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Abstract. In this paper, we study certain new difference double sequence spaces using an Orlicz function,
a bounded sequence of positive real numbers and a sequence in 2-normed space and we give some relations

related to these sequence spaces.
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1. Introduction

Let w,ls,c and ¢y denote the spaces of all, bounded, convergent and null sequences

x = (x) with complex terms, respectively normed by

]l = sup ||
k

Kizmaz [20], defined the difference sequences lo(A), c(A) and ¢y(A) as follows:

Z(A) ={x = (zg) : (Azg) € Z},
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for Z = I, c and ¢y, where Az = (Axy) = (x) — xp41), for all £ € N.
The above spaces are Banach spaces, normed by

Izlla = lw1] + sup | Az

The notion of difference sequence spaces was generalized by Et and Colak[2] as follows:

Z(A™) = {x = (x) : (A"xy) € Z},
for Z = Iy, c and ¢y, where n € N, (A"z;,) = (A" 1z, — A" 1x;,1) and so that
n n

Anl‘k = Z(—l)v Lhty-

v=0 v

In 2005, Tripathy and Esi [25], introduced the following new type of difference sequence

spaces:

Z(Ay) ={x=(xy) ew: Apx € Z}, for Z =l,c and ¢

where A,z = (Ayx) = (25 — Tgm), for all £ € N.

Later on Tripathy, Esi and Tripathy [26], generalized the above notions and unified

them as follows:

Let m,n be non negative integers, then for Z a given sequence space we have
Z(AM Y ={x = (xp) €w: (Al xy) € Z}

where
n - v n
AmZL‘k = Z(—l) Lhtmuo-
v=0 (Y
Taking m = 1, we get the spaces [(A"), ¢(A™) and co(A™) studied by Et and Colak
[2]. Taking n = 1, we get the spaces lo(Ay,), ¢(A,,) and ¢o(A,,) studied by Tripathy and

Esi [25]. Taking m = n = 1, we get the spaces lo(A), c(A) and ¢o(A) introduced and
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studied by Kizmaz [20]. Difference sequence spaces have been studied by Cigdem and
Rifat[1] and V.A.Khan [14 , 15, 16, 17, 18,19] and many others.

Let A = (\x) be a sequence of non-zero scalars. Then for F a sequence space, the

multiplier sequence F(A), associated with the multiplier sequence A is defined as

The concept of 2-normed spaces was initially introduced by Gahler[3,4,5] in the mid of
1960’s. Since then, many researchers have studied this concept and obtained various re-

sults, see for instance [6].

Let X be a real vector space of dimension d, where 2 < d < co. A 2-norm on X is a

function ||.,.|| : X x X — R which satisfies the following four conditions:

1) ||z1, z2|| = 0 if and only if xy, xo are linearly dependent;
2) |lwr, wo|l = [lrg, : :

3) llazs, zall = aflas, 22, for any a € R*:

(1)
(2)
(3)
(4)

4) o+ ', wof| < fla, wol| + |27, 2]

The pair (X, |.,.]|) is then called a 2-normed space.

Example 1.1. A standard example of a 2-normed space is R? equipped with the follow-
ing 2-norm

|z, y|| :== the area of the triangle having vertices 0, z, y.

Example 1.2.Take X = R? and consider the function |.,.|]] on X defined as:

T4 X
|x1, 22| = abs( Hoe )
To1 T22



SOME VECTOR VALUED MULTIPLIER DIFFERENCE DOUBLE SEQUENCE SPACES 129

The concept of paranorm is closely related to linear metric spaces. Let X be a linear
space. A paranorm is a function g : X — R which satisfies the following axioms: for any
r,y,rg € X, \, \g € C,

(i) g(0) =0 (where 8 = (0,0,---,0,---) is zero of the space );

(ii) g(z) = g(==);

(i) g(z +y) < g(=) +9(y);

(iv) the scalar multiplication is continuous, that is A — Ao, * — x¢ imply Az — Agxo.

Any function g which satisfies all the condition (i)-(iv) together with the condition

(v) g(z) =0 if only if x = 0,
is called a total paranorm on X and the pair (X, g) is called total paranormed space. It

is well known that the metric of any linear metric space is given by some total paranorm

(cf.[27],Theorm 10.42,p183])

An Orlicz Function is a function M : [0,00) — [0, 00) which is continuous, nondecreas-

ing and convex with M (0) =0, M(z) > 0 for > 0 and M(z) — o0, as x — 0.

If convexity of M is replaced by M (xz +vy) < M(z) + M(y), then it is called a modulus

funtion .

J. Lindenstrauss and L. Tzafriri [21] used the idea of an Orlicz sequence space;

Iy == {xéw:ZM(@) < 00, forsomep>0}
k=1 P
which is a Banach space with the norm
|z||lar = inf{p >0: ZM(@) < 1}.
p
k=1

The space [y is closely related to the space l,, which is an Orlicz sequence space with

M(z) =aP for 1 < p < 0.

An Orlicz function M satisfies the Ay — condition (M € A, for short ) if there exist

constant K > 2 and uy > 0 such that
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M(2u) < KM (u)

whenever |u| < ug.

Note that an Orlicz function satisfies the inequality
M(Az) < AM (z) for all A with 0 < A < 1.

Orlicz functions have been studied by V.A.Khan[7,8,9,10,11] and many others.

Throughout, a double sequence x = (zy;) is a doubly infinite array of elements xy,. for
k,l € N. Double sequences have been studied by V.A.Khan[12,13], Mursaleen and Osama
H.H.Edely [24], Moricz and Rhoades|23] and many others.

A double sequence (xj;) in 2-normed space (X, ||.,.]|) is said to converge to some

L € X in the 2-norm, if

lim ||z — L,u1]| =0, for every u; € X.
J,k—o0
A sequence (i) in a 2-normed space (X, ||, ||) is said to be Cauchy with respect to the

2-norm if

lim ||zjp — Zpg, ur|| =0 — for every uy € X and k,q € N.

J?p*)OO

If every Cauchy sequence in X converges to some L € X, then X is said to be complete
with respect to the 2-norm. Any complete 2-normed space is said to be a 2-Banach space.
Example 1.3. Let w be the linear space of all double sequences of real numbers. For

x = (zj), y = (y;r) in w, let us define

|z, y|]| =0, if x,y are linearly dependent,

oo
|z, y|| = Z |z k| lyjk], if x,y are linearly independent.
jk=1

Then it is obvious that ||.,.|| is a 2-norm on w.

2
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The following inequalities will be used throughout the paper. Let p = (pk;) be a
double sequence of positive real numbers with 0 < py; < suppy; = H and let D =

max{1,2#71}. Then for the factorable sequences {a;} and {b;} in the complex plane ,

we have as in Maddox [22]
|ang + b |["5" < D{]ag [P + [bgg [} [1.1]

2. Main results

Let p = (pjx) be any bounded sequence of positive numbers and A = (\j;) be a sequence
of non-zero reals. Let m,n be non-negative integers, then for a real linear 2-normed space

(X, ||-,-|l) and an Orlicz function M we define the following sequence spaces:

IND Pjk
sco(M, ||-,'||7Anm,/\,p)={x:(mjk)EM(X): lim (M(H%HD _o,

J,k—o00

for every z in X and for some p > 0},

A" Ny — L Pk
ac(M, [|., .|, A, A, p) = {13 = (z;1) € w(X): lim (M(H m ]kzjk ,zH)) =0,

J,k—o00

for every z in X and for some p > 0 and L € X},

Azl)\jkl‘jk Pik
ol (M, ||, AL Ay p) = o = (2j) € w(X) @ sup | M T,z < 00,

Jk=>1
for every z in X and for some p > 0},

where (A7 Ajeaji) = (AL Ajeain— A0 A1 o= A0 N1 T a1 AL N1k 1 %4101
and (A2 N\jxxji) = Ajpajx for all 4,k € N, which is equivalent to the following binomial

representation:

n _ s+v
Amkﬂfxﬂ€ - (_1) >‘j+mv,k+mv$j+mv,k+mv
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Theorem 2.1. The sets of sequences oco(M, ||, .|[, A, A, p),2c(M, ||, .||, A, A, p) and
oloo (M, ], ||, A2, A, p) are linear spaces over the field C, complex numbers.
Proof. Let z = (zj;) and y = (y;x) € 2loo(M, ||, .||, AL, A,p) and o, € C. Then there

exist some positive numbers p; and py such that

AP N xs Pik
sup (M( L L L )> < 00,
G,k>1 P1

An )\ . Pjk
sup (M( M,z )) < 0.
J,k>1 P2

Define ps = max(2|alpy, 2|5]p2)

Pjk
A7 Nk AT Xy
Sup M m ]kxjk+ m jky]k’z
jik>1 P

A"\ . Pjk A" Ny Pjk
<0y (ar ([0 ] ) 0 g (| S ] ) ) <
j,k>1 P1 Jk>1 P2

Since M is non decreasing convex function using (4) property of (X.||.,.||).

and

This proves that oloo (M, ||., .||, A%, A, p) is a linear space. A similar proof works for 5¢ and

2C0-

Theorem 2.2. For Z = 5l 2c and ¢y, the spaces Z(M, ||.,.||, A, A, p) are paranormed
by

g(z) = inf {pp]Hk : sup M(H

AZm/\jk‘xﬂf
)
Jk>1

)=

where H = max(1, sup pji).
3k>1
Proof. Clearly g(z) = g(—x), x = 0 imply that g(6) = 0.

Let © = (zjk),y = (y;x) € 2c0(M, |-, .||, AL, A, p). Then there exist p;, po > 0 such that

N
([P ) =

jk>1 p1
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and

AP Ny,
P2

Jk=>1

Let p = p1 + p2. Then by convexity of Orlicz functions, we have

7,k>1
< < /1 ) n[(H m Jk‘ ]k?’ H)
pl PQ j,k>1 pl

A Xirlj
() g (|25
P11+ p2) jk>1 P2

AP NikT i +AT Nk Yk
o ;

z

Thus we have

5 A\
g(z +vy) <inf {ka : sup M<H%,ZH) < 1}
1

Jk=>1

p; A" N
+ inf {ka : sup M<HM,2’H) < 1}.
P2

Jk=>1

This implies that g(z +y) < g(z) + g(v).

The continuity of the scalar multiplication follows from the following :
P Al adjpx;
g(ax) = inf {ka : sup M(“M,z’D < 1}.
Jik=>1 p

Theorem 2.3. If X is a 2- Banach space, then the spaces Z(M,|.,.||, A, A, p), Z =

2lso, 2¢ and ¢y are complete paranormed spaces.

Proof. We prove the theorem for ol (M, ||., .||, A, A, p) and the proof for the other cases

can be established following similar techniques.

Let x = (2};) be a Cauchy sequence in 5l (M, ||., .||, A7, A, p) and let € > 0 be given.

For a fixed z¢ > 0, choose 7 > 0 such that M(*5%) > 1 and mg € N be such that
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g((2y — ) < :vio’ for all 7,7" > my.

By the definition of g we have,

»; A" N (2t —
inf {ka . sup M(H mAik( ik ‘7k>

) < 1} for all 4,7 > me.

, 2
Jik>1 p
Then we get,
A? N (zh, —
sup M(H = jkl( ok = ]k),z ) <1< M(ﬂ) for all 4,7 > my.
jk>1 g((zh), — %)) 3

This implies that

rr ; i/
< <_0>9<<xz-k — ) € 50— = < forall i, i > m

. y
A Nagat, — AN Ntz
H m”7\ IR jk m7 IR ko 3 J 3 rZo 3

for every Z in X.
Hence (27%,) is a Cauchy sequence in the 2-Banach space X for all (j,k) € N x N.

Since X is complete this implies that (A7, \;xz k), is convergent in X for all j. k € N.

For simplicity, let lim A? Xjxx; =y, for (4,k) € N x N.
71— 00

Let j =1
. n i . - v n i
Zlgilo Am)\jkl’jk = }LIEO ZO(_l) y )‘1+mv,k+mvx1+m’u,k+mv
1—00
Let k=1

n

A n ,

. n i1 v . z

zh_glo AL Az = Zh_glo Z(_l) Ajrmo, L mo T g mo, 1+mo
v=0 v
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Similarly we have
Zlgilo AR Nty = zliglo Ajethy, = yji, for j, k€N [2.3.3]

Thus from [2.3.1], [2.3.2] and [2.3.3] we have

lim x;k = xj;, exists for all 7,k € N.
1—00

Now we have for all ¢ > my

: A N (2t —
inf {pp]Hk : sup M(H mAsk( ik Jk),z
Ji:k>1 P

)<

This implies that

P A Nig(xt, — A Nipx;
lim inf {ka . sup M(H mAik (L m gLk

),ZH) < 1} < e forall 2 > my

Jyk—ro0 G k>1 P
Hence (2" — x) € oloo (M, ||, .||, A7, A, p).
Since (2') € oloo(M, ||, ||, A%, A, p) and oloo(M, ||., .||, A7, A, p) is a linear space, so we
have x = z' — (2’ — ) € oloo(M, ||., .|, A%, A, p).
Theorem 2.4. If 0 < pj < g < oo for each j,k, then Z(M,|.,.|[,A,A,p) C
Z(M,||., .||, A" A, q) for Z = 5¢o and oc.

Proof. We prove the theorem for Z = 3¢9 and the proof for other cases can be established

following similar techniques.

Let x = (z;1) € 2c0(M, ||, .||, AL, A, p). Then there exists some p > 0 such that

lim (M M 5 o -0
Jk—o0 P ’ '
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This implies that

A" o s Pjk
lim (M(HM,ZH)) <e(0<e<)

J,k—o0 P
for sufficiently large j, k.

Hence we get

An}\ . 95k An/\ . Pjk
o, (r(|F252 ) = o, (e (B3 ) o
J,k—00 P J,k—00 p

This implies that
T = (xjk) € QCO(Mu ”7 ||7Anm7Aap>

This completes the proof.

Corollary 2.5(a). If 0 < inf p;;, and for each j and &k, p;, < 1, then Z(M, |., .||, A}, A, p) C
Z(M,||., .||, A%, A) for Z = 3¢ and oc.
(b). If 0 < inf p,j, and for each j and k , pjr < 1, then Z(M, ||, .||, AL, A) C Z(M,|., .||, A, A, p)

for Z = 9¢¢ and ,c.

Theorem 2.6. Z(M, ||.,.|[, A" 1 A,p) € Z(M,|.,.||, A", A, p), for i = 1,2,3,...n — 1

for Z = 5l 2¢o and oc.

Proof. That the inclusion is strict follows from the following example:

Example 2.7. Let m =3,n =2, M(x) = z'Y and z € [0,00) and

3 for j odd and all kK € N,
Pjk =
2 otherwise .

Consider the 2-normed space as defined in Example[1.3] and let A = (ﬁ) and
v = (i) = (G + k)% (G + K)?).
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Then

2
A2 \jpzie = Y (—1)° " Aj 7’
3\jkLjk — J+3v,k+3vL 430, k+3v
v=0 v

= ANjrTjk — 2Aj13 k43713643 T Aj16,k+6Tj46,k+6

= (8% (G +k)?) = 25355 (G +E+6)%, (G +k+6)?) + 5pm (G + k+12)%, (5 +
k+12)2)

= +kjtk)=20+k+6j+k+6)+(+k+12,j+k+12)
= ¢ for all j,k € N.

Hence z € oco(M, ||, .||, A3, A, p).
Again we have

1 El o[ :
Ag\jpjp = (—1) Aj430,k+30L 4 30 k430
v=0 v

= NjkTjk — Nj+3k+3Tj43 k+3
=(+kj+k)—(G+k+3,j+kE+3)
= (—=3,-3) forall j,k € N.

Hence = ¢ oco(M, ||., .||, AL, A, p).
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