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Abstract. The object of the present paper is to derive some properties of analytic functions in the open unit
disc which are defined by using new generalized multiplier transformations, applying a lemma due to
Miller and Mocanu.
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1. INTRODUCTION

Let A(p,n) denote the class of functions f(z) of the form f(z) = z” + Za ij

J=p+n

p,ne N = {1, 2, 3...},which are analytic in the open unit disc U ={z:ze C,|z|<1}. In

particular, we set A(p,1)=4,,A4(1,n) = A(n) and A(,]) = 4= 4, = A(1), which are well

known classes of analytic functions inU .

We consider the following new generalized multiplier transformation.
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760 SOME PROPERTIES OF ANALYTIC FUNCTIONS

Definition 1.1[17]. Let f(z) € A(p,n).The new generalized multiplier transformation

1 ja, » on A(p,n)is defined by the following infinite series:

5
OH—k,Bj ajZ‘i,
a+pp

where p,n e N, 6 20,5 >0, areal number such thata + pf > 0.

(1.1) Iiaﬁf(z)zz” + i (

Jj=p+tn

It follows from (1.1) that

10,0 f(2)=f(z)and ], , f(z)=zf (2)/ p,
(1.2) (a+pPIo,f(D)=all, ,f(2)+ ], [(2)).

We note that for 6 =m e N, = N U {0} (n =1 in some cases)

o [ f(2)=1,,/(2)(See[16]).

o [, f(2)=1(@)f(2),a>-p(See[l],[13] and [14]).
o Ly oppf @D =1,(B.Df(2).l>~p,>0(See[6]).
o I7,,f(2)=D"f(z)(See[4],[9] and [11]).

o I7,,f(2)=N,,f(z),where N, f(z)is a new operator defined by

NI f(z)=z" + Z

_] p+n

(1+k,6’

1+pﬂj a,z',(f € A(p,n), f 2 0).

Remark 1.2. 1) I} (a)f(z) was considered in [1], [13] and [14] for « >0 and
I7(B,1) f(z) was defined in [6] for /20,520, i) I () f(z)=1, (1L, f(2),l>-p,
i) 17(B,0)f(z2)=D,(B)f(z) , B=0, was mentioned in Aouf etal. [3], iv)
D" (), = 0, was introduced by Al-Oboudi [2], v) D" (1) f(z) = D" f(z) was defined by

Salagean [12] and was considered for m > 0 in [5] , vi) [["(a)f(2),a =0, was

investigated in [7] and [8] and vii) /;" (1) f(z) was due to Uralegaddi and Somanatha [18].

760



SR SWAMY" 761

The main object of this paper is to present some interesting properties of analytic

functions defined by using the new generalized multiplier transformations / i,a, 2/ (2)

associated with the class A(p,n).

In order to prove our main results, we will make use of the following lemma.

Lemma 1.3 [10]. Let Q2 be a set in the complex plane C. Suppose that the function

V¥ : C? xU — Csatisfies the condition ¥ (ix, ,y,;z) ¢ Q for all ze U and for all real

X,and y, such that
(1.3) ylﬁ-%n(l-Irx;).
If p(z) =1+ c¢,z"+ ... is analytic in U and for ze U,y (p(2),zp'(z);z) < Q, then

Re(p(z))>0 in U .

2. MAIN RESULTS

Theorem 2.1. Let A be a complex number satisfying Re(4) >0 and p<1. Let
p,neN, £>0,0>0,>0,a a real number such that a+pf >0, f(z),g(2)

€ A(p,n) and
1601 ﬂg(z)
(2.1) Reqy 1251 >y,0<y <Re(4),z € U.
]p,a,ﬂg(z)
Then
I !
. J;,a,ﬂf(z) J2uarpPpt Py oy
I, ,,8(2) 2u(a+ pp)+ pny
whenever
o @Y (1 oY, @)
(2.2) Red(1-A) 22— | + | 22 Lo >p,zeU.
) o+l o
[p a,ﬁg(z) ]p,a,ﬂg(z) [p,a,ﬂg(z)
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Proof. Let 7=Qu(a+ph)p+ pny)/Qu(a+ pp)+ pny) and define the function

p(z) by
I° z “
(2.3) p(z2)=(1-1)" ‘;”‘ﬂ—f() -7
[p,a,ﬂg(z)
Then, clearly, p(z)=1+c,z" +c,,,z"" +.. and is analytic in U . We set
1 ’Sa 48(2) .
u(z) = /11’;;1’ ( and observe from (2.1) that Re(u(z)) > y,z € U.Making use of the
pa.p8\Z

identity (1.2), we find from (2.3) that

(2.4)
A Y s i
If we define y/(x, y;2) by

(2.5) w(x,yz)=1+( —%w% y}

then, we obtain from (2.2) and (2.4) that

{w(p(2),2p'(2);2) 1|z <1} = Q={we C:Re(w) > p}.
Now for all z e U and for all real x,and y, constrained by the inequality (1.3), we find
from (2.5) that

Refy (v, y:2)} = 7+ (1) — 2 Re(u(=))
u(a+ pp)

Sr—(l—r)LEp.

2u(a + pp)

Hence w(ix,,y;;z)¢Q. Thus by Lemma 1.1, Re(p(z))>0 and hence

Re [Ip,a,mz)

Y7
5 > 7 in U .This proves our theorem.
Ip,a,ﬁg(z)
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If we set

(o) ("’“ﬂf (z)}[ pa,ﬂf@)]’H +<1_1>[1§,a,ﬁf<z>]"
10082 \ 10, ,8(2) A NI, .8())°

then for6 >0, >0, >0, a real number such that a+pf >0, 1>0 and p=0,

Theorem 2.1 reduces to

I° z g
(2.6) Re(W(2))>0,z €U implies Re f;“ﬁ—f() > nipy zeU
1w p8(2) 2u(a+ ppP)+nipy
50{ ﬁg(z) . .
whenever Re ’;H—() >y,0<y<lzeU.Letd — . Then (2.6) is equivalent to
paﬂg

(fb*lﬂﬂz)]( a,ﬂﬂz)j” _(fziaﬁf <Z>_}” 0 in U
]bﬂﬂg(z) pmﬂg(z) Iimﬁg(z)

I° oY) I° 7
e —i;'a"gf( ) >1inU ,whenever Re %g() >y,0<y<lzelU.
Ip’a’ﬂg(z) paﬂg( )

implies

In the following theorem we shall extend the above result, the proof of which is

similar to that of Theorem 2.1.

Theorem 2.2. Let p,ne N, u>0,0>0,5 >0, a real number such that ¢ + pf >0,

I
f(2).8(2) € A(p.n) and Re{]‘*—} >y0<y<l, zeU.If

p,a,ﬁg )

zeU,

Ref Liat @Y L /Y _(Lpf @Y, npra=p)
10 g(2) \ 12, ,8(2) 10, ,8(2) 2u(a+ pp)’

then
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764 SOME PROPERTIES OF ANALYTIC FUNCTIONS

Re (Ip,a,mz)

u
>p,zeU.
fi,a,ﬂg(Z)J

Remark 2.3. Foru =1, and ¢ =1+ p— pf,]l > —p, Theorem 2.1 and Theorem 2.2 agree
with Theorem 2.1 and Theorem 2.2, respectively, of the author [15](considered for/ > 0).

In a manner similar to Theorem 2.1, we can easily prove the following theorems.

Theorem 2.4. Let pneN, 6>0,>0,a a real number such that o+ pf >0,
u>0,p<land f(z) € A(p,n). Then for 4 a complex number with Re(1) > 0, we have

2

Re [l,‘f,a,ﬂf(z)]” . 2uta+pBp+nfRed) |,
r 2u(a+ pf)+npfRe(A)

z

whenever

Req(1—- l)(—]p’a’ﬂf(z)] + /1[ j’;’;’ﬁiizi J( ["’a’ﬂpf(Z)] >p,zeU.
zZ pa,f zZ zZ

Theorem 2.5. Letp,ne N, >0, >0,a a real number such that « + p >0, u>0,

nBRe(A)

A a complex number with Re(1)>0 and
2u(a+ pp)+npRe(A)

<p<l If

f(z) € A(p,n)satisfies the condition

Re (1—/1)[%1{(2)] +/1{j‘;’+””ﬂ; EZ;J[I"’“’{(Z)J >M(p,n,A,a, B, i, p),
z p.af z z

I° Y
(zeU), then Re [%{[()] > p,z e U, where
4

plQRu(a + pp)+nfRe(A))p —nfRe(1)]

M(p,n,A,a, B, 1, p) = 2+ pp)
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nfRe(1) . nfRe(4)

p = d p= in Theorem 2.4
2u(a+ pp)+npRe(1) 2A2u(a + pp)+nfRe(1)]
yields the following:

Corollary 2.6. Let pne N, 6>20,>0,¢ a real number such that a+ pf >0,
41 >0,4 acomplex number with Re(1) > 0and f(z) € A(p,n).Then

(i) Rel (1- A)(MJ ; z( I';:"‘"” AS J{ Tpapf (Z)] S0.zeU
z? Ip’a’ﬂf(z) z?

implies

b

re [1 Sunt (Z)J” § nBRe(1) L.
’ 24(c + pf) + nRe(A)

z
and
(i1)
Re| (1— z)[MJ + z[lg’“’ﬁf (Z)J([P*“’ﬂf (Z)] > M(p,n,A,a, By i),z €U
z? Ip’a,ﬁf(z) z?
implies
rel [ Lrasf @) g g nfRe(A) v
z¥ 2[2u(a+ pp)+npRe(4))]
where

nf’Re(A)’ |
Su(a+ pB)2u(a + pp)+ nfRe(A)]

M(pana/laaaﬂa/u) = -

Remark 2.7. For a =1+ p— pf,l >—p, Theorem 2.4, Theorem 2.5 and Corollary 2.6
agree with Theorem 2.4, Theorem 2.5 and Corollary 2.6, respectively, of the author [15]

(considered for/ >0).
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