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Abstract. Stability analysis of a deterministic SEIR model of Rift Valley Fever with climate change parameters
has been considered. The computational results show that the disease-free equilibrium point (DFE) is locally
asymptotically stable, and using the Metzler stability theory, we find that the DFE is globally asymptotically stable
when Ry < 1. Using the Lyaponuv stability theory and LaSalle’s Invariant Principle we find that the endemic
equilibrium point (EE) is globally asymptotically stable when Ry > 1. These results are in conjecture with the

results obtained from numerical simulations.
Keywords: Lyapunov function; disease-free equilibrium; endemic equilibrium; local stability; global stability.

2010 AMS Subject Classification: 92B05, 37N205.
1. Introduction

Stability analysis of equilibria is one of the classical problems in mathematical epidemiology
and different approaches have been proposed to the stability of the equilibria. Lyapunov Direct
Method [1] combined with LaSalle’s Invariance Principle [2] has traditionally been a power-
ful tool for the analysis of stability of autonomous systems of differential equations through
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construction of suitable Lyapunov functions. Lyapunov functions are not unique and therefore
different forms of Lyapunov functions have been proposed to including: (i) the logarithmic
Lyapunov function

n
(1) L(x;) = Zci(xi—xi —X; lnx—i)

1 i

~.

proposed by Goh [3] for Lotka-Voltera systems, and later applied by Korobeinikov [4] for SIR,

SIRS and SIS epidemic models; (ii) the composite quadratic Lyaponuv function

2
@) Vin) =3 [Z<xi —x;-")]

proposed by Vargas-De-Ledn [5] also for SIR, SIRS and SIS epidemic models; (ii1) the composite-

Volterra function

3) W) = c [i(xi—x;w - 212—1]

i=1 i=1 i=1%

proposed by Vargas-De-Leo6n [6] for models with relapse; and (iv) the explicit Lyapunov func-

tion
4) =Y ai(xi—x; Inx;)

proposed by Korobeinikov [7-9] for SEIR and SEIS epidemic models.

Construction of Lyapunov functions to establish stability of equilibria is not an easy task
and therefore stability analysis through geometric approach proposed by Li and Muldowney
[10] has been used to prove the global stability of the endemic equilibrium. On other hand, a
method based on the use of stable Metzler matrices has been proposed and proven to be useful
to establish the global stability of DFE by Kamgang and Sallet [1]. The importance of the
Metzler matrices is well recognised in the stability of dynamical systems and positive systems
[12-13] and more generally in biology, engineering and economics [1-2,14-17].

In this paper we consider the model developed by Mpeshe ef al. [18] to compute the e-
quilibrium points and analyse its stability. We establish the global stability of the disease-free

equilibrium point using stable Metzler matrix theory. We also establish the global stability of
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the endemic equilibrium point using Lyapunov Direct Method combined with LaSalle’s Invari-
ance Principle. Finally, we perform numerical simulations of the model system in a closed

population.

2. Materials and methods
2.1. Model formulation

The model developed by Mpeshe er al. [18] considers three populations: mosquitoes, live-
stock, and humans with disease-dependent death rate for livestock and humans. The mosquito
population is subdivided into two: Aedes species and Culex species. The egg population of
Aedes spp. consists of uninfected eggs (X,) and infected eggs (Y,). The population for adult
Aedes spp. consists of susceptible adults (S, ), latently infected adults (E, ), and infectious adults
(I,). The egg population of Culex spp. consists of uninfected eggs (X.) only and the popula-
tion for adult Culex spp. consists of susceptible adults (S.), latently infected adults (E.), and
infectious adults (Z.). The livestock population consists of susceptible livestock (S;), latently
infected livestock (E;), infectious livestock (I;), and recovered livestock (R;). The human pop-
ulation consists of susceptible humans (S},), latently infected humans (Ej,), infectious humans
(1) and recovered humans (Rj,). The model parameters and their description as they have been
used in this work are given in Table 1.

The equations of the model are (5), (6), (7), and (8), where T and P represent temperature

and precipitation respectively:

Aedes Mosquito
(5a) d;” = by(T,P)(Ny — fuls) — ha(T,P)X,,
Y,
(5b) = b1 P) fly (T, P,
dSq I I,
(5¢) o = ho(T,P)X, — a(T)S, lla(T)NlSa A;m(T)NhSa,
dEa I[ Ih
- Tia aTia_ aT aTEm
(5d) I Ata( >N,S + Aa( )NhS (€(T) + pa(T))
dl,
(5e) o= ho(T,P)Y, + €,(T)E, — ua(T)1,,
dN,
(5) = ho(T,P) (X, +Y,) — Ua(T)N,.

dt



Culex Mosquito

(6a)

(6b)

(6¢)

(6d)

(6e)

Livestock

(7a)

(7b)

(7c)

(71d)

(Te)

Humans

(8a)

(8b)

(8c)

(8d)

(8e)

2.2. Equilibrium points

dX,
dt
ds.
dt
dE,
dt
dl.
dt
dN,
dt

dsy
dt
dz,

d
d
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= bC(T, P)NC — hC(T,P)XC,
I I
=he(T,P)Xe — ue(T)Se — Ao (T) =S¢ — Ape (T) =S,
N; N,
I I
= Ae(T) 3 Se+ Ae(T) 3o Se = (€(T) + He(T)) e,
[ b
=&(T)E. — uc(T)I,
= he(T,P)Xc — pe(T)N.
ds; 1, 1.
0 BNy — ) — Ay (T)<28) — Ay (T) =SS,
” 1N — S, 1( )NaSl 1 )NCSI
dE[ Ia IC
L 2u(T) 28+ Ay (T) 58, — E,
o Aal( )NaSl+ 1( )NCSI (& +w)E;
dl
jzglEl_(Nl+¢l+%)Ila
Rt — wR
dr = Yl — WKy,
dN;
U by — w)N, — 4ul.
ar (b1 — w)Ny — duly
1

1
—— = byNp — UnSp — lzhﬁllSh — lah(T)NlSh — Aen(T

a

— = E,— (Up+ On+ V)1,

d

—— = Yulp — WiRp,

t
I
dt
Ry
dt
N,

dN,

dt

(br — )Ny — Opl.

Il
—S
)N hy

c

I 1, 1.
=X =S, + A (T)—=—S), + A (T)—=S), — (g E
thl n+ Aan( )Na n+ Acn( )Nc n— (&n+ Up)En,

In solving for the equilibria, we omit the expression containing R in livestock and humans

because it can be determined when S, E and I are known. This will transform the equilibria from

De Rf to Rf. We therefore consider the following system of ordinary differential equation:
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X,
(9a) I = ba(T, P) (Na —fala) — ha(T,P)Xa,
day,
(9b) 7 =by(T,P) fala — ha(T,P)Y,,
ds, i/ I
9 =hy(T,P)X, — e(T)Sy — Mg (T)—84 — Apa(T)—S,,
9 B BT PXa = a(T)S0 = M) 20~ Do T)
dE, I I
d :laTia )vaTia_ a(T a(T))Eq,
o e AT 80+ ol T) 50— (eaT) + (7))
dl,
(9e) E = ha(T7 P)Ya + Sa(T)Ea — ua(T)Ia,
axX.
(9f) dt = bc(TuP)Nc _hc(TaP)Xc’
ds,. I I
9 — he(T, P\Xo — U (TS0 — Ago(T) <L S, — Mo (T) 5.,
©p) B (T PIXe ~ TS = A (T) 35— D)2
dEC I] Ih
h :;LcTic lcTic* (T (T))E:,
o e Be(T) S+ A7) S, — (6T + (7))
dl.
%91) i €(T)E: — uc(T)I,
. dSl I, I
—=b - — g T)—S — c T)— ;
C)) g = D= S Aai( )NaSl Act( )NCSI
dE, L L.
k - = T)— J(T)—S8; — E
(9k) 5 Aai( )Na51+/1¢z( )NCSZ (& +w)E,
dl
D 7; =gE — (W + ¢+,
dSh Il Ia IC
Dk Ny — 1S — M~ — Aan(T) <2 S — Aen(T) <E- S,
(9m) o wNn — UnSh thlSh n( )NaSh a( )NCSh
dEh I[ Ia IC
o At T)-% T)-58) — E
(9n) 5 lthlSthlah( )NaSth?tch( )NCSh (& + tn)Ep,
di,
(%0) = € — (- 0+ )

We compute the equilibria D by setting the left-hand side of the system (9) equal to zero. That

is,
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(10a) 0= bll(Tap)(Na_faIa) —ha(T,P)Xa,
(10b) 0 = by(T,P) ful, — ha(T, P)Y,,
(10c) 0= ha(Typ)Xa - Na(T)Sa - A'la(T)ESa - Aha(T)IlSa7
N, Ny,
1 1
(10d) 0= Aa(T) =S+ Ana(T) Sy — (€4(T) + ta(T))Ea,
N; Ny,
(10e) 0= ha(T,P)Ya + Sa(T)Ea — ‘ua(T)Ia,
(10f) 0 = b(T,P)N. — he(T, P)X.,
1 1
(10g) 0 = he(T,P)X, — Ue(T)Se — Aie(T) =S — Ape(T) LS,
N Ny,
1 1
(10h) 0 = Ae(T) - Se + Ane(T) S — (€(T) + p1e(T) ) Ee,
N; N,
(10i) 0= &(T)E, — pe(T)L,,
(10) 0 = byN; — 1Sy — A (T) 298, — 2(1) 25
d| = O[N] — Upd; al Nal cl Ncl,
1, 1.
(10k) 0= Aaz(T)ﬁSz + lcz(T)ﬁSl —(g+Ww)E;,
(101) 0=gE — (W + ¢+,
(10m) 0 = BN — 14Sh — A S — A (T) 208 — An (T) 25
= OplNp — Updh thz h ah N, h ch N, h
(10m) 0 = AL S+ A (T) 28+ Aen(T) -5 — (e + ) E
= thl h ah N, h ch N, h h T+ Hn)LEp,
(100) 0= &Ep— (tn+ O+ W) n-

Direct computations gives us two equilibrium points on the transformed region Rf, the

disease-free equilibrium (DFE)

DO = (x2,v2 80 EC 19 x0 50 EO 10,80 EP 10,80 ED 1Y)

ata’r-a)r"ar"arrcr>cecr—crvco

bo(T.P) o - ba(T,P) o - bo(T,P) o be(T,P)
= N;,0, N;,0,0, N;, N;,
( ha(T) Ma(T) he(T) ue(T)

(11)
b b

O’Ov JNIO’OvOa hN}(l))an> 9
My Hn

and the endemic equilibrium

D* = (X5, Y5, 8¢ EF I XF S EX I* St EfIF SEELIY)

a’-ar a“rcH crtco
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where
* b T7P * *
(12a) X:= ET PiN —y,
¢ (T, )( a(T,P) fa— 1a(T))
ha(T,P)X?
* )
(120) Sa — ( )+ l/a( )SzEf i lha( )S;,E;,‘ ’
Ha Ni(w+o+y) 1 Ny (Bt t+1)
lla N* +)L a/{;l*
e F TR )
a
ha(T, P)
12 =2 y*
(12¢) “ (TP fa
be(T, P)
12 Xr=2"2 N
(12f) = (TP
N hC(T,P)X*
(12¢g) Si= )+ e (T)E,E] Me(T)ELE;
He Ni(W~+¢i+v) N*(Mh+¢h+7h)
A ii-kl/ i
(12h) E! = usm
€(T)+ u.(T)
T)E*
(12i) = SDE
pe(T)
(12) 5j = bili
l ( )ha(TP)Y A (T)e(T)E? *
M =N TP e T Noe(T)
A 1% + A, l%
(12K) Ef = #‘”NS,
gES
(121) =—"L—
M+ &+
byN;
(12m) St = - ,
nEE; Aan(T)ha(TP)Yr | Aen(T)ec(T)E
Mht Neurorm T NBa TP e T Nem(T)
l]h%—i—)ul%—i-l-hi*
(120 S T
gES
(120) = —
Hp+ O+ Y

2.3. Stability analysis of equilibrium points

In this section, we determine the conditions under which the equilibrium points are asymp-

totically stable or unstable. Asymptotic stability implies that the solution starting sufficiently
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close to the equilibrium point remains close to it and approaches it as t — oo, while instability of
the equilibrium implies that there are solutions starting arbitrary close to the equilibrium point

which do not approach it.
2.3.1. Local stability of the DFE

In general, local asymptotic stability (LAS) implies that trajectories start arbitrary close to

the equilibrium point but they do not reach it. We start by evaluating the Jacobian matrix at the

DFE.
That is,
Ju 0 Jiz
(13) JD) = | 1y Jn s |
J351 Jn 33
where
[ h(T,P) 0 0 0 0 |
0  —h(T,P) 0 0 0
(14)  Ju=| hy(T,P) 0 — U (T) 0 0 ;
0 0 _(ga(T>+“a(T)) 0
L 0 ha(T, P) 0 &a(T) —ta(T) |
(0 0o o0 o | (0000 0 |
0 0 00 0 0 0 0 O 0
(15  Jiz=| 0 —Au(T)3% 0 0 —lha(T)%;‘ob =100 0 0 0 ;
s 9
0 M)y 0 0 Al 0000 0 )
0 0 0 0 0 000 0 —Au(T)5
—h(T,P) 0O 0 0 0
hc(T>P) —‘LLC(T) 0 0 0
(16) Jn = 0 0 —(&(T) + 1 (T)) 0 0o |
0 0 &(T) —ue(T) 0
0
0 0 0 ~Aa(T)5y —Hi |
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0 0 00 0
0 _)Llc(T);T?) 00 —MAD%
17 Js=|0 AZC(T)I% 0 0 th(T);—% ,
0 0 00 0
0 0 00 o
(0000 Aa(T) 3 _ (000 2a(T) 3 0]
0000 0 00 0 0 0
(18) Ji=0 00 0 —/lah(T)N% J=[0 00 -2, o]
0000 lah(T)f,—’zo 000 lch(T)% 0
0000 0 00 0 0 0
and
| —(&+ ) 0 0 0 0 ]
& —(+o+v) O 0 0
(19) =] 0 S SR 0
0 )Llh%;) 0 —(&n+un) 0
|0 0 0 & (ot |

Combining all together, the matrix J(Dg) diagonal entries in the third, seventh, tenth, and
thirteenth columns. Therefore, the diagonal entries —u,, — U, —;, — Uy, are four eigenvalues
of the Jacobian. Excluding these columns and their corresponding rows, we remain with a

matrix Ji 1«11 given by

Ju 0 Ji3
(20) J(Do)=| 0 Jnn 73 |:
f31 j32 j33
where
[ (T,P) 0 0 0 |
3 0 —ha(T, P) 0 0
(21) Ji1 = )
0 —(€a(T) + 1a(T)) 0
0 ha(T, P) &(T) —Wa(T)
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(22) Jiz = 50 o |
0 )vla(T)ITL(IJ 0 )Lha(T)ITL(lJ
1 h

—he(T,P) 0 0 0 0 0 0
(23) Jy = 0 —(e(T)+u(T)) 0 3= 10 ’IZC(T)% 0 lhf(T)% ’
0 &(T) —1e(T) 0 0 0 0
_ S? e r S? T
0 0 0 Au(T)zp 0 0 2Aa(T)zp
- 000 0 - 00 0
(24) J31 = o |2= PE
00 0 Auw(T)Fh 0 0 An(T)3h
(o000 0 | 00 0 |
and
— (& + ) 0 0 0
_ & —(+o+m) 0 0
(25) J33 = 0
0 lth*’IB —(&n+ ) 0
I 0 0 &y _(“h+¢h+’)/h) ]

Making further computations on J(Dy), we find that all eigenvalues of the Jacobian matrix
J(Dyp) are negative. This implies that the system is asymptotically stable, and hence, the fol-

lowing proposition:

Propositon 2.1. The disease-free equilibrium point is locally asymptotically stable in D if
Ro < 1 and unstable if Ro > 1.

2.3.2. Global stability of the DFE
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The global stability of the DFE is determined by applying Castillo-Chavez et al. [19]. We

write the system in the form

aX, _
(26) g =A1(x)(Xy — XprEn) +A12(X)Xe,

e = Ay (x)Xe,

where X, is the vector representing the non-transmitting compartments, and X, is the vector

representing the transmitting compartments.

Hence,
(27a) Xo = (X4, S0, Xe,Se,81,50)" . Xe = (Ya,Eq,la,Ec,1c,Ep I, Ep, Iy) T,
_ ba(T7P) ba(TvP) bc(TvP) bc(TvP) b by,
(27b) XDFE,H - (ha(T7P) N£17 ,LLa(T) as /’lC(T,P)Nw IJC(T) NCa ENla EN/H)
with
[ hJ(T,P) 0 0 0 o 0 |
haT,P)  —ta(T) 0 0 0 0
0 0 —h(T,P) 0 0 0
(28) Ai(x) = :
0 0 h(T,P) —u(T) 0 0
0 0 0 0 —u; 0
i 0 0 0 0 0 —pup |
0 0 —by(T,P)f, O 0 0 0 0 0
0 0 0 0 0 0 —A(T)3 0 —Aua(T)3¢
00 0 0 0 0 0 0 0
(29)  Ap(x) =
0 0 0 0 0 0 —Ae(T)x 0 —Ane(T)3:
00 —Au(T)g- 0 —Au(T)3- O 0 0 0
00 —Aa(T)3 O —Aa(T)3E O —Amyp O 0
and
My M,
(30) Ar(x) = ,

My My
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where
_ha(TaP) O ba(T7P)fa O 0
_(ga(T)"i_ua(T)) 0 0 0
(3D My = | h,(T,P) €.(T) —a(T) 0 0 :
0 0 _(SC(T>+‘LLC(T)) 0
0 0 0 e(T) e
‘o0 0o o o0 | i D15 0 () ]
O O al T N, O cl T N
0 Aa(T)3¢ 0 Ana(T)3E “ ‘
! 00 0 0 0
(32) Mp=1{0 0 0 0 My = o )Sh hon )S] ;
0 0 AT N 0 AT N
0 Ae(T)3 0 Zne(T)3E “ ‘
00 0 0 0
o 0 0 0 | - -
and
—(&+ ) 0 0 0
g —(W+ o +7) 0 0
(33) My = s
0 At —(&n+ ) 0
|0 0 €n —(p+ O+ 1) |

A direct computation shows that the eigenvalues of Aj(x) are real and negative. Thus, the

system
dX,
dt

= A1 (x) (X, — XpFEn) +A12(%)Xe,

is globally asymptotically stable at Xprg. Also, combining all the sub-matrices, the matrix
Aj(x) is a Metzler stable matrix. Thus, the DFE is GAS and therefore, we have the following

proposition:

Propositon 2.2. The disease-free equilibrium point is globally asymptotically stable in D if
Ro < 1 and unstable if Ro > 1.

2.3.3. Global stability of the endemic equilibrium

The local stability of the DFE suggests local stability of the EE for the reverse condition [20].
Hence we only investigate the global stability of the EE. We explored the global stability of
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the endemic equilibrium via construction of a suitable Lyapunov function using Korobeinikov

approach [7-9]. In this approach, we construct Lyapunov functions of the form

(34) V= Za, —xInx;),

where g; is properly selected constant, x; is the population of the i compartment, and X7 is
the equilibrium point. The approach has been found to be useful for compartmental epidemic
models with any number of compartments [7-9].

Thus, consider the Lyapunov function

V=wi(X,—XInX,)+wy(Y,—Y)InY,) +w3(S; — S, InS,)
Fwa(Eq— EXINEg) +ws(L — I Inlp) + we (Xe — X' InX,)

(35) +w7(Se —S:InS.) +wg(E. —E InE.;) +wo(I. — I Inl;)
+wi0(S; — 87 InS;) + w1 (E; — Ef InE;) +wia(l; — I Inl))

+wi3 (S, — SZ InSy) +wia(Ej, —E;; InEy) +wis(I, — I, Inly),

where w; >0fori=1,2,---,15.

The time derivative of V' is then given by

sl ‘irﬁddsh 1l ‘2@1 1s( —gﬂh
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and from (9) we have

av X
E = Wl(l - E)[ba(TaP)(Na _fala) _ha(T7P)Xa]

Fwa(l— ’;i) [ba(T, P) fuly — ha(T, P)Y,]

a
S* 1 1
s, h
Sa N Ny

(1= ) (7)ot 2aa(T) S (6a(T) + a(T))E.

+ws(1— ‘;) lha(T, P)Ys + €4(T)Eq — pta(T)1,]

+W6(1 - %)[bc(Tap)Nc _hc(T7P)Xc]

C

Sk I Iy
+W7(1—?C)[h¢»(T,P)XC .uc<T)Sc AIC(T)NZSC )’hC(T)ﬁhSC]
E: I; I
37) +ws(1— Ei)Mlc(T)ﬁSc + Mne(T) -Se — (&(T) + Ue(T) )Ec]
¢ [ Ny,
I
+wo(l— IL)[SC(T)EC — Ue(T)L]
S¥ 1 1
1= DY bN — S — A (T) 28, — Ay (T) =58
+wio( Sl)[z 1 — W S;— Aai( )Na 1= At ( )Nc 1]
Fwn (= ED () sy 4 (1) 25— (614 ) B
w11 E) al N, 1 cl N, 1 1T M )Eg
I*
+W12(1*TIZ)[SIEI*(HlﬁL(PlJFYI)IZ]
S* 1 1, I
+wiz(1— SfZ)[thh — UnSp — lzhﬁllSh - luh(T)ﬁaSh - lch(T)ﬁcSh]

E} I 1, 1.
1 — 2N Ap==Sh + A (T) =28, + A (T) -5-S), — (g, E
+wia( Eh)[ thz '+ Aan( )Na '+ Aen( )Nc n— (&n+ W) En]

I
+wis(1— i)[ShEh — (Up+ O+ 7))

Assuming constant total mosquito eggs and constant total population for all species, we have

the following at D* : h,(T,P)G, = ho(T,P)X; + ho(T,P)Y;, he(T,P)G. = ho(T,P)X},

ba(T,P)Ny = ho(T,P)X" + ho(T, P)Y/,
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bC<T7 P)NL = hc<T7P>Xc*7 biN; = .ulS;k +lal(T)]IT;;S;< +ACI(T>]{%S7> and byNj, = .uhSZ +llh1%sz +
lah(T)l%S;‘l + lch(T)llviS;‘l. Therefore,

(38)
v X; X X
E = Wl(l Xa )[b (T P)I a+h (T’P)Xa *ba(TaP)faIa) *ha(TaP)Xa]

*

Fws(1— %){ba(np)faza (T, P)Y,]

a

(1= VTPV +a(T)S; + 2a(T) 55+ A1) 153
(1= ) (T P)Ya = TS0 = aT) 350~ Aaa(T) 35
+W4(1—§—*)[7ua( T) ’Sa+/lha(T)Ii,—hSa—(ea(T)+ua(T))Ea]

a N h
+ws(1— ?)[ha(T, P)Y,+€,(T)E; — ta(T) 1] +we(1 — i((—j)[hc(T,P)X;k —h(T,P)X]
(1= SEVHAT)SE+ AT 82+ A7) — ()5 = A7) 375 = A1) 15
(1= 1) ) 1S+ 1) S — (6 (T) + e () B

*

(1~ ) e(T)Ee — (T

c

S7 I I I I,

- =L * Za gx e gx _ lag _ -
-I-Wl()(l S[)[[J[Sl+A,a[(T)NaSI+7LCl(T)NCSl ulSl A,al(T)NaS[ QLC](T)NCSI]
wn (= A () 28 4 2 (T) 5, = (64 ) B

w11 E al N, 1 cl N I 1 U )£y

*

I
+wia(1— 711)[811“31 — (M + ¢+ 7))

s I I
+wi3(1— )[Hh5h+llh Sh‘f‘)bah( ) =S+ Aen(T) 5-S;,]
Sh Na Nc
+wi3(1— Sj)[—.uhsh — szlSh — lah(T)IlSh — lch(T)LcSh]
Sh N Ng N,

Ef I; 1,
1— 2 [ Ap==Sh + A (T) -2
+wia( Eh)[ " n+ Aan(T)

I
N, Sp+ kch(T)ﬁCSh — (Sh + ,LLh)Eh]

*

1
+wis(1— i)[EhEh — (Up+ O+ 1) 1)

Further simplification gives

dv X St X*
— = —w (1= 222 (T, P)X, — w3 (1 — —) UaSa —we(1 — =5)2he(T, P)X,
dr X, X,

(39 st s g
—w7(1 =) 1eSe —wio(1 = L) S — wis(1— 22 u,Sy + F (D),
S S Sh
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where
D= {(Xa7YavSaanaIa7X67SC7E67IC7S17E17117ShaEhalh) > O}
and
X* . Ya*
F(D)=wi(1— X—)[ba(T,P)I a—by(T,P)ful,)] +wo(1— 7)[ba(T,P)faIa —ha(T,P)Y,]
S, . I Ly
+w3(1 = =) [ha(T,P)Y) — ho(T,P)Ya+ Xiy(T)=S) + Ao (T) =S} ]
Sa N Ny
S I Iy
+W3(1_§a)[ Mia(T )Nl a_lha(T)ﬁhSa]
E}; I Iy
+ W4(1 - E)[Ala( ) Sa "")’ha(T)ﬁSa - (Ea(T) +.ua(T))Ea]
a l h
I*
+W5(1 I )[h (T P)Y Jrsa( )Ea*.LLa(T)Ia]
St 0 i o I I
71 = RTS8+ M T3 S2 = )3 Se = (1) 3153
(1= Z9) A (7) ls T AaeT) s, — (eu(T) + (T L]
wg E. Ic N, c he N, c ¢ He c
I*
(40) +wo(l— IL)[EC(T)EC — e (T)1e]
Sy L, I . I I
+W1()( — Sfll)[la[(T)ﬁaSl +A’CI(T)ESI —la](T)ﬁaS[ —kcl(T)ﬁCSl}

*

E Ia IC
+wi(1— fll) Mfal(T)ﬁaSl + lcz(T)ﬁCSI — (&4 w)E]

*

I
+wia(l— Tl,)[glE’ — (W + ¢+ 7)1

Sy If I I .
+wiz(l— )Mlh*Sﬁ/Iah( )8+ Acn(T) =-S5
N, N,

S* I J} 1
1= Y= Ap—=8p — Agn(T) =28, — An(T) =S
+wia( Sh)[ i S ah )Na h— Acn( )Nc i

E* Il Ia IC
1— 2 n=—=8h 4+ Aan (T) =28, + Aen(T) =S5 — (€, E
+wia( Eh)[ v '+ Aan( )Na n+ Acn( )Nc h— (& + W) En)

*

1
+wis(1— i) (€nEp — (1 + On + V) 1)

F(D) is non-positive by following the approach of McCluskey [21] and Korobeinikov [4,7-

9]. Thus, F(D) <0 for all D. Hence, Cfl‘t/ < 0in D and is zero when D = D*. Therefore, the

largest compact invariant set in D such that ‘fi—‘t/

= 0 is the singleton {D*} which is the endemic
equilibrium point. LaSalle’s invariant principle then implies that D* is globally asymptotically

stable (GAS) in the interior of D. Thus, we have established the following result:
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Propositon 2.3. If Ry > 1, then, system (9) has a unique endemic equilibrium point D* which
is GAS in D.

3. Numerical results and discussion

To explore the dynamical behaviour of RVF in the a closed system and illustrate some
analytical results, numerical simulations were carried for the case climate change parameter
are considered constant and when the climate change parameters are considered to change
with temperature and precipitation. The state initial values used for simulations are X,(0) =
4999,Y,(0) =1, S,(0) = 4500, E,(0) = 499, I,(0) = 1, X.(0) = 5000, S.(0) = 4500, E.(0) =
499,1.(0) =1, §;(0) = 1000, E;(0) =0, [;(0) =0, R;(0) = 0, S,(0) = 1000, E,(0) =0, I,,(0) =
0, and R;,(0) = 0. For the case where climate change parameters are considered to be constant,
the parameter values in Table 2 were used for simulations.

Figure 1 shows the plot of the RVF model classes with time over a period of one year (365
days) when the climate change parameters were considered to be constant. The simulations re-
sults indicates the existence of both DFE and EE of the RVF dynamics, and that these equilibria

are stable whenever they exist.
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FIGURE 1. Plot of RVF model without impact of climate change

To perform numerical simulations of RVF model for the case of variable climate change

parameters, temperature and precipitation data from Tanzania were used. The climate change
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parameters with their expressions as used in this part are given in Table 3. Detailed explanations
on sources and/or derivation of the the climate change parameter expressions can found in
Mpeshe et al. [18].

Figure 2 shows the plot of the RVF model classes over a period of one year (365 days)
when climate change parameters are taken into account. The simulations results also indicate
the existence of both DFE and EE of the RVF dynamics, and that these equilibria are stable

whenever they exist.
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FIGURE 2. Plot of RVF model with impact of climate change

4. Conclusion

Stability analysis of the RVF model has been performed and numerical simulations of the
model in a closed population has been performed in the case when there is no impact on the
climate change and when there is impact in climate change. Analytical results shows that both

the DFE and EE are globally asymptotically stable whenever they exists. These results are in
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conjecture with the results from numerical simulations when the impact of climate change has

been considered and when no climate change is considered.
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TABLE 1. Parameters and their description

Parameter Description

1/ha(T,P) development time of Aedes mosquitoes
1/h.(T,P) development time of Culex mosquitoes
by(T,P) number of Aedes eggs laid per day
b.(T,P) number of Culex eggs laid per day

by, daily birth rate in humans

by daily birth rate in livestock

1/u.(T)  lifespan of Aedes mosquitoes

1/u.(T)  lifespan of Culex mosquitoes

1/ lifespan of humans

1/w lifespan of livestock

1/€,(T)  Incubation period of Aedes mosquitoes

1/€.(T)  Incubation period of Culex mosquitoes

1/€ Incubation period of humans

1/g Incubation period of livestock

ol Death rate of livestock due to disease

O Death rate of humans due to disease

1/ Infectious period in livestock

L/ Infectious period in humans

A (T) Adequate contact rate: Aedes to livestock
A (T) Adequate contact rate: Culex to livestock
Aia(T) Adequate contact rate: livestock to Aedes
Aie(T) Adequate contact rate: livestock to Culex
Aan(T) Adequate contact rate: Aedes to humans
Acn(T) Adequate contact rate: Culex to humans
Ana(T) Adequate contact rate: humans to Aedes
Ape(T) Adequate contact rate: humans to Culex
Ain Adequate contact rate: livestock to humans

fa vertical transmission rate in Aedes
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TABLE 2. Parameter values used for numerical simulations of RVF model with

constant climate change parameters

Parameter Value

Parameter Value

1/ba
1/ha
by,

1/l
1/ uy
1/¢g,
1/g,
¢

/vy
)Lal

Ma
Aah
Aha
Min

200

20
0.0015
60 days
60 yrs
8 days
6 days
0.10

5 days
0.48
0.395
0.025
0.0125
0.002

1/be
1/he
by

1/ e
1/
1/g.
1/g
On

1/
A’Cl

Mie
Ach
Ae
Ja

200
20
0.0025
60 days
10 yrs
8 days
6 days
0.10

7 days
0.13
0.56
0.065
0.025
0.1

761



762 SAUL C. MPESHE, LIVINGSTONE S. LUBOOBI, YAW NKANSAH-GYEKYE

TABLE 3. Climate change parameters with their expressions

Parameter expression

Values of constants

W7, P) = 2020

b(T,P) = by + —Lmn

{ —(Im—E) }
1+e' Evar

1/1a(T) = ao—ar T
1/pe(T) =ao—arT

l/Ea(T) Emax €SlopeT
1/8¢(T) Emax gsl()peT
( ) (T - Tmin)pi

1/d,(T) = ouT? + auT? + T + oy

o) = —0.0025, ap = 0.2069, o3 = —5.5285, ay = 48.2951
1/d(T) = ouT? + 0T + 0

a; =0.0095, op=-—0.4684, o3 =5.8343

p(P) = (1 - PP (1 — e lPP)

Bia=—0.0015, Pra=—0.000015, PBic=—0.0025,
Boc = —0.000025, P, =10, P> =250,

p(P)=0 for P<P, and P>P

Iy =100(% —1), Epu=20, E=0,

Ewr=12, by=0

ap=25.8,a; =0.45

ay=069.1,a, =2.14

Emax = 18.9,  €gope = 0.30

Emax = 113, Egope = 0.30

i=ual,cl,la,lc,ah, ha, ch, hc, ag = 0.0173, T,,;, = 9.60
Pu =0.70, p;=0.78, p;,=0.38, p,=0.22

Pan =0.01, pp,=0.05 p;=0.01, pp=0.015




