsets A,B of M, set (A : B) = {r ∈ R|rb ∈ A for all b ∈ B} and

A+B = {a+b|a ∈ A and b ∈ B}. In particular, if B = {b}, we write (A : b) instead of (A : B)

and A+ b(or b+A) instead of A+B. For a nonempty subset S of R and a nonempty subset A

of M, set SA = {sa|s ∈ S,a ∈ A}. In particular, if S = {s}, we write sA instead of SA. A proper

submodule P of M is called prime if ax ∈P with a ∈ R and x ∈M implies either a ∈ (P : M)

or x ∈P . For properties of modules and prime submodules, we refer the reader to [6,7] and the

references therein.

Conventionally, we use N, Z, and R for the set of all positive integers, the set of integers and

the field of real numbers, respectively.

2. Orderings

Let R be a ring. Then we may obtain the two multiplicative subsets of R as follows:

TR := {
n

∑
i=1

a2
i | n ∈ N, and ai ∈ R for i = 1, · · · ,n};

1+TR := {1+ t|t ∈ TR}.

Definition 2.1. [9] Let M be an R−module. M is said to be semireal, if there exists an element

e in M such that (1+ t)e 6= 0 for every t ∈ TR. In this case, such an element e is said to be a

semireal element.

M is said to be real, if (∑n
i=1 a2

i )x = 0, where x∈M and ai ∈ R for i = 1, · · · ,n, implies aix = 0

for i = 1, · · · ,n.
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Definition 2.2. [9] A subset Q of M is called an ordering of M if the following conditions are

satisfied: (1)Q+Q⊆Q; (2)Q∪−Q = M; (3)Q∩−Q is a prime submodule of M; and (4)(Q : Q)

is an ordering of ring R.

Lemma 2.3. Let M be an R−module and Q an ordering of M. If x ∈ R, then x /∈ (Q : Q) if and

only if Q∩−Q = {q ∈ Q | xq ∈ Q}.

Proof. ”The sufficiency” Suppose that Q∩−Q = {q ∈ Q | xq ∈ Q}. If x ∈ (Q : Q), then

Q ⊆ {q ∈ Q | xq ∈ Q} = Q∩−Q. Thus, M = Q∪−Q ⊆ Q∩−Q, and so M = Q∩−Q. This

contradicts the fact that Q∩−Q is a proper submodule of M(since Q∩−Q is a prime submodule

of M). Hence, x /∈ (Q : Q).

”The necessity” Suppose that x /∈ (Q : Q). Set Q1 = {q ∈ Q | xq ∈ Q}. Since (Q : Q) is an

ordering of R,x ∈ −(Q : Q). Thus, xQ1 ⊆ xQ⊆−Q. On the other hand, by the construction of

Q1,xQ1 ⊆ Q. Thus, xQ1 ⊆ Q∩−Q. Observe that x /∈ ((Q∩−Q) : M)(since x /∈ (Q : Q)). By

the primity of Q∩−Q, we have Q1 ⊆Q∩−Q. Conversely, since x(Q∩−Q)⊆ x(−Q)⊆Q, we

have Q∩−Q⊆ Q1. Therefore, Q∩−Q = Q1 = {q ∈ Q | xq ∈ Q}. This completes the proof.

Theorem 2.4. Let M be an R−module and Q a subset of M. If Q satisfies: Q + Q ⊆ Q,

Q∪−Q = M, and (Q : Q) is an ordering of R, then Q∩−Q is a prime submodule of M if and

only if for any x /∈ (Q : Q), Q∩−Q = {q ∈ Q | xq ∈ Q} .

Proof. The necessity follows immediately from Lemma 2.3. It’s enough to prove the sufficien-

cy. Suppose that Q∩−Q = {q ∈ Q | xq ∈ Q} for any x /∈ (Q : Q). We shall first show that

the subset Q∩−Q is a submodule of M. Obviously, Q∩−Q is a subgroup of M. Suppose

that there is an x ∈ R such that x(Q∩−Q) * Q∩−Q. Then x(Q∩−Q) * Q (if otherwise,

x(Q∩−Q) = x((Q∩−Q)∩−(Q∩−Q)) = x(Q∩−Q)∩−x(Q∩−Q) ⊆ Q∩−Q, a contradic-

tion). Thus xQ * Q, and so x /∈ (Q : Q). Since (Q : Q) is an ordering of R, x ∈ −(Q : Q). Thus,

x(Q∩−Q) ⊆ x(−Q) ⊆ Q, a contradiction. It follows that x(Q∩−Q) ⊆ (Q∩−Q) for every

x ∈ R. Therefore, Q∩−Q is a submodule of M.

Next, we shall show the submodule Q∩−Q is a prime submodule. Since (Q : Q) is an

ordering of R, −1 /∈ (Q : Q). Thus, −Q * Q, and so Q∩−Q $ Q∪−Q = M. Hence, Q∩−Q

is a proper submodule of M.
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Let xq ∈ Q∩−Q, where x ∈ R and q ∈ M. Since M = Q∪−Q, we have either q ∈ Q or

q ∈ −Q. Without loss of generality, we may assume q ∈ Q. Assume x /∈ (Q∩−Q : M) =

(Q∩−Q : Q∪−Q). Then, there are two cases to consider:

Case 1. x /∈ (Q : Q). In this case, by supposition, Q∩−Q = {q ∈ Q | xq ∈ Q}. Thus,

q ∈ {q ∈ Q | xq ∈ Q}= Q∩−Q, Since xq ∈ Q∩−Q⊆ Q.

Case 2. x ∈ (Q : Q). In this case, we have x /∈ (Q : −Q), since x /∈ (Q∩−Q : M) and

(Q∩−Q : M) = (Q∩−Q : Q∪−Q) = (Q : Q)∩ (Q : −Q). Thus, −x /∈ (Q : Q). Hence, by

supposition, Q∩−Q = {q ∈ Q | −xq ∈ Q}. Since −xq ∈ −(Q∩−Q) ⊆ Q, we have q ∈ {q ∈

Q | −xq ∈ Q}= Q∩−Q.

Therefore, Q∩−Q is a prime submodule of M. This completes the proof.

By Theorem 2.4, we may obtain an equivalent definition of orderings on modules over com-

mutative rings as follows:

Definition 2.5. Let M be an R−module. A subset Q of M is called an ordering of M if the

following conditions are satisfied: (1)Q+Q ⊆ Q; (2)Q∪−Q = M; (3)for any x /∈ (Q : Q),

Q∩−Q = {q ∈ Q | xq ∈ Q} ; and (4)(Q : Q) is an ordering of ring R.

Proposition 2.6. Let A be a submodule of an R−module M and Q an ordering of M. If A *

Q∩−Q, then Q∩A is an ordering of A.

Proof. Obviously, Q∩A satisfies the conditions (1) and (2) in Definition 2.5. For the check of

the condition (4), it suffices to prove (Q : Q)= (Q∩A : Q∩A). Clearly, (Q : Q)⊆ (Q∩A : Q∩A).

Conversely, suppose that there is x∈ (Q∩A : Q∩A), but x /∈ (Q : Q). Then x(Q∩A)⊆Q∩A⊆Q.

Thus Q∩A ⊆ {q ∈ Q | xq ∈ Q}. By Lemma 2.3, Q∩A ⊆ Q∩−Q. Notice that −Q∩A =

−(Q∩Q) ⊆ Q∩−Q. Hence, A = M ∩A = (Q∪−Q)∩A = (Q∩A)∩ (−Q∩A) ⊆ Q∩−Q,

this contradicts the assumption A * Q∩−Q. Thereby, we have (Q : Q) = (Q∩A : Q∩A).

Now, we check Q∩ A satisfies condition (3). If x /∈ (Q∩−Q : Q∩−Q) = (Q : Q). Then

(Q∩ A)∩−(Q∩ A) = (Q
⋂
−Q)

⋂
A = {q ∈ Q|xq ∈ Q}

⋂
A = {q ∈ Q

⋂
A|xq ∈ Q

⋂
A}. By

definition 2.5, the proof is completed.

3. Preorderings
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The notion of preorderings play an important role in the study of real rings . In the category

of commutative rings, preordering was defined as follows: Let R be a ring. A subset T of R is

called a preordering if T +T ⊆ T , T ·T ⊆ T , R2 ⊆ T and −1 /∈ T .

In this section, we introduce the notion of preorderings in the category of modules and then

establish some results about preorderings and orderings on modules.

Definition 3.1. Let M be an R−module. A subset Q of M is called a preordering of M if the

following conditions are satisfied: (1) Q+Q⊆ Q; (2) (Q : Q) is a preordering of ring R.

Remarks 1. (1) If Q is a preordering of an R−module M, so is −Q.

(2) For a preordering Q of a ring R, Q is obviously a preordering of R as an R−module.

However, as an R−module , a preordering Q of R need not be a preordering of the ring R.

Even neither Q nor −Q would be. For example, set Q := 2N∪{0}. We may check that Q is a

preordering of Z as a Z-module. Note that 12 /∈ −Q∪Q. Therefore, neither Q nor −Q will be

a preordering of Z.

It’s easy to check the following Lemma:

Lemma 3.2. Let M be an R-module and Q a subset of M. Then, Q is a preordering if and

only if Q satisfies the following conditions: (1)Q+Q ⊆ Q; (2) for all x ∈ R, x2 ∈ (Q : Q); and

(3)−1 /∈ (Q : Q).

Theorem 3.3. An R−module M is semireal if and only if M possesses a preordering.

Proof. ”The necessity” Suppose M is semireal. Then, for any t ∈ TR, there is an e ∈M such that

(1+ t)e 6= 0 . Set Q = {te | t ∈ TR}. We claim that Q is a preordering of M. By Lemma 3.2, it is

enough to check conditions (1)-(3) in Lemma 3.2. (1)For q1,q2 ∈ Q, there exist t1, t2 ∈ TR such

that qi = tie, i= 1,2. Thus, q1+q2 = t1e+t2e= (t1+t2)e∈Q. It follows that Q+Q⊆Q. (2)For

x ∈ R and q ∈Q where q = te, t ∈ TR, we have x2q = x2(te) = (x2t)e ∈Q. Hence, x2 ∈ (Q : Q);

(3)If −1 ∈ (Q : Q), then −e = −1 · e ∈ −1 ·Q ⊆ Q. Thus, −e = te for some t ∈ TR. Hence,

(1+ t)e = 0, a contradiction. It is follows that −1 /∈ (Q : Q).

”The sufficiency” Let Q be a preordering of M. Suppose M is not a semireal module. Then,

for any q ∈ Q, there exists a t = ∑
n
i=1 ai

2 ∈ TR, where n ∈ N,ai ∈ R, i = 1, · · · , n, such that

(1+ t)q = 0. Thus,−q = tq = (∑n
i=1 ai

2)q = ∑
n
i=1 ai

2q∈Q+ · · ·+Q⊆Q, this implies−Q⊆Q,
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and so −1 ∈ (Q : Q). This contradicts condition (3) in Lemma 3.2. Therefore, M is a semireal

module. This completes the proof.

Remark 2. Q = {te | t ∈ TR} is called the induced preordering by the semireal element e.

Clearly, it’s the minimal preordering (minimal with respect to set inclusion) containing e.

According to [9], there are modules which are semireal but not necessarily possess orderings.

This also means, by Theorem 3.3, that there are modules which possess preorderings but not

possess orderings . But when the considered module is finitely generated, we have

Proposition 3.4. Let M be a finitely generated R−module. Then the following conditions are

equivalent:

(1)M is semireal;

(2)M possesses a preordering;

(3)M possesses an ordering.

Proof. This follows immediately from Theorem 3.3 and Proposition 3.5 in [9].

Proposition 3.5. Let ϕ : M→M′ be an R−module homomorphism, and let Q′ be a preordering

of M′ with Q′ ⊆ ϕ(M), and denote Q = ϕ−1(Q′). Then Q is a preordering of M.

Proof. For q1, q2 ∈Q, we have q1+q2 ∈ϕ−1(ϕ(q1+q2)) =ϕ−1(ϕ(q1)+ϕ(q2))⊆ϕ−1(Q′) =

Q. Thus, Q + Q ⊆ Q. For any x ∈ R and q ∈ Q. Since ϕ(x2q) = ϕ(x)2ϕ(q) ∈ Q′, x2q ∈

ϕ−1(Q′)=Q, i.e. x2 ∈ (Q : Q). Since−1 /∈ (Q′ : Q′), there is a q′ ∈Q′, but−q′ /∈Q′. Then, there

is a q ∈ Q such that ϕ(q) = q′. Observe that ϕ(−q) = −q′ /∈ Q′. Hence, −q /∈ ϕ−1(Q′) = Q.

Thus, −1 /∈ (Q : Q). By Lemma 3.2, the proof is completed.

Proposition 3.6. Let M1
φ1−−→M

φ2−−→M2 be an exact sequence of R-module homomorphisms.

If Q is a preordering of M, then either φ
−1
1 (Q) is a preordering of M1 or φ2(Q) is a preordering

of M2.

Proof. Assume that φ
−1
1 (Q) is not a preordering of M1. Notice that φ

−1
1 (Q)+φ

−1
1 (Q)⊆ φ

−1
1 (Q)

and x2φ
−1
1 (Q)⊆ φ

−1
1 (Q) for any x ∈ R. Thus, by Lemma 3.2, −1 ∈ (φ−1

1 (Q) : φ
−1
1 (Q)). Now,

we may assert that φ2(Q) is a preordering of M2. Clearly, we have φ2(Q)+φ2(Q)⊆ φ2(Q) and

x2φ2(Q)⊆ φ2(Q) for any x ∈ R. Suppose −1 ∈ (φ2(Q) : φ2(Q)). Then, for any q ∈Q,−φ2(q) ∈



580 DONGMING HUANG

φ2(Q). Thus, there exists a q1 ∈ Q, such that −φ2(q) = φ2(q1), and so φ2(q+q1) = 0. Hence,

q+ q1 ∈ Kerφ2. By the exactness of the sequence, we have q+ q1 ∈ Imφ1. Thereby, there

exists m1 ∈ M1, such that φ1(m1) = q+ q1. Thus, m1 ∈ φ
−1
1 (q+ q1) ⊆ φ

−1
1 (Q) ⊆ −φ

−1
1 (Q),

since −1 ∈ (φ−1
1 (Q) : φ

−1
1 (Q)) we got above. Thus, φ1(−m1) ∈ Q, i.e. −(q+q1) ∈ Q. Hence,

q ∈ −q1−Q ⊆ −Q. This implies −1 ∈ (Q : Q), a contradiction. It follows that φ2(Q) is a

preordering of M2. This completes the proof.

Clearly, by definitions, an ordering is always being a preordering. However, the converse is

not necessary true. Then such a question naturally arises: Under what conditions that might be

true. In the sequel, we seek some sufficient and necessary conditions for a preordering to be an

ordering.

Lemma 3.7. [5] Let T be a preordering of ring R. Then, T is an ordering if and only if, for

x,y ∈ R, xy ∈ −T implies either x ∈ T or y ∈ T .

Lemma 3.8. Let M be an R−module and Q a subset of M. Then, (1) implies (2)

(1) For x ∈ R and m ∈M, xm ∈ −Q implies either x ∈ (Q : Q) or m ∈ Q;

(2) For x,y ∈ R, xy ∈ −(Q : Q) implies either x ∈ (Q : Q) or y ∈ (Q : Q) .

Proof. Suppose that (1) holds. If xy ∈ −(Q : Q) and x /∈ (Q : Q), then x(yQ) = (xy)Q ⊆ −Q.

By supposition, we have yQ⊆ Q, and so y ∈ (Q : Q). This completes the proof.

Theorem 3.9. Let M be an R−module and Q a preordering of M. Then, Q is an ordering if and

only if the following conditions are satisfied:

(1) For x ∈ R and m ∈M, xm ∈ −Q implies either x ∈ (Q : Q) or m ∈ Q ;

(2) For p,q ∈M, p+q ∈ Q∩−Q implies either p ∈ Q or q ∈ Q.

Proof. ”The necessity” (1)Suppose that xm ∈ −Q where x ∈ R and m ∈ M, but x /∈ (Q : Q)

and m /∈ Q. Then, −m ∈ Q and x(−m) ∈ Q. By Lemma 2.3, −m ∈ Q∩−Q. Thus, m ∈ Q, a

contradiction. (2)Assume p+q ∈ Q∩−Q. If p /∈ Q, then −p ∈ Q. Thus, q ∈ −p+Q∩−Q⊆

Q+Q⊆ Q. This implies p ∈ Q or q ∈ Q.

”The sufficiency” Since assumption (1) holds, by Lemma 3.8 and by Lemma 3.7, (Q : Q) is

an ordering of R. If Q∪−Q 6= M, let m ∈M \ (Q∪−Q). Since m+(−m) = 0 ∈ Q∩−Q and

assumption(2) holds, m∈Q or−m∈Q, a contradiction. Thus, Q∪−Q=M. For proving that Q
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is an ordering of M, by Definition 2.5, it’s now sufficient to show that Q∩−Q= {q∈Q | xq∈Q}

for any x /∈ (Q : Q). Assume x /∈ (Q : Q). Then x ∈ −(Q : Q), since (Q : Q) is an ordering of

R. Thus, x(Q∩−Q)⊆ x(−Q)⊆ Q. Hence, we have Q∩−Q⊆ {q ∈ Q | xq ∈ Q}. On the other

hand, for q ∈ {q ∈ Q | xq ∈ Q},x(−q) ∈ −Q. Thus, by assumption (1), either x ∈ (Q : Q) or

−q ∈ Q . Since x /∈ (Q : Q), we have q ∈ −Q. It follows that q ∈ Q∩−Q. Therefore, we have

Q∩−Q = {q ∈ Q | xq ∈ Q}. This completes the proof.

Remarks 3. (1) According to the proof above, condition (2) can be replaced by (2) Q∪−Q=M.

(2) Theorem 3.9 can be considered as a generalization of Lemma 3.7. In Lemma 3.7 , the

condition R = T ∪−T (in the proof of sufficiency, cf.[5]) can be deduced from other conditions.

However, in Theorem 3.9, condition (2) is indispensable. For example, let x be an indeterminant

element on R. Then, R[x] can naturally be an R−module. It’s easy to check that R+ is a

preordering of R−module R[x] and satisfies the condition (1), but R+ is not an ordering of

R[x]. This implies condition (2) is indispensable.

Corollary 3.10. Let M be an R−module and Q a preordering of M. Then, Q is an ordering if

and only if, for any m /∈ Q, (−Q : m) = (Q : Q).

Proof. ”The necessity ” Let m /∈ Q. If r ∈ (−Q : m), then rm ∈ −Q. Thus, by Theorem 3.9,

r ∈ (Q : Q). Hence, (−Q : m) ⊆ (Q : Q). On the other hand, observe that m ∈ −Q, we have

(Q : Q)m⊆ (Q : Q)(−Q)⊆−Q. Thus, (Q : Q)⊆ (−Q : m). It follows that (−Q : m) = (Q : Q).

”The sufficiency”(1)Suppose that for any m /∈ Q, (−Q : m) = (Q : Q). Let rm ∈ −Q and

m /∈ Q. Then, r ∈ (−Q : m) and so r ∈ (Q : Q) by supposition. (2)For any m ∈ R, if m /∈ Q,

then (−Q : m) = (Q : Q). Observe that 1 ∈ (Q : Q). Thus m = 1 ·m ∈ (Q : Q)m ∈ −Q. Hence

M = Q∪−Q. By Theorem 3.9 and Remarks 3(1), the proof is completed.

Proposition 3.11. Let M1
φ1−−→M

φ2−−→M2 −→ 0 be an exact sequence of R-module homomor-

phisms. If Q is an ordering of M, then either φ
−1
1 (Q) is an ordering of M1 or φ2(Q) is an

ordering of M2.

Proof. Assume that φ
−1
1 (Q) is not an ordering of M1. Then, by Lemma 3 in [9], we have

φ1(M1) ⊆ Q. Further, φ1(M1) ⊆ Q∩−Q. i.e. Imφ1 ⊆ Q∩−Q. In this case, since φ
−1
1 (Q) =

M1,φ
−1
1 (Q) is not a preordering of M1. Hence, by Proposition 3.6, φ2(Q) is a preordering
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of M2. Since φ2 is surjective, we have φ2(Q)∪−φ2(Q) = M2. Let xm2 ∈ −φ2(Q), where

x∈ R,m2 ∈M2. There exist an m∈M and a q∈Q, such that φ2(m) = m2 and xφ2(m) =−φ2(q),

i.e. φ2(xm+q) = 0. Thus, xm+q ∈ Kerφ2 = Imφ1 ⊆ Q∩−Q, since the sequence is exact and

Imφ1 ⊆ Q∩−Q we got above. Hence, xm ∈ −q+Q∩−Q ⊆ −Q. Thereby, we have either

x ∈ (Q : Q) or m ∈Q by Theorem 3.9. Thus, either x ∈ (φ2(Q) : φ2(Q)) or m2 = φ2(m) ∈ φ2(Q),

since (Q : Q) ⊆ (φ2(Q) : φ2(Q)). Applying Theorem 3.9 again, we obtain that φ2(Q) is an

ordering of M2. This completes the proof.

Proposition 3.12. Let M be an R−module, Q an ordering of M, and S a multiplicative subset

of R. Set S−1Q = {q
s | q ∈ Q and s ∈ S}. If S⊆ (Q : Q)\−(Q : Q), then S−1Q is an ordering of

S−1R−module S−1M.

Proof. It’s easy to check that S−1Q+ S−1Q ⊆ S−1Q and ( r
s)

2 ∈ (S−1Q : S−1Q) for r
s ∈ S−1R

where r ∈ R, s∈ S, since S⊆ (Q : Q). Suppose−1
1 ∈ (S

−1Q : S−1Q). Pick out a q∈Q\−Q and

an s∈ S. Then,−q
s =−

1
1 ·

q
s ∈ S−1Q. Thus, there exist q′ ∈Q, s′ ∈ S, such that−q

s =
q′
s′ . Further,

we have t(s′q+ sq′) = 0 for some t ∈ S. Hence, ts′q =−tsq′ ∈ Q
⋂
−Q. Note that q ∈ Q\−Q.

Then ts′ ∈ (Q
⋂
−Q : M)⊆−(Q : Q), since Q

⋂
−Q is a prime module of M. On the other hand,

ts′ ∈ S ⊆ (Q : Q) \−(Q : Q), a contradiction. It follows that −1
1 /∈ (S−1Q : S−1Q). Therefore,

S−1Q is a preordering of S−1R−module S−1M.

Since Q
⋃
−Q = M, we have S−1Q

⋃
−S−1Q = S−1M. Assume x′m′ ∈ −S−1Q for x′ =

x
s1
, m′ = m

s2
where x ∈ R,m ∈M and s1, s2 ∈ S. Then ,there exist a q ∈Q and an s3 ∈ S such that

x
s1

m
s2
=− q

s3
. Thus , we have t(s3xm+ s1s2q) = 0 for some t ∈ S. In this case, we may assert that

xm∈−Q. Indeed, if not, then xm∈Q\−Q. Thus, (ts3)(xm) =−ts1s2q∈Q
⋂
−Q. Thereby, we

have xm ∈Q
⋂
−Q, since Q

⋂
−Q is a prime submodule of M and ts3 ∈ S⊆ (Q : Q)\−(Q : Q).

Thus, xm ∈ −Q, a contradiction. It follows that xm ∈ −Q. By Theorem 3.9, we have ei-

ther x ∈ (Q : Q) or m ∈ Q. Further, either x′ = x
s1
∈ S−1(Q : Q) or m′ ∈ S−1Q. Observe that

S−1(Q : Q)⊆ (S−1Q : S−1Q). Thus, we have x′ ∈ (S−1Q : S−1Q) or m′ ∈ S−1Q. Therefore, by

Theorem 3.9, S−1Q is an ordering of S−1R−module S−1M. The proof is completed.

We can find many multiplicative subsets Ses of R, such that S satisfies S⊆ (Q : Q)\−(Q : Q).

For example, for an ordering Q of M, set S = 1+ supp((Q : Q)), where supp((Q : Q)) is the
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support of ordering (Q : Q) of R. Then such an S satisfies the condition. More generally, we

have

Corollary 3.13. Let M be an R−module, Q an ordering of M, and S a multiplicative subset of

R. Set T = {1+∑
n
i=1 pisi

2|n ∈ N, pi ∈ (Q : Q),si ∈ S, i = 1, · · · ,n}. Then T−1Q is an ordering

of T−1R−module T−1M.

Proof. Obviously, T is a multiplicative subset of R. Since (T −1)Q =
(
∑

n
i=1 pisi

2)Q ⊆ Q, we

have T ⊆ 1+(Q : Q). Observe that 1+(Q : Q)⊆ (Q : Q)\−(Q : Q). Therefore, by Proposition

3.12, the proof is completed.

4. N (M)

Definition 4.1. Let M be an R−module. Define N (M) be the set of elements which aren’t

semireal in M, i.e. N (M) = {v ∈M | there is a t ∈ TR such that (1+ t)v = 0}.

Lemma 4.2. Let M be an R−module. Then

(1)N (M) is a submodule of M;

(2)If Q is a preordering of M, so is Q? = Q+N (M);

(3)If Q is a preordering of M, then (Q∪−Q)∩N (M) ⊆ Q∩−Q. In particular, when Q is

an ordering of M, N (M)⊆ Q∩−Q.

Proof. (1)For v1,v2 ∈ N (M), there exist t1, t2 ∈ TR such that (1+ ti)vi = 0, i = 1,2. Thus,

(1+ t1 + t2 + t1t2)(v1− v2) = (1+ t1)(1+ t2)(v1− v2) = 0. Since t + t1 + tt1 ∈ TR, v1− v2 ∈

N (M). For any x ∈ R,v ∈N (M), there is a t ∈ TR such that (1+ t)v = 0. Thus, (1+ t)(xv) =

x(1+ t)v = 0. Hence, xv ∈N (M). Therefore, N (M) is a submodule of M.

(2)It’s easy to check that Q?+Q? ⊆ Q? and x2 ∈ (Q? : Q?). Since Q is a preordering, there

exists a q ∈ Q, but −q /∈ Q. We claim that q ∈ Q?, but −q /∈ Q?. Indeed, if not, then there

exist a q′ ∈ Q and a v ∈ N (M) such that −q = q′+ v. Further, there is a t ∈ TR, such that

(1+ t)(q+ q′) = (1+ t)(−v) = 0. Thus, −q = (1+ t)q′+ tq ∈ Q, a contradiction. Thereby,

−1 /∈ (Q? : Q?). By Lemma 3.2, Q? is a preordering of M.
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(3)Assume m∈ (Q∪−Q)∩N (M). Then, there exists a t ∈ TR, such that (1+ t)m = 0. Thus,

m = −tm ∈ Q∩−Q, whether m ∈ Q or m ∈ −Q. Therefore, (Q∪−Q)∩N (M) ⊆ Q∩−Q.

This completes the proof.

Proposition 4.3. Set YN (M) = {Q | Q is a preordering of M with N (M)⊆ Q}. If YN (M) is

not empty, then N (M) =
⋂

Q∈YN (M)Q.

Proof. Obviously, N (M)⊆
⋂

Q∈YN (M)Q. Suppose that there is an e ∈
⋂

Q∈YN (M)Q\N (M).

By definition of N (M), e is a semireal element. By Remark 2, e induces a preordering Q =

{te | t ∈ TR}. Set Q? = Q+N (M). Then, by Lemma 4.2(2), Q? is a preordering of M. Thus,

Q? ∈ YN (M), since N (M) ⊆ Q?. Note that N (M) ⊆ −Q? and −Q? is a preordering of M

by the Remarks 1(1). Thus −Q? ∈ YN (M). Hence e ∈
⋂

Q∈YN (M)Q ⊆ −Q?. On the other

hand, from the proof of Lemma 4.2(2), we have −e /∈ Q?, a contradiction. It follows that⋂
Q∈YN (M)Q⊆N (M). Therefore, N (M) =

⋂
Q∈YN (M)Q. This completes the proof.

Corollary 4.4. Set Y (M) = {Q | Q is a preordering of M}. If Y (M) is not empty, then

N (M) =
⋂

Q∈Y (M)(Q+N (M)).

Proof. Let YN (M) be the same as above. It’s easy to check that YN (M) = {Q+N (M) |Q ∈

Y (M)}. By Proposition 4.3, the proof is completed.

Lemma 4.5. Let Q be a subset of R−module M. Set Q=Q/N (M) = {q̄= q+N (M) | q∈Q}.

Then we have

(1)If Q is a preordering of R−module M, then Q is a preordering of R-module M/N (M).

(2)If Q is an ordering of R−module M, then Q is an ordering of R−module M/N (M).

Proof. (1)Consider the exact sequence N (M)
i−→ M

φ−−→ M/N (M), where i is the identity

homomorphism and φ is the canonical homomorphism. Since N (M) is not semireal, i−1(Q) is

not a preordering of N (M). By Proposition 3.6, Q = φ(Q) is a preordering of M/N (M).

(2)Consider the exact sequence N (M)
i−→ M

φ−−→ M/N (M) −→ 0, where i is the identity

homomorphism and φ is the canonical homomorphism. Since N (M) is not semireal, i−1(Q)

is not an ordering of N (M). By Proposition 3.11, Q = φ(Q) is an ordering of M/N (M). This

completes the proof.
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Note that every nonzero element of M/N (M) is semireal. For proving this, suppose that m̄

is not semireal in M/N (M). Then there is a t ∈ TR such that (1+ t)m̄ = 0̄, and so (1+ t)m ∈

N (M). Hence, for some t1 ∈ TR,(1+ t1)(1+ t)m = 0, i.e. (1+ t + t1 + tt1)m = 0. Thus,

m ∈N (M). It follows that m̄ = 0.

Theorem 4.6. Let M be an R−module. Then M possesses an ordering if and only if M/N (M)

possesses an ordering. Furthermore, there is an one-to-one correspondence between the set of

all orderings on R−module M and the set of all orderings of R−module M/N (M).

Proof. It suffices to prove the later conclusion. For this end, let X (M) (resp. X (M/N (M)))

be the set of all orderings on M (resp. M/N (M))), and let ϕ : X (M) →X (M/N (M)) be

defined as follows:

ϕ(Q) = Q = {q̄ = q+N (M) | q ∈ Q}, Q ∈X (M).

By Lemma 4.5(2), Q is an ordering of R−module M/N (M), and so ϕ is a map from X (M)

to X (M/N (M)). Now, we shall first show that the mapping is injective. For this purpose, let

ϕ(Q1) = ϕ(Q2), where Q1,Q2 ∈X (M). Then Q1 = Q2. We claim that Q1 = Q2. If otherwise,

without loss of generality, we may assume that Q1 * Q2. Let q ∈ Q1 \Q2. Then, q̄ ∈ Q1 = Q2.

Thus, there exists a q2 ∈Q2, such that q−q2 ∈N (M). By Lemma 4.2(3), N (M)⊆Q2∩−Q2.

Hence, q ∈ q2 +N (M) ⊆ Q2 +Q2∩−Q2 ⊆ Q2, a contradiction. Now, it remains to show the

map is surjective. For this, let Q be an ordering of M/N (M). Denote by φ the canonical

module homomorphism from M to M/N (M). Observe that φ(M) = M/N (M)* Q̄. Then, by

Lemma 3 in [9], φ−1(Q) is an ordering of M. On the other hand , notice that ϕ(φ−1(Q)) = Q.

It follows that the map ϕ is surjective. This completes the proof.
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