
________________ 

*Corresponding author 

Received May 15, 2014 

716 

 

 

 

 

 

SIMULATION OF NUCLEOTIDE SUBSTITUTION RATES IN A DNA USING 

JC69 MODEL 

D.T. ACHAKU*, P.V. AYOO 

Department of Mathematics, Federal University Lafia, P.M.B. 146 Lafia, Nigeria 

Copyright © 2015 Achaku and Ayoo. This is an open access article distributed under the Creative Commons Attribution License, which permits 

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Abstract: Exploring the exponential of a matrix, we derived the rate matrix by extending the Poisson distribution to 

Differential equation. The solution of which gave rise to the continuous time Markov transition probability matrix 

𝑃(𝑡). From who estimated the MLE of JC69 substitution model as approximately equal to 0.2 we generated the 

probability transition matrix 𝑃(𝑡) with the four states as Adenine (𝐴), Guanine (𝐺), Cytosine (𝐶) and Thymine (𝑇). 

Using 𝑐++  and Excel with varying values for rate with a constant time of 1, the simulation showed that at the point 

when rate tends to infinity, over which a nucleotide sequence had been allowed to evolve, the proportion of 

nucleotides of each type 𝐴, 𝐺, 𝐶 and 𝑇 will reach  
1

4
 for each. And this limiting distribution is called the stationary 

distribution and is maintained. 
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1. Introduction: 

The information stored in a DNA and its ability to preserve it depends on its rate of nucleotide 

substitution. Tandem nucleotide repeat sequences are abundant in the human genome (Tautz and 

Renz, 1994; Smithies and Powers, 1986). Many tandem repeats are known to be polymorphic. 

Such repeat sequences can be classified as either simple, (one tandem repeating triplet unit 

representing at least 
2

3
 of total length) or cryptic (Jacobson et. al, 1993). Simple and cryptic di-

nucleotide repeats of alternating purines and pyrimidines of 26 or more base pairs in length 

[RY26+] are highly enriched in human, mouse and yeast genomes (Sankar et. al., 1991). In 
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humans, both simple (Tautz and Renz, 1984; Weber, 1990) and cryptic (Sankar et. al., 1991) are 

polymorphic and occasionally hypervariable (Jacobson et. al, 1993). 

The two RY  (26+ ) in the human factor IX gene are cryptic repeats. These repeats are 

polymorphic and certain alleles show racial specificity (Sankar et. al, 1991; Jacobson et. al, 1993; 

Sommer et. al, 1994). The RY(26+) in intron 1 of the factor IX gene can contain as many as 

216bp (probability of occurrence at random) of a melodic sequence in which there is no more 

than six consecutive repeats of any nucleotide (Jacobson et. al, 1993) seven polymorphic alleles 

have been found in one segment of this RY(26+) (Sankar et. al, 1991) by screening 1800 human 

chromosomes. These alleles are of the form 𝐴0−4  𝐵1  𝑎𝑛𝑑 𝐴1−3 𝐵2 in which A = 

(GT)(AC)3(AT)3(GT)(AT)4 and B = A with an additional 3′  AT di-nucleotide. The sequence 

shows a novel type of hyper-variability characterized by many Tandem repeats of the form 

(𝐺𝑇)𝑛(𝐴𝐶)𝑜(𝐴𝑇)𝑃(𝐺𝑇)𝑞(𝐴𝑇)𝑠 where n, o, p, q and s are integers that range from 1 to 4. The 

Sequence suggests that the location of two RY (26+) can be preserved during evolution, while 

the precise sequence varies substantially. Purine, purine, pyrimidine (RRY) repeats are also 

frequent and often polymorphic (Riggers et. al, 1992; Gostout et. al, 1993). 

Instability of simple RRY has been recently implicated as the major source of mutations in 

multiple diseases (Yu et.al, 1991; Oberle et. al, 1991; Verkerk et. al, 1991). Nucleotide 

substitution has been found to follow Markov processes over time. In this work, we derived the 

Jukes and Cantor model and used 𝐶++  to simulate data using formulae which is capable of 

simulating evolutions of a nucleotide sequence over a given time. 

Over time, nucleotides within a sequence can evolve through substitution. This process can cause 

a nucleotide (𝑇, 𝐶, 𝐴 and 𝐺) to change into another nucleotide. On average, this form of mutation 

only occurs once or twice every millions of years. However, in assessing the evolution of species 

over hundreds of millions of years, models are useful in evaluating how one sequence of 

nucleotides may have evolved from another. 

This model is a phenomenological description of the evolution of DNA as a string of four 

discrete states. The Markov chain model does not explicitly depict neither the mechanism of 

mutation nor the action of natural selection, rather it describes the relative rates of different 

changes. 

2.0 Continuous- time Markov chains 



SIMULATION OF NUCLEOTIDE SUBSTITUTION RATES IN A DNA USING JC69 MODEL        718 

For stochastic processes refer (Choji, D.N. and Achaku, D.T., 2007; Choji and Oduwole, 1998; 

Korve et. al, 2006; Taylor and Karlin, 1994). But, a continuous- time Markov chain has the usual 

transition matrix which is in addition parameterized by time t. Specifically, if 𝑒1,𝑒2, 𝑒3, 𝑒4 are the 

states, then the transition matrix 

                              𝑃(𝑡)  =  𝑃𝑖𝑗 (𝑡). 

From Jukes and Cantor (1969), Tan Wai-Yuan (2002) this substitution process in DNA sequence 

has a corresponding matrix as,                 

                                   𝑃(𝑡) = (

𝑃𝐴𝐴(𝑡) 𝑃𝐺𝐴(𝑡) 𝑃𝐶𝐴(𝑡) 𝑃𝑇𝐴(𝑡)
𝑃𝐴𝐺(𝑡) 𝑃𝐺𝐺(𝑡) 𝑃𝐶𝐺(𝑡) 𝑃𝑇𝐺(𝑡)

𝑃𝐴𝐺(𝑡) 𝑃𝐺𝐶(𝑡) 𝑃𝐶𝐶(𝑡) 𝑃𝑇𝐶(𝑡)
𝑃𝐴𝑇(𝑡) 𝑃𝐺𝑇(𝑡) 𝑃𝐶𝑇(𝑡) 𝑃𝑇𝑇(𝑡)

)                        

Where the top left and bottom right 2× 2  blocks correspond to transition probabilities and top – 

right and bottom-left 2× 2  blocks correspond to transversion probabilities. 

Theorem 2.1: A Continuous time Markov chain satisfies 𝑃(𝑡 +  𝑟)  =  𝑃(𝑡)  𝑃(𝑟). 

Consider a DNA sequence of fixed length m evolving in time by base replacement. Assume that 

the processes followed by the m sites are Markovian independent, identically distributed and 

constant in time, so for a fixed site let, 

                            P(t) = [𝑃𝐴(𝑡), 𝑃𝐺(𝑡), 𝑃𝐶(𝑡), 𝑃𝑇(𝑡)]
𝑇  

Be the column vector probabilities of states A, G, C and T at time t. With S = {A, G, C, T}be the 

state space. For any two distinct states , 𝐺 ∈  𝑆 , let 𝜇𝐴𝐺  be the transition rate from state 𝐴 to 

state 𝐺. Similarly, for any 𝐴, let  

 

𝜇𝐴 = ∑ 𝜇𝐴𝐺
𝐺≠𝐴

 

The changes in the probability distribution 𝑃𝐴(𝑡) for small increments of time ∆𝑡 are given by, 

   𝑃𝐴(𝑡 + ∆𝑡) = 𝑃𝐴(𝑡) − 𝑃𝐴(𝑡)𝜇𝐴∆𝑡                              ………….         (1)     

In other words the frequency of A’S at time 𝑡 + ∆𝑡 is equal to the frequency at time t minus the 

frequency of the lost A’s plus the frequency of the newly created A’S. And similarly for 𝑃𝐺(𝑡),

𝑃𝐶(𝑡) and 𝑃𝑇(𝑡). So, write (1) compactly as or alternately, 

                                                        𝑃′(𝑡) = 𝑄𝑃(𝑡) 

With, 
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‘                                                      𝑄 = (

−𝜇𝐴 𝜇𝐺𝐴 𝜇𝐶𝐴 𝜇𝑇𝐴
𝜇𝐴𝐺 −𝜇𝐴 𝜇𝐶𝐺 𝜇𝑇𝐺
𝜇𝐴𝐶 𝜇𝐺𝐶 −𝜇𝐴 𝜇𝑇𝐶
𝜇𝐴𝑇 𝜇𝐺𝑇 𝜇𝐶𝑇 −𝜇𝐴

)  

2.1 Ergodicity 

If all states A, G 𝜖 𝑆 communicate, then the Markov chain has a stationary distribution ∏𝑆 = 

{∏𝐴 , 𝐴 ∈ 𝑆}, where each ∏𝐴 is the proportion of time spent in state A after the Markov chain 

has run for infinite time and this probability does not depend upon the initial state of the process. 

This type of chain is called ergodic. In DNA evolution, under the assumption of a common 

process for each site, the stationary frequencies are: 𝛱A, 𝛱G, 𝛱C, 𝛱T corresponds to equilibrium 

base compositions. 

Definition 2.1: A Markov process is stationary if its current distribution is the stationary 

distribution, i.e. 𝑃(𝑡) = 𝛱. From the differential equation above: 

                                            ∏ ′(𝑡) = QΠ = 0. 

 

Definition 2.2: Time Reversibility 

A stationary Markov process is time reversible if the amount of change from state 𝐴 to 𝐺 is equal 

to the amount of change from 𝐺 to 𝐴, though frequency may be different. This means that; 

                                             ΠA μAG = ΠG μGA 

Though not all stationary processes are reversible, however, almost all DNA evolution models 

assume time reversibility. Hence we can write this as 

                                   SAG = 
𝜇𝐴𝐺

𝛱𝐺
 then 𝑆𝐴𝐺 = 𝑆𝐺𝐴 

This symmetric term  𝑆𝐴𝐺 is called the exchangeability between A and G. 

3.0 Derivation of Juke’s-Cantor Model 

Assumption: It assumes equal frequencies (are 𝛱A= 𝛱G= 𝛱C= 𝛱T = 
1

4 
) and equal mutation rates. 

The only parameter is ⋋, the substitution rate. 

At the simplest level, the proportion of different nucleotides p can be used to measure the 

evolutionary divergence between two aligned sequences. 

                                                                  P = 
𝑛𝑑

𝑛
 

Where n is the total number of nucleotides in the sequences and 𝑛𝑑 is the number of different 

nucleotides for the pair. Suppose the distribution of the number of substitutions s is a poisson 
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random variable with mean ⋋t. The rate of substitutions (relative to the unit of time) at a given 

site is ⋋. The probability of  𝑠 > 0 at a site in a time period t is, 

                                                                      𝑃𝑟(s)=
𝑒⋋t.⋋t.𝑠

𝑠!
 

If the mean number of substitutions during t units of time is ⋋t, then the probability of no 

substitutions occurring at a site is 

                                                              𝑃𝑟(s = 0) = 𝑒−⋋t 

And probability of at least one substitution is 

                                                                     𝑃𝑟(s = 0) = 1 − 𝑒−⋋t 

For small 𝑡, these probabilities can be approximated as  

                                                                     𝑝𝑟(𝑠 = 0) ≈ 1 − 𝜆𝑡. 

And 

                                                               𝑝𝑟(𝑠 ≠ 0) ≈ 𝜆𝑡  

These probabilities can be seen as the infinitesimal probabilities relating to a Markov process. 

Thus for a DNA sequence, this process is a 4-state chain. Let 𝑝𝑖𝑗 be the transition probability that 

the next state (nucleotide) is 𝑗 given that the current state is 𝑖, 

𝑝𝑖𝑗 = 𝑝𝑟{Next state 𝑠𝑗/ current state 𝑠𝑖} 

Let 𝑝 = 𝑝𝑖𝑗  denote the matrix of transition probabilities for the Markov process, then this 

property is true, 

                                                        𝑝(𝑡 + ℎ) = 𝑝(𝑡)𝑝(ℎ)                  ……………..   (2) 

Extending the results from the Poisson model to the 4-state nucleotide case, for h small, the 

probabilities are approximated to 

                                                      𝑝(ℎ) ≈ 𝐼 + 𝑄ℎ                               ……………..  (3) 

Where 𝑄 is the rate of substitution matrix. Substituting () in () and taking limit as ℎ → 0, 𝑝 solves 

𝑝′ = 𝑃𝑄 

With initial condition, 𝑝(0) = 𝐼, the solution of the first order differential equation is 

 

𝑑𝑝

𝑑𝑡
= 𝑃𝑄 

∫
𝑑𝑝

𝑝
= ∫𝑄𝑑𝑡 

ln 𝑝 = 𝑄𝑡 + 𝑐 
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𝑝 =
𝑄

𝜆
𝑒−𝜆𝑡 

 

And from (1) 

                                                       𝑝 =
1

4
(1 −

𝑄

𝜆
𝑒−𝜆𝑡)  

Hence the chance of a nucleotide 𝑖 changing to a nucleotide 𝑗 in time 𝑡 is 

                                                   𝑝𝑖𝑗 =
1

4
(1 − 𝑒−4𝜆𝑡)  

And since there are 12 ways this can occur, the chance of a nucleotide staying the same is 

                                                         𝑝𝑖𝑗 =
1

4
+
3

4
𝑒−4𝜆𝑡  

With the rate matrix as 

               ∗      
𝜆

4
      

𝜆

4
      

𝜆

4
 

               
𝜆

4
      ∗      

𝜆

4
      

𝜆

4
 

                                                     𝑄 =      
 𝜆

4
      

𝜆

4
      ∗      

𝜆

4
 

                 
𝜆

4
      

𝜆

4
       

𝜆

4
      ∗ 

And transition probability as 

𝑃 =

(

 
 
 
 
 

1

4
+
3

4
𝑒−4𝜆𝑡

1

4
−
1

4
𝑒−𝜆𝑡

1

4
−
1

4
𝑒−𝜆𝑡

1

4
−
1

4
𝑒−𝜆𝑡

1

4
−
1

4
𝑒−4𝜆𝑡

1

4
+
3

4
𝑒−𝜆𝑡

1

4
−
1

4
𝑒−𝜆𝑡

1

4
−
1

4
𝑒−𝜆𝑡

1

4
−
1

4
𝑒−𝜆𝑡

1

4
−
1

4
𝑒−𝜆𝑡

1

4
+
3

4
𝑒−𝜆𝑡

1

4
−
1

4
𝑒−𝜆𝑡

1

4
−
1

4
𝑒−𝜆𝑡

1

4
−
1

4
𝑒−𝜆𝑡

1

4
−
1

4
𝑒−𝜆𝑡

1

4
+
3

4
𝑒−𝜆𝑡)

 
 
 
 
 

 

3.1 Maximum Likelihood Estimates (MLE) - JC69 model 

Maximum likelihood estimates are used to estimate parameter values for a statistical model when 

applying that model to a dataset. In the case of nucleotide substitutions, the statistical models 

fitted to data are the models of nucleotide substitution and the parameter estimated is the value 

for rate and time. And of course they cannot be distinguished from one another; the single value 

𝜆𝑡  can be produced by a combination of values of alpha or time. Likelihood methods for 

phylogenies were first introduced by Edwards and Cavalli-sforza (1964) for gene frequency data. 

Neyman (1971) applied likelihood to molecular sequences and this work was extended by 
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Kashyap and Subas (1974). Felsenstein (1973, 1981) brought the maximum likelihood 

framework to nucleotide-based phylogenetic inference. The following is the probability mass 

function of the binomial distribution: 

(
𝑛
𝑘
) 𝑝𝑘(1 − 𝑝)𝑛𝑘 . Where 𝑛 −  total length of a sequence and 𝑘 −  the number of nucleotides 

which differ between each sequence. 

Thus using the data set of two sequences of nucleotides of equal length as 𝑛 = 100 and 𝑘 = 40. 

Thus approximating the Binomial distribution to a Poisson with the probability mass function 

equal 1, we have 

1 = 𝑝𝑜𝑤 (
1

4
+
3

4
∗ exp(−4 ∗ 𝑚), 60) ∗ 𝑝𝑜𝑤 (

1

4
−
1

4
∗ exp(−4 ∗ 𝑚) , 40)  

Where, 𝑚 = 𝜆𝑡. Goldman and Whelan (2001) estimated the maximum likelihood estimate for 

Jukes Cantor model as 0.19 ≅ 0.2 

3.2 Simulation of nucleotide Sequence 

The discussed model and other models of nucleotide substitution, all allow for the generation of 

probabilities that determine how a nucleotide sequence will or have evolved based on likelihood. 

Thus for the JC69 model, we can say that this probabilities are equal. 

The time intervals in which mutations will occur are taken simply as 𝑡 = 0 to 𝑡 = 1 as used often 

(Timex). Before the mutation, a nucleotide sequence of length 100 was generated (genseq) with a 

rate estimated above as ≃ 0.2, that is parameter, to generate the matrix 𝑃(𝑡). A code written in 

𝐶++ emulates the matrix 𝑃(𝑡). 

 

 

 

3.3 Illustration 

The following is a sequence of nucleotides before and after mutation 
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Before genseq (10). 

                                                     𝑮      𝑮        𝑨      𝑻        𝑪     𝑪        𝑮       𝑪      𝑨       𝑨 

 

After             𝑮      𝑨         𝑮      𝑻        𝑨     𝑪        𝑪       𝑪     𝑨         𝑮 

Although 5 differences are visible from the initial sequence to the sequence after mutation, 7 

actual mutations had occurred with two of the mutations acting on the same starting nucleotide, 

the 8th, with the second mutation returning the 8th nucleotide back to its starting state that is 

nucleotide C. 

From the formulae used to calculate the transition probabilities namely: 

                                              𝑥 =
1

4
+
3

4
∗ 𝑒𝑥𝑝−4𝜆𝑡  

                                               𝑦 =
1

4
−
1

4
∗ exp (−4 ∗ 𝜆 ∗ 𝑡). 

We noticed that the exponential of this negative value tends to zero (0) as the negative value 

tends to infinity. This implies that 𝑥 and 𝑦 above tends to  
1

4
 for each nucleotide substitution. For 

𝑡 = 1 and 𝑚 = 0, 0.1, … as can be seen in the simulation below. 
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Using the values in the table above, we draw the graph for the rates of substitution against m. 

 

 

  Figure 3.1:  Graph showing Substitution Rates against Maximum Likelihood Estimate 

 

   4. Conclusion 

This work is not an experiment from the laboratory but rather the emulation of JC69 nucleotide substitution 

model onto the 𝐶++  and excel software so as to use this in a more practical situation. Therefore, our 

conclusion is that, the code that we used to emulate this statistical model has been successful and maybe 

applied to practical dataset. That is, by assessing the same length, the number of differences may be recorded 

and then used to estimate a time using the maximum likelihood method. 
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