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Abstract. In this paper, the modified equal width wave (MEW) equation is solved numerically using the finite 

difference method. The stability analysis using Von-Neumann technique shows the schemes are unconditionally 

stable. Also the local truncation error of the method is investigated. Three invariant of motion are evaluated to 

determine the conservation properties of the problem, and the numerical scheme leads to accurate and efficient 

results. Moreover, interaction two and three solitary waves are studied. The development of the Maxwellian 

initial condition into solitary waves is also shown, and we shown that the number of solitons which are 

generated from the Maxwellian initial condition can be determined. 
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1. Introduction 

In this paper we consider the numerical solution of the modified equal width wave 

(MEW) equation based upon the equal width wave (EW) equation [1, 2], the (MEW) 

equation suggested by Morrison et al. [3] in the form  

,0uuuu txxx
2

t                                                    (1) 

where subscripts x  and t  denote differentiation and  ,   are positive parameter with 

boundary conditions 0u   as x . The analytic solution of the (MEW) equation can be 

expressed in the form 
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           )),xtcx(k(hsecc2)t,x(u 0                                      (2) 

 where, 


1
k  and c  are constants. 

This equation is related with the modified regularized long wave (MRLW) equation [4] and 

modified Korteweg-de Vries (MKdV) equation [5]. Geyikli and Battal Gazi Karakoc [6, 7] 

solved the MEW equation by a collocation method using septic B-spline finite elements and 

using a petrov- Galerkin finite element method with weight functions quadratic and element 

shape functions which are cubic B-splines.  Esen applied a lumped Galerkin method based on 

quadratic B-spline finite elements which have been used for solving the EW and MEW 

equation [8, 9]. Saka proposed algorithms for the numerical solution of the MEW equation 

using quintic B-spline collocation metod [10]. Zaki considered the solitary wave interactions 

for the MEW equation by collocation method using quintic B-spline finite elements [11] and 

obtained the numerical solution of the EW equation by using least- squares method [12]. 

Wazwaz investigated an analytic solution to the MEW equation and two of its variants by the 

tanh and the sine-cosine methods [13].  Moreover, a solution based on a collocation method 

incorporated cubic B-spline is investigated by Saka and Dag [14].  The variational iteration  

method is applied to solve the MEW equation by Lu [15].  Evans and Raslan [16] studied the 

generalized EW equation by using collocation method based on quadratic B-spline to obtain 

the numerical solutions of a single solitary waves and the birth of solitons.  The exact solitary 

wave solutions of the generalized EW equation is derived by Hamdi et al. [17] using Maple 

software. Esen and Kutluay studied a linearized implicit finite difference method in solving 

the MEW equation [18].  

In the present work we solve the MEW equation numerically by the finite difference method. 

Moreover, interaction of solitary waves and other properties of the MEW equation are also 

studied. 

 

2. The Proposed Finite Difference Schemes 

In this section we will introduce three different schemes using finite difference method to 

tackle the problem under investigation. Numerical solution will be obtained as well as 

stability and error analysis will be studied. 

2.1. First finite difference schemes   

A finite difference scheme is produced when the partial derivatives in the partial differential 

equation(s) governing a physical phenomenon are replaced by a finite difference 
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approximation. The result is a single algebraic or a system of algebraic equation which, when 

solved, provides an approximation to the solution of the original partial differential equation 

at selected points of a solution grid. The solution grid (also referred to as computational grid 

or numerical grid) is originated by dividing the axes representing the independent variables in 

the solution domain into a number of intervals. The extreme points of the interval will 

represent points in the solution grid. If we draw lines perpendicular to a given axes passing 

through the extreme points of the intervals, the resulting grid is the computational grid.  

To apply the finite difference method for solving the MEW equation, firstly we present the 

following notations for the derivatives  

,
hk

)uu2u)(1()uu2u(
)u(

,
h2

)uu)(1()uu(
)u()uu(

,
k

uu
)u(

2

n
1j

n
j

n
1j

1n
1j

1n
j

1n
1jn

jtxx

n
1j

n
1j

1n
1j

1n
1j2n

j
n
jx

2

n
j

1n
jn

jt


























                     (3)                   

 where ,nkt,jhx nj   ,...1,0j  and ,...1,0n  where superscript n denotes quantity 

associated with time level nt  and subscript j denotes a quantity associated with space mesh 

point ,x j  and   is selected to be between 0 and 1. Thus when 5.0  the two time steps, 

namely n  and 1n  have equal weight.  Also, when 0  the resulting finite difference 

approximation corresponds to time nt  and when 1  the finite difference approximation 

corresponds to time .1nt  The second-order finite difference approximation shown above is 

known as the Crank-Nicholson formulation. 

Now, we assume that n

ju  is the exact solution at the grid point ),( nj tx and n

jU is the 

approximate numerical values at the same point. Then the finite difference scheme for the Eq. 

(1) becomes 

,0)()()()( 2  txx

n

jx

n

j

n

jt

n

j UUUU                                          (4) 

By using the difference approximation given by relations (3) in Eq. (4) we have 
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 2.1.1 Stability Analysis of First Difference Scheme 

In this subsection we investigate stability of the scheme using the Von-Neumann stability 

analysis after linearizing the nonlinear term in (5) through the following stated and proved 

Lemmas.  

Lemma 2.1. The finite difference scheme (5) is unconditionally stable. 

Proof. The Von-Neumann stability theory will be applied to investigate the stability of the 

finite difference scheme as  

,1,  ieU jhkinn

j                                                        (7) 

where k  is the mode number and h  is the element size. 

Substitute the Fourier mode (7) into the linearized recurrence relationship Eq. (5) shows that 

nn BiABiA  ))1(()( 1                                                  (8) 

where A  and B  are as follows  

,sin2

,2cos2 2

khPB

hkhA



 
                                                            (9) 

The amplification factor for mode  k  is: 

,
1



 


n

g                                                                          (10) 

Using Eq. (8) and Eq. (10) we get: 

     ,
)(

))1((

BiA

BiA
g








                                                         (11) 

The stability will be discussed for three cases  

(1) Explicit scheme,  

Put ,0  in Eq. (11) so the amplification factor g takes the form 

,
)(

A

BiA
g


                                         (12) 

 So the explicit scheme is unstable since  1g   

(2)  Crank-Nicolson scheme 

      Put ,
2
1   in Eq. (11) so the amplification factor g takes the form 

,

)
2

(

)
2

(

B
iA

B
iA

g





                      (13) 

So the Crank-Nicolson scheme is marginally stable since in this case ,1g    
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(3) The fully implicit scheme  

      Put ,1   in Eq. (11) so the amplification factor g takes the form 

,
iBA

A
g


  (14) 

So the fully implicit scheme is unconditionally stable since in this case .1g  

2.1.2 Error Analysis of First Difference Scheme 

Lemma 2.2. The truncation error n

jT  of the finite difference scheme (5) is of order ).( 2hk   

Proof. To study the accuracy of scheme (5) we use a Taylor
’
s series expansion of all terms 

about the point ),,( nj tx   when ij xxh  1  and ,1 nn ttk    then the local truncation error 

can be written in the form 

    

 

  (15) 

 

The first term is zero by Eq.(1), and so we end with local truncation error                                                                 
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Hence, we get 
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2.2. Second finite difference schemes   

The 2
nd

 finite difference scheme for MEW equation considered is given by 
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                             (18) 

By using Eq. (18) in Eq. (4) we have 
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2.2.1 Stability Analysis of Second Difference Scheme 

Lemma 2.1. The finite difference scheme (19) is unconditionally stable. 

Proof. The Von-Neumann stability analysis will be applied to investigate the stability of the 

2
nd

 scheme by substitute the Fourier mode (7) into the linearized recurrence relationship (19) 

shows that 

                     ,
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where 1A  and 1B  are as follows  
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 So that from Eq. (21) it is clear that 1g  thus the second scheme is marginally stable. 

2.2.2 Error Analysis of Second Difference Scheme 

We use a Taylor
’
s series expansion of all terms in (19) about the point )t,x( nj    

Lemma 2.2. The truncation error n

jT  of the finite difference scheme (19) is of order ).( hk   

Proof.  Using n
th

 Taylor polynomial in two variables x  and t  of all terms in scheme (19) 

about the point ),,( nj tx    then the local truncation error can be written in the form 

...,))(()(
2

)(

2
2

2

2

2

2

3
2
































n

j

n

j

n

j

n

j

x

u
uh

tx

u
u

t

uk

tx

u

x

u
u

t

u
T





                               (23) 

The first term is zero by Eq. (1), and so we end with local truncation error 
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Hence, we get  
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2.3. Third finite difference schemes   

The 3
rd

 finite difference scheme for the MEW equation considered is given by 
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 where we use central-difference operator in time t and in space x, then by using Eq. (26) in 

Eq. (4) we have 
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where, 

2
2 UhkP                                                                (28) 

 2.3.1 Stability Analysis of Third Difference Scheme 

Lemma3.1. The finite difference scheme (27) is unconditionally stable  

Proof. Using Fourier method, assuming that u  in the nonlinear term is locally constant. In 

case of applying the Von Neumann stability theory, the growth of Fourier mode takes the 

form 

1,  ieU jhkinn

j                                                    (29) 

where k  is a mode number and h  is the element size. 

Now, substituting Eq. (29) into scheme (27), and we use the amplification factor for mode  k   

,121   nn g                                         (30) 

where g is the amplification factor, and from Eqs. (29) and (32) we get 
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Eq. (31) yields ,121  gg  therefore the finite difference scheme is marginaly stable. 

2.3.2 Error Analysis of Third Difference Scheme 

Lemma 3.2. The truncation error n

jT  of the finite difference scheme (27) is of order 

).( 22 kh   

Proof.  Using n
th

 Taylor polynomial in two variables x  and t  of all terms in scheme (27) 

about the point ),,( nj tx    then the local truncation error can be written in the form 
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The first term is zero by the equation (1), and so we end with local truncation error 
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3. Numerical Tests and Results of MEW equation 

In this section we present some numerical tests of our schemes and other methods for 

the solution of MEW equation for single solitary waves in addition to determining the 

solution of two and three solitary waves interaction at different time levels. The numerical 

solutions must preserve the conservation laws during propagation as discuss the three 

invariant conditions which correspond to conversation of mass, momentum, and energy [2] 
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The accuracy of the method is measured using the following error norms 
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Where Eu  is the exact solution u  and Nu  is the approximations solution NU .  

we consider Eq. (1) with the boundary condition  0u  as x  and initial condition: 

                                     )].([sec)0,( 0xxkhAxu                                               (37)                                                       

An analytical solution of this problem is given by 

                                      )]([sec),( 0xtcxkhAtxu                                         (38)                                                              

which represents the motion of a single solitary wave with amplitude cA 2 , 
1k .    

3.1. Single Solitary Wave 

To illustrate the validity of our scheme in case of a single soliton, we use the 2L -norm and 

L -norm to test accuracy, also quantities 1I , 2I  and 3I  are shown to measure conservation 
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laws for the scheme. we choose ,30,0.1,kh 032
1  xc  with range [0,80], the 

simulations are done up to t = 1.0 and the vale of   in the first scheme is chosen to be 
2
1 . 

The invariants 1I , 2I and 3I change from their initial values by less than -5x102,lyrespective  

and -61.2x10  respectively, during the time of running, for the first scheme and less than 

4-x106,3-1.7x10  and -53.8x10 respectively for the second scheme, however the the 

invariants 1I , 2I and 3I  for the third scheme approach to zero throughout. Our results are 

recorded in Table 1 and the motion of the solitary wave is plotted at different time levels in 

Fig. 1. Now we choose ,30,0.1,kh 032
1  xc  with range [0,80], where the simulations 

are done up to t =5. The invariants 3I changed by less than -81x10  and the changes for the 

invariants  ,I1  2I  approach to zero throughout. Our results are recorded in Table 2 Errors in 

2L  and L -norms are satisfactorily small as 2L -error = -58.84979x10  and L -error 

= -55.47289x10  . 

Table (1) Invariant and error norms for single solitary waves with ]80,0[,0.1 kh  

Schemes t 
1I  2I  3I 2L  L  

 

First 

scheme 

2
1  

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

0.785398 

0.785387 

0.785375 

0.785364 

0.785352 

0.785341 

0.166473 

0.166469 

0.166465 

0.785364 

0.166457 

0.166453 

0.00520833 

0.00520809 

0.00520785 

0.00520761 

0.00520736 

0.00520712 

0.00000000 

5.88283E-6 

1.17852E-5 

1.77071E-5 

2.36487E-5 

2.96099E-5 

0.00000000 

4.65771E-6 

9.33685E-6 

1.40367E-5 

1.87566E-5 

2.35070E-5 

 

Second 

scheme 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

0.785398 

0.785753 

0.786107 

0.786462 

0.786818 

0.787173 

0.166478 

0.166598 

0.166718 

0.166839 

0.166959 

0.167079 

0.00520833 

0.00521584 

0.00522337 

0.00523090 

0.00523845 

0.00524600 

0.00000000 

1.45237E-4 

2.90569E-4 

4.36003E-4 

5.81542E-4 

7.27192E-4 

0.00000000 

8.25630E-5 

9.83229E-5 

9.38439E-5 

9.32127E-5 

4.1172E-4 

 

Third 

scheme 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

0.785398 

0.785398 

0.785398 

0.785398 

0.785398 

0.785398 

0.166473 

0.166473 

0.166473 

0.166473 

0.166473 

0.166473 

0.00520833 

0.00520833 

0.00520833 

0.00520833 

0.00520833 

0.00520833 

0.00000000 

3.54262E-6 

7.08503E-5 

1.06272E-5 

1.41692E-5 

1.77110E-5 

0.00000000 

2.16087E-6 

4.32575E-6 

6.49287E-6 

8.66232E-6 

1.08337E-5 
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Table (2) Invariant and error norms for single solitary waves with 

]80,0[,0.1
32
1 ckh  

t 
1I  2I  3I  2L  

L  

0.0 

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

3.5 

4.0 

4.5 

5.0 

        5.0 [20] 

        5.0 [21] 

0.785398 

0.785398 

0.785398 

0.785398 

0.785398 

0.785398 

0.785398 

0.785398 

0.785398 

0.785398 

0.785398 

0.7853960 

0.7853982 

0.166473 

0.166473 

0.166473 

0.166473 

0.166473 

0.166473 

0.166473 

0.166473 

0.166473 

0.166473 

0.166473 

0.1666662 

0.1666667 

0.00520833 

0.00520833 

0.00520833 

0.00520834 

0.00520833 

0.00520834 

0.00520832 

0.00520834 

0.00520832 

0.00520835 

0.00520832 

 0.0052083 

0.0052083 

0.00000000 

7.08583 E-6 

1.77110E-5 

2.48037E-5 

3.54166E-5 

4.25260E-5 

5.31165E-5 

6.02522E-5 

7.08104E-5 

7.79818E-5 

8.84979E-5 

   2.04838E-5 

   0.00007 E-3 

0.00000000 

4.33198 E-6 

1.08337E-5 

1.52009E-5 

2.17056 E-5 

2.60877 E-5 

3.26262 E-5 

3.71323 E-5 

4.36745 E-5 

4.82113 E-5 

5.47289 E-5 

5.47289 E-5 

0.00008 E-3 

 

 In the Table 2, The invariants ,I1  2I  approach to zero throughout, where  3I changed by 

less than .1x10 -7 A comparison with Petrov–Galerkin method with cubic B-spline functions 

[20] and with Quintic B-spline collocation method [21], shows not better results in terms of 

the 2L  and L  error norms because we treat us the problem by the finite difference.  
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          (a)                    ( b)  
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                                (c)                                                                 ( d) 

Fig. 1. Single solitary wave with 1

32
0.1, [0,80]h k c   at times: t = 0, t = 2, t = 4 and t = 5. 

 

3.2. Interaction of two solitary waves 

The interaction of two MEW solitary waves having different amplitudes and traveling 

in the same directions illustrated. We consider the MEW equation with initial conditions 

given by the linear sum of two well separated solitary waves of various amplitudes 

 



2

1

)).((sec2)0,(
i

ii xxkhcxu           (39) 

In our computational work, we choose ,,
64
1

232
1

1  cc  ,30,15 21  xx  and 

th  1.0 ,1  through the interval [0, 80]. And the change in 1I , 2I and 3I  as seen in 

Table (3), are -41.09x10,-43.4x10  and -66.44x10  respectively, also Figure (2), shows the 

computer plot of the interaction of these solitary waves at different time levels. 

 

Table (3) Invariant and error norms for two solitary waves with 

]80,0[30,15,,,0.1 2164
1

232
1

1  xxcckh  

 t 
1I  2I  3I  

0 

1 

2 

3 

4 

5 

1.34076   

1.34069 

1.34062 

1.34056 

1.34049 

1.34042 

0.249709 

0.249688 

0.249666 

0.249644 

0.249622 

0.249600    

0.00651044  

0.00650915  

0.00650786 

0.00650657 

0.00650529 

0.00650400 
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(a)                                                          ( b) 
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(c)                                         ( d) 

 Fig. 2. Two solitary waves with ],80,0[30,15,,,0.1 2164
1

232
1

1  xxcckh  

at times: t = 0, t = 30, t = 60 and t = 100 

3.3. Interaction of three solitary waves 

The interaction of three MEW solitary waves having different amplitudes and 

traveling in the same directions illustrated. We consider the MEW equation with initial 

conditions given by the linear sum of two well separated solitary waves of various amplitudes 

 



3

1

)),((sec2)0,(
i

ii xxkhcxu           (39) 

in our computational work, we choose ,,,
128

1
364

1
232

1
1  ccc  ,45,30,15 321  xxx  and 

th  1.0 ,1  through the interval [0, 80]; and the change in 1I , 2I and 3I  as seen in 

Table (4), are 4-1.11x10,4-3.5x10 and -66.64x10  respectively, also Figure (3), shows the 

computer plot of the interaction of these solitary waves at different time levels. 
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Table (4) Invariant and error norms for three solitary waves with 

]80,0[45,30,15,,,,0.1 321128
1

364
1

232
1

1  xxxccckh  

t 
1I  2I  3I  

0 

1 

2 

3 

4 

5 

1.73346 

1.73339 

1.73332 

1.73325 

1.73318 

1.73311 

0.291328 

0.291306 

0.291284 

0.291261 

0.291239 

0.291217 

0.00683596 

0.00683467 

0.00683338 

0.00683209 

0.00683079 

0.00682950 
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                                     (a)                                                ( b) 
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(c)                                                               (d) 

Fig. 3. Three solitary waves with 

],80,0[,45,30,15,,,,0.1 321128
1

364
1

232
1

1  xxxccckh  

at times: t = 0, t = 30, t = 60 and t = 100 

 

4. The Maxwellian Initial Condition 

In final series of numerical experiments, the development of the Maxwellian initial 

condition 
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(40) 

into a train of solitary waves is examined. We apply it to the problem for different cases: 

 (I) ,5.0  (II)  ,1.0,05.0    (III) ,02.0  and (IV) .005.0  When μ is large 

such as case (I), only single soliton is generated as shown in Fig (4). However, when μ is 

reduced more and more such as case (II) two single soliton is generated as shown in Fig (5), 

and for case (III) three soliton is generated as shown in Fig (6), for the forth case (IV), the 

Maxwellian initial condition has decayed into four stable solitary waves as shown in Fig (7). 

The peaks of the well developed wave lie on a straight line so that their velocities are linearly 

dependent on their amplitudes and we observe a small oscillating tail appearing behind the 

last wave as shown in the figure (8) and all states at T =5, the values of the quantities 21, II  

and 3I  for the cases: ,02.0,05.0   and ,005.0 are given in Table (5). 
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Fig (4): The Maxwellian initial condition 

at 5.0  and 5t . 

 

         20 40 60 80

0.2

0.4

0.6

0.8

1.0

1.2

1.4

             20 40 60 80

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 

              (a)                (b) 

Fig (5): The Maxwellian initial condition at 5t : 

(a) 1.0                   (b) 05.0 . 

),)7(exp()0,( 2 xxu
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 Fig (6): The Maxwellian initial condition 

at ,02.0  and 5t . 
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Fig (7): The Maxwellian initial condition 

at ,005.0  and 5t . 
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Table (5) Invariant for solitary waves for 005.0,02.0,05.0  

  t  1I   2I  3I  

 

0.05 

0.2 

0.4 

0.6 

0.8 

1.0 

1.77091 

1.77076 

1.77310 

1.77933 

1.79069 

1.30815 

1.30304 

1.30112 

1.30526 

1.31865 

0.873066 

0.864641 

0.864484 

0.878146 

0.910931 

 

0.02 

0.2 

0.4 

0.6 

0.8 

1.0 

1.76500 

1.75859 

1.75385 

1.75369 

1.76203 

1.26087 

1.24416 

1.22755 

1.21682 

1.22152 

0.858357 

0.834843 

0.819448 

0.824998 

0.863547 

 

0.005 

0.2 

0.4 

0.6 

0.8 

1.0 

1.76109 

1.74909 

1.73544 

1.72899 

1.74210 

1.23501 

1.20773 

1.17258 

1.14804 

1.15998    

0.847997 

0.812565 

0.786662 

0.807576 

0.893848 

 

5. Conclusion 

In this paper, the finite difference method is efficiently applied to solve modified 

equal width wave (MEW) equation. Also, the method is examined solitary waves where the 

schemes are unconditionally stable. We compared between the three schemes and then tested 

the best scheme through single solitary wave in which the analytic solution is known, and 

then extend it to study the interaction of solitons where no analytic solution is known during 

the interaction. The Maxwellian initial condition is used and a relation between   and the 

number of waves is explored. To show how good and accurate the numerical solutions  we 

have calculated the error norm 2L and L  . Moreover, despite the fact that the wave doesn't 

change, results show that the interaction results a tail of small amplitude in two and clearly 

three soliton interactions, and the conservation laws were satisfactorily satisfied. The 

appearance of such tail can be beneficial in further study. 
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