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Abstract: In this paper, we consider the operator )()(:,, nAnARI m  defined by  

),()()1()( ,,, zfIzfRzfRI mmm

   where )(nA denote the class of analytic functions in the unit 

disc }1,:{  zCzzU , of the form }0{,)(,)( 01
 




NNmzfRzazzf

nk

mk

k is  the 

Ruscheweyh operator and
k

k

m

nk

m za
k

zzfI 


 













1, )(



 , },0{, 0  NNmNn  

,0,0   and   a real number  with .0  The new subclass ),,,,(  mn  of )(nA , 

involving the operator 
mRI  ,, is introduced. Some interesting properties of the class ),,,,(  mn are 

established by making use of the concept of differential subordination. 
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1. INTRODUCTION 

Let )(nA denote the class of functions of the form ...}3,2,1{,)(
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which are analytic in the open unit disc }1,:{  zCzzU . Clearly AA )1( is a well-known 

class of normalized analytic functions inU . If f and g are analytic in U , we say that f  is 

subordinate to g ,written ,gf  if there exists a Schwarz function )(zw , which (by definition)is 

analytic in U with 0)0( w and ,,1)( Uzzw  such that .)),(()( Uzzwgzf  Further, if the 

function g is univalent in U ,then we have the following equivalence )0()0( gfgf  and 

).()( UgUf   

 

For ,10   we denote )(* nS and )(nK the subclasses of )(nA consisting of all  

analytic functions which are respectively, starlike of order   and convex of order   in .U  It is 

well known that )(nK  )(* nS S , where S is the class of univalent functions in U. We also 

denote by )(nR the subclass of functions in )(nA which satisfy .,)('Re( Uzzf    

 

Definition 1.1([16]). For 0},0{),( 0  NNmnAf and a real number with ,0   

a new generalized multiplier transformation, denoted by mI  , , is defined by the following infinite 

series: 

(1.1)  .)(
1
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It follows from (1.1) that  

(1.2)  ),()(0, zfzfI m   

(1.3)  ,))(()()()( '

,,

1

, zfIzzfIzfI mmm

   
 

   

 We note that  

 1),()(1,   zfIzfI mm
(See Cho and Srivastava [10] and Cho and Kim [11] ). 

 0),()(,1   zfDzfI mm
(See Al-Oboudi [6] ). 

 0,1),()( ,,1   lzfIzfI m

l

m

l (See Catas [9]).  
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Remark 1.2. a) )(zfI m

  was defined and investigated in [10] and [11] for 0 and )(, zfI m

l  was 

defined and studied in [9] for 0,0  l . So our results in this paper are improvement of 

corresponding results proved earlier for )(zfI m

  or )(, zfI m

l   to 1 or ,1l respectively. 

b) i) 0),( mzfDm

 was due to Acu and Owa [1], ii) )(1 zfDm was introduced by Salagean [15] 

and was considered for 0m in [7], and iii) )(1 zfI m  was investigated by Uralegaddi and 

Somanath [20]. 

 

Definition 1.3 ([14]). For ),(,0 nAfNm   the operator mR is defined by ),()(: nAnARm    

  )()(0 zfzfR  , 

  )(')(1 zzfzfR  , 

  … 

  .),())'(()()1( 1 UzzfmRzfRzzfRm mmm    

 

Definition 1.4. Let 0,0,0  Nm  and  a real number with 0  .Denote by 

mRI  ,, the operator given by )()(:,, nAnARI m  , 

  .),()()1()( ,,, UzzfIzfRzfRI mmm     

Remark 1.5.  If ),(nAf  then .,)1()(
1

1,, Uzza
k

CzzfRI k
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
  

 

Remark 1.6.  The operator mI  , is introduced and investigated in [16] and [17]. The operator 

mRI  ,, is studied in [18] and [19].  

 

 For ,0 ,),()(0,, UzzfRzfRI mm  and for ,1 .),(,1,, UzzfIRI mm    

 

 

 To prove our results we need the following lemma. 
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Lemma 1.7 [13]. Let u,1
2

1
  be analytic in U with 1)0( u and suppose that  

(1.4)  .,
2

13

)(

)('
1Re Uz
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zzu




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Then .,))(Re( Uzzu    

 

2. MAIN RESULTS 

 

Definition 2.1. We say that a function )(nAf  is in the class ,),,,,,( ,0Nmmn    

)1,0[,0,  Nn , a real number with ,0  if 

(2.1)  .,11
)(

)(

,

1

,
Uz

zfI

z

z

zfI
m

m




























 








 

   

   

Definition 2.2. We say that a function )(nAf  is in the class ,),,,,,( ,0Nmmn    

)1,0[,0,  Nn , a real number with ,0  if 

(2.2)  .,11
)(
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 For 1 , (2.2) reduces to (2.1).  

 

Remark 2.3. The family ),,,,(  mn is a new comprehensive class of analytic functions 

which includes various well known classes of analytic univalent functions as well as some new 

ones. For example, i) ),1,,,(   lmn = 1),,,,,(  llmDn  , was studied in [2] for 

0l , ii) ),,,(),0,,,(),1,,,( 11   mDmDm    was due to Lupas [3], 

iii)  ),,,,(1 mn ),,,,( mn (Definition 2.1), iv)  ),1,,,( mn ),,,( mDn  

was introduced in [4], v) ),()1,,1,0( *  nn SD  )()1,,1,1(  nn KD   and ),()1,,0,0(  nn RD  vi) 

),,()1,,,(1  nmDmD  was introduced in [5,8] , vii) )1,,,0(1 D  ),( D  was introduced 
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by Frasin and Jahangiri [13] and viii) )1,,2,0(1 D )(D which has been investigated by Frasin 

and Darus [12]. 

 

 In this note we provide a sufficient condition for functions to be in the class 

).,,,,(  mn  

 

Theorem 2.4. Let





2

13
,1

2

1
,0,0,,0


 NnNm ,  ,0 a real number with 

0   and ).(nAf  If  

 

(2.3) 





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m
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m

m
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










  

 

        

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
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
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
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1
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





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  

 

        + ,,1)1)(1(
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m
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
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


  

 

then ).,,,,(  mf n  

 

Proof. Define the function u(z) by 

  

(2.4)  .
)(

)(
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1
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
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
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Then the function )(zu is analytic in U with .1)0( u Differentiating (2.4) logarithmically with 

respect to z and using (1.3), we obtain 
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
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


  

 

                
























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m

m

m
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













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                + 1)1)(1(
)(

)(

,,

,









 







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From (1.4) and (2.3) we get .,
2

13

)(

)('
1Re Uz

zu

zzu

















Applying Lemma 1.4 we deduce that 

.,
)(

)(
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,,

1

,,
Uz

zfRI

z

z

zfRI
m

m
























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











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

 








 

Therefore, ),,,,,(  mf n by Definition 2.3. 

 

 

Taking 1  in Theorem 2.4, we obtain   

 

Theorem 2.5. Let





2

13
,1

2

1
,0,,0


 NnNm ,  ,0  a real number with 

0   and ).(nAf  If  

 

  ,,11)1(
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)(

)(
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1

,

1

,

2

,
Uzz

zfI

zfI

zfI

zfI
m

m

m

m













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
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
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then  .),,,,,( Uzmf n    

 

 

 As consequences of the above theorem, we have the following interesting corollary: 
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Corollary 2.6. Let 0,1,
2

1
),(  nAf and  a real number with .0   

(a) Let 1,1  m .If ,,
2

1

)(

)(

)(

)(
Re

,

2

,

2

,

3

,
Uz

zfI

zfI

zfI

zfI






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


























 












then 

.,
2

1

)(

)(
Re

,

2

,
Uz

zfI

zfI



















That is ).,,

2

1
,1,1( nf    

(b) Let 0,1  m If ,,
2

1
1

)(

)(
Re

2

,

3

,
Uz

zfI

zfI



































 








the .,

2

1)(
Re

2

,
Uz

z

zfI

















That is ).,,
2

1
,0,1( nf    

(c) Let 1,0  m .If ,,
2

1

)(

)(

)(

)(
Re

,

,

2

,
Uz

zf

zfI

zfI

zfI



































  








then 

.,
2

1

)(

)(
Re

,
Uz

zf

zfI










 
That is ).,,

2

1
,1,0( nf    

(d) Let 0,0  m If ,,
2

1
1

)(

)(
Re

,

2

,
Uz

zfI

zfI



































 








then 

.,
2

1)(
Re

,
Uz

z

zfI










 
That is ).,,

2

1
,0,0( nf    

 

 0 in Corollary 2.6, we have 

 

Corollary 2.7. Let ).(nAf   

      (a) If ,,
2

1

)('

)("

)(")('

)(''')("2
Re

2

Uz
zf

zzf

zzfzf

zfzzzf
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      (c) If ,,
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      (d) If f is convex of order 21 , then ).2/1(nRf   
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