A NOTE ON A SUBCLASS OF ANALYTIC FUNCTIONS DEFINED BY

 RUSCHEWEYH DERIVATIVE AND A NEW GENERALISED MULTIPLIER TRANSFORMATIONS R SWAMY*

Department of Computer Science and Engineering, R V College of Engineering, Mysore Road, Bangalore-560 059, INDIA

Abstract

In this paper, we consider the operator $R I_{\alpha, \beta, \lambda}^{m}: A(n) \rightarrow A(n)$ defined by $R I_{\alpha, \beta, \lambda}^{m} f(z)=(1-\lambda) R^{m} f(z)+\lambda I_{\alpha, \beta}^{m} f(z)$, where $A(n)$ denote the class of analytic functions in the unit $\operatorname{disc} U=\{z: z \in C,|z|<1\}$, of the form $f(z)=z+\sum_{k=n+1}^{\infty} a_{k} z^{k}, R^{m} f(z), m \in N_{0}=N \cup\{0\}$ is the Ruscheweyh operator and $\quad I_{\alpha, \beta}^{m} f(z)=z+\sum_{k=n+1}^{\infty}\left(\frac{\alpha+k \beta}{\alpha+\beta}\right)^{m} a_{k} z^{k} \quad, \quad n \in N, m \in N_{0}=N \cup\{0\}$, $\lambda \geq 0, \beta \geq 0$, and α a real number with $\alpha+\beta>0$. The new subclass $\mathfrak{R I}{ }_{n}^{\lambda}(m, \mu, \rho, \alpha, \beta)$ of $A(n)$, involving the operator $R I_{\alpha, \beta, \lambda}^{m}$ is introduced. Some interesting properties of the class $\mathfrak{R I}_{n}^{\lambda}(m, \mu, \rho, \alpha, \beta)$ are established by making use of the concept of differential subordination.

Keywords: Analytic function, starlike function, convex function, Ruscheweyh derivative, multiplier transformation, differential subordination.
AMS Mathematics Subject Classification (2000): 30C45.

1. INTRODUCTION

Let $A(n)$ denote the class of functions of the form $f(z)=z+\sum_{k=n+1}^{\infty} a_{k} z^{k}, n \in N=\{1,2,3 \ldots\}$,

[^0]which are analytic in the open unit disc $U=\{z: z \in C,|z|<1\}$. Clearly $A(1)=A$ is a well-known class of normalized analytic functions in U. If f and g are analytic in U, we say that f is subordinate to g, written $f \prec g$, if there exists a Schwarz function $w(z)$, which (by definition)is analytic in U with $w(0)=0$ and $|w(z)|<1, z \in U$, such that $f(z)=g(w(z)), z \in U$. Further, if the function g is univalent in U,then we have the following equivalence $f \prec g \Leftrightarrow f(0)=g(0)$ and $f(U) \subset g(U)$.

For $0 \leq \rho<1$, we denote $S_{n}^{*}(\rho)$ and $K_{n}(\rho)$ the subclasses of $A(n)$ consisting of all analytic functions which are respectively, starlike of order ρ and convex of order ρ in U. It is well known that $K_{n}(\rho) \subset S_{n}^{*}(\rho) \subset S$, where S is the class of univalent functions in U . We also denote by $R_{n}(\rho)$ the subclass of functions in $A(n)$ which satisfy $\operatorname{Re}\left(f^{\prime}(z)>\rho, z \in U\right.$.

Definition 1.1([16]). For $f \in A(n), m \in N_{0}=N \cup\{0\}, \beta \geq 0$ and α a real number with $\alpha+\beta>0$, a new generalized multiplier transformation, denoted by $I_{\alpha, \beta}^{m}$, is defined by the following infinite series:

$$
\begin{equation*}
I_{\alpha, \beta}^{m} f(z)=z+\sum_{k=n+1}^{\infty}\left(\frac{\alpha+k \beta}{\alpha+\beta}\right)^{m} a_{k} z^{k} ., z \in U . \tag{1.1}
\end{equation*}
$$

It follows from (1.1) that

$$
\begin{align*}
& I_{\alpha, 0}^{m} f(z)=f(z) \tag{1.2}\\
& (\alpha+\beta) I_{\alpha, \beta}^{m+1} f(z)=\alpha I_{\alpha, \beta}^{m} f(z)+\beta z\left(I_{\alpha, \beta}^{m} f(z)\right)^{\prime} \tag{1.3}
\end{align*}
$$

We note that

- $\quad I_{\alpha, 1}^{m} f(z)=I_{\alpha}^{m} f(z), \alpha>-1$ (See Cho and Srivastava [10] and Cho and Kim [11]).
- $\quad I_{1-\beta, \beta}^{m} f(z)=D_{\beta}^{m} f(z), \beta \geq 0$ (See Al-Oboudi [6]).
- $\quad I_{l+1-\beta, \beta}^{m} f(z)=I_{l, \beta}^{m} f(z), l>-1, \beta \geq 0$ (See Catas [9]).

Remark 1.2. a) $I_{\alpha}^{m} f(z)$ was defined and investigated in [10] and [11] for $\alpha \geq 0$ and $I_{l, \beta}^{m} f(z)$ was defined and studied in [9] for $l \geq 0, \beta \geq 0$. So our results in this paper are improvement of corresponding results proved earlier for $I_{\alpha}^{m} f(z)$ or $I_{l, \beta}^{m} f(z)$ to $\alpha>-1$ or $l>-1$, respectively. b) i) $D_{\beta}^{m} f(z), m \geq 0$ was due to Acu and Owa [1], ii) $D_{1}^{m} f(z)$ was introduced by Salagean [15] and was considered for $m \geq 0$ in [7], and iii) $I_{1}^{m} f(z)$ was investigated by Uralegaddi and Somanath [20].

Definition 1.3 ([14]). For $m \in N_{0}, f \in A(n)$, the operator R^{m} is defined by $R^{m}: A(n) \rightarrow A(n)$,

$$
\begin{aligned}
& R^{0} f(z)=f(z) \\
& R^{1} f(z)=z f^{\prime}(z), \\
& \cdots \\
& (m+1) R^{m+1} f(z)=z\left(R^{m} f(z)\right)^{\prime}+m R^{m} f(z), z \in U .
\end{aligned}
$$

Definition 1.4. Let $m \in N_{0}, \lambda \geq 0, \beta \geq 0$ and α a real number with $\alpha+\beta>0$.Denote by $R I_{\alpha, \beta, \lambda}^{m}$ the operator given by $R I_{\alpha, \beta, \lambda}^{m}: A(n) \rightarrow A(n)$,

$$
R I_{\alpha, \beta, \lambda}^{m} f(z)=(1-\lambda) R^{m} f(z)+\lambda I_{\alpha, \beta}^{m} f(z), z \in U .
$$

Remark 1.5. If $f \in A(n)$, then $R I_{\alpha, \beta, \lambda}^{m} f(z)=z+\sum_{k=n+1}^{\infty}\left\{(1-\lambda) C_{m+k-1}^{m}+\lambda\left(\frac{\alpha+k \beta}{\alpha+\beta}\right)^{m}\right\} a_{k} z^{k}, z \in U$.

Remark 1.6. The operator $I_{\alpha, \beta}^{m}$ is introduced and investigated in [16] and [17]. The operator $R I_{\alpha, \beta, \lambda}^{m}$ is studied in [18] and [19].

For $\lambda=0, R I_{\alpha, \beta, 0}^{m} f(z)=R^{m} f(z), z \in U$, and for $\lambda=1, R I_{\alpha, \beta, 1}^{m}=I_{\alpha, \beta}^{m} f(z), z \in U$.

To prove our results we need the following lemma.

Lemma 1.7 [13]. Let $\frac{1}{2} \leq \rho<1, u$ be analytic in U with $u(0)=1$ and suppose that

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z u^{\prime}(z)}{u(z)}\right)>\frac{3 \rho-1}{2 \rho}, z \in U . \tag{1.4}
\end{equation*}
$$

Then $\operatorname{Re}(u(z))>\rho, z \in U$.

2. MAIN RESULTS

Definition 2.1. We say that a function $f \in A(n)$ is in the class $\mathrm{I}_{n}(m, \mu, \rho, \alpha, \beta), m \in N_{0,}$, $n \in N, \mu \geq 0, \rho \in[0,1), \alpha$ a real number with $\alpha+\beta>0$, if

$$
\begin{equation*}
\left|\left(\frac{I_{\alpha, \beta}^{m+1} f(z)}{z}\right)\left(\frac{z}{I_{\alpha, \beta}^{m} f(z)}\right)^{\mu}-1\right|<1-\rho, z \in U . \tag{2.1}
\end{equation*}
$$

Definition 2.2. We say that a function $f \in A(n)$ is in the class $\mathfrak{R}{ }_{n}^{\lambda}(m, \mu, \rho, \alpha, \beta), m \in N_{0,}$, $n \in N, \mu \geq 0, \rho \in[0,1), \alpha$ a real number with $\alpha+\beta>0$, if

$$
\begin{equation*}
\left|\left(\frac{R I_{\alpha, \beta, \lambda}^{m+1} f(z)}{z}\right)\left(\frac{z}{R I_{\alpha, \beta, \lambda}^{m} f(z)}\right)^{\mu}-1\right|<1-\rho, z \in U \tag{2.2}
\end{equation*}
$$

For $\lambda=1$, (2.2) reduces to (2.1).

Remark 2.3. The family $\mathfrak{R}{ }_{n}^{\lambda}(m, \mu, \rho, \alpha, \beta)$ is a new comprehensive class of analytic functions which includes various well known classes of analytic univalent functions as well as some new ones. For example, i) $\mathfrak{R} \mathrm{I}_{n}^{\lambda}(m, \mu, \rho, l+1-\beta, \beta)=\mathfrak{R} D_{n}^{\lambda}(m, \mu, \rho, l, \beta), l>-1$, was studied in [2] for $l \geq 0$, ii) $\mathfrak{R} \mathrm{I}_{1}^{\lambda}(m, \mu, \rho, 1-\beta, \beta)=\mathfrak{R} D_{1}^{\lambda}(m, \mu, \rho, 0, \beta)=\mathfrak{R} D^{\lambda}(m, \mu, \rho, \beta)$ was due to Lupas [3], iii) $\mathfrak{R}{ }_{n}^{1}(m, \mu, \rho, \alpha, \beta)=\mathrm{I}_{n}(m, \mu, \rho, \alpha, \beta)\left(\right.$ Definition 2.1), iv) $\mathrm{I}_{n}(m, \mu, \rho, 1-\beta, \beta)=D_{n}(m, \mu, \rho, \beta)$ was introduced in [4], v) $D_{n}(0,1, \rho, 1)=S_{n}^{*}(\rho), D_{n}(1,1, \rho, 1)=K_{n}(\rho)$ and $D_{n}(0,0, \rho, 1)=R_{n}(\rho)$, vi) $D_{1}(m, \mu, \rho, 1)=D(m, n, \rho)$ was introduced in [5,8] , vii) $D_{1}(0, \mu, \rho, 1)=D(\mu, \rho)$ was introduced
by Frasin and Jahangiri [13] and viii) $D_{1}(0,2, \rho, 1)=D(\rho)$ which has been investigated by Frasin and Darus [12].

In this note we provide a sufficient condition for functions to be in the class $\mathfrak{R}{ }_{n}^{\lambda}(m, \mu, \rho, \alpha, \beta)$.

Theorem 2.4. Let $m \in N_{0}, n \in N, \lambda \geq 0, \mu \geq 0, \frac{1}{2} \leq \rho<1, \gamma=\frac{3 \rho-1}{2 \rho}, \beta>0, \alpha$ a real number with $\alpha+\beta>0$ and $f \in A(n)$.If
(2.3) $\quad(m+2) \frac{R I_{\alpha, \beta, \lambda}^{m+2} f(z)}{R I_{\alpha, \beta, \lambda}^{m+1} f(z)}-\mu(m+1) \frac{R I_{\alpha, \beta, \lambda}^{m+1} f(z)}{R I_{\alpha, \beta, \lambda}^{m} f(z)}+\lambda\left(\frac{\alpha+\beta}{\beta}-m-2\right) \frac{I_{\alpha, \beta}^{m+2} f(z)}{R I_{\alpha, \beta, \lambda}^{m+1} f(z)}-$

$$
\begin{aligned}
& -\lambda \mu\left(\frac{\alpha+\beta}{\beta}-m-1\right) \frac{I_{\alpha, \beta}^{m+1} f(z)}{R I_{\alpha, \beta, \lambda}^{m} f(z)}-\lambda\left(\frac{\alpha}{\beta}-m-1\right) \frac{I_{\alpha, \beta}^{m+1} f(z)}{R I_{\alpha, \beta, \lambda}^{m+1} f(z)}+ \\
& +\lambda \mu\left(\frac{\alpha}{\beta}-m\right) \frac{I_{\alpha, \beta}^{m} f(z)}{R I_{\alpha, \beta, \lambda}^{m} f(z)}+(m+1)(\mu-1) \prec 1+\gamma, z \in U,
\end{aligned}
$$

then $f \in \mathfrak{R I}_{n}^{\lambda}(m, \mu, \rho, \alpha, \beta)$.

Proof. Define the function $u(z)$ by

$$
\begin{equation*}
u(z)=\left(\frac{R I_{\alpha, \beta, \lambda}^{m+1} f(z)}{z}\right)\left(\frac{z}{R I_{\alpha, \beta, \lambda}^{m} f(z)}\right)^{\mu} . \tag{2.4}
\end{equation*}
$$

Then the function $u(z)$ is analytic in U with $u(0)=1$. Differentiating (2.4) logarithmically with respect to z and using (1.3), we obtain

$$
\begin{aligned}
\frac{z u^{\prime}(z)}{u(z)}= & (m+2) \frac{R I_{\alpha, \beta, \lambda}^{m+2} f(z)}{R I_{\alpha, \beta, \lambda}^{m+1} f(z)}-\mu(m+1) \frac{R I_{\alpha, \beta, \lambda}^{m+1} f(z)}{R I_{\alpha, \beta, \lambda}^{m} f(z)}+\lambda\left(\frac{\alpha+\beta}{\beta}-m-2\right) \frac{I_{\alpha, \beta}^{m+2} f(z)}{R I_{\alpha, \beta, \lambda}^{m+1} f(z)}- \\
& -\lambda \mu\left(\frac{\alpha+\beta}{\beta}-m-1\right) \frac{I_{\alpha, \beta}^{m+1} f(z)}{R I_{\alpha, \beta, \lambda}^{m} f(z)}-\lambda\left(\frac{\alpha}{\beta}-m-1\right) \frac{I_{\alpha, \beta}^{m+1} f(z)}{R I_{\alpha, \beta, \lambda}^{m+1} f(z)}+ \\
& +\lambda \mu\left(\frac{\alpha}{\beta}-m\right) \frac{I_{\alpha, \beta}^{m} f(z)}{R I_{\alpha, \beta, \lambda}^{m} f(z)}+(m+1)(\mu-1)-1
\end{aligned}
$$

From (1.4) and (2.3) we get $\operatorname{Re}\left(1+\frac{z u^{\prime}(z)}{u(z)}\right)>\frac{3 \rho-1}{2 \rho}, z \in U$. Applying Lemma 1.4 we deduce that

$$
\operatorname{Re}\left\{\left(\frac{R I_{\alpha, \beta, \lambda}^{m+1} f(z)}{z}\right)\left(\frac{z}{R I_{\alpha, \beta, \lambda}^{m} f(z)}\right)^{\mu}\right\}>\rho, z \in U
$$

Therefore, $f \in \mathfrak{R} \mathrm{I}_{n}^{\lambda}(m, \mu, \rho, \alpha, \beta)$, by Definition 2.3.

Taking $\lambda=1$ in Theorem 2.4, we obtain

Theorem 2.5. Let $m \in N_{0}, n \in N, \mu \geq 0, \frac{1}{2} \leq \rho<1, \gamma=\frac{3 \rho-1}{2 \rho}, \beta>0, \alpha$ a real number with $\alpha+\beta>0$ and $f \in A(n)$.If

$$
\left(\frac{\alpha+\beta}{\beta}\right)\left[\frac{I_{\alpha, \beta}^{m+2} f(z)}{I_{\alpha, \beta}^{m+1} f(z)}-\mu \frac{I_{\alpha, \beta}^{m+1} f(z)}{I_{\alpha, \beta}^{m} f(z)}+(\mu-1)\right]+1 \prec 1+\gamma, z \in U,
$$

then $f \in \mathrm{I}_{n}(m, \mu, \rho, \alpha, \beta), z \in U$.

As consequences of the above theorem, we have the following interesting corollary:

Corollary 2.6. Let $f \in A(n), \rho=\frac{1}{2}, \lambda=1, \beta>0$ and α a real number with $\alpha+\beta>0$.
(a) Let $m=1, \mu=1 \quad$.If $\quad \operatorname{Re}\left\{\left(\frac{\alpha+\beta}{\beta}\right)\left(\frac{I_{\alpha, \beta}^{3} f(z)}{I_{\alpha, \beta}^{2} f(z)}-\frac{I_{\alpha, \beta}^{2} f(z)}{I_{\alpha, \beta} f(z)}\right)\right\}>-\frac{1}{2}, z \in U$, then $\operatorname{Re}\left(\frac{I_{\alpha, \beta}^{2} f(z)}{I_{\alpha, \beta} f(z)}\right)>\frac{1}{2}, z \in U$. That is $f \in \mathrm{I}_{n}\left(1,1, \frac{1}{2}, \alpha, \beta\right)$.
(b) Let $m=1, \mu=0$ If $\operatorname{Re}\left\{\left(\frac{\alpha+\beta}{\beta}\right)\left(\frac{I_{\alpha, \beta}^{3} f(z)}{I_{\alpha, \beta}^{2} f(z)}-1\right)\right\}>-\frac{1}{2}, z \in U$, the $\operatorname{Re}\left(\frac{I_{\alpha, \beta}^{2} f(z)}{z}\right)>\frac{1}{2}, z \in U$.

That is $f \in \mathrm{I}_{n}\left(1,0, \frac{1}{2}, \alpha, \beta\right)$.
(c) Let $m=0, \mu=1 \quad$ If $\quad \operatorname{Re}\left\{\left(\frac{\alpha+\beta}{\beta}\right)\left(\frac{I_{\alpha, \beta}^{2} f(z)}{I_{\alpha, \beta} f(z)}-\frac{I_{\alpha, \beta} f(z)}{f(z)}\right)\right\}>-\frac{1}{2}, z \in U$, then $\operatorname{Re}\left(\frac{I_{\alpha, \beta} f(z)}{f(z)}\right)>\frac{1}{2}, z \in U$. That is $f \in \mathrm{I}_{n}\left(0,1, \frac{1}{2}, \alpha, \beta\right)$.
(d) Let $\quad m=0, \mu=0 \quad$ If $\quad \operatorname{Re}\left\{\left(\frac{\alpha+\beta}{\beta}\right)\left(\frac{I_{\alpha, \beta}^{2}}{I_{\alpha, \beta}}\right.\right.$
$\operatorname{Re}\left(\frac{I_{\alpha, \beta} f(z)}{z}\right)>\frac{1}{2}, z \in U$. That is $f \in \mathrm{I}_{n}\left(0,0, \frac{1}{2}, \alpha, \beta\right)$.
$\alpha=0$ in Corollary 2.6, we have

Corollary 2.7. Let $f \in A(n)$.
(a) If $\operatorname{Re}\left\{\left(\frac{2 z f^{\prime \prime}(z)+z^{2} f^{\prime \prime \prime}(z)}{f^{\prime}(z)+z f^{\prime \prime}(z)}-\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right\}>-\frac{1}{2}, z \in U$, then f is convex of order $1 / 2$ (i.e. $\left.f \in K_{n}(1 / 2)\right)$.
(b) If $\operatorname{Re}\left\{\left(\frac{2 z f^{\prime \prime}(z)+z^{2} f^{\prime \prime \prime}(z)}{f^{\prime}(z)+z f^{\prime \prime}(z)}\right)\right\}>-\frac{1}{2}, z \in U$, then $\operatorname{Re}\left(f^{\prime}(z)+z f^{\prime \prime}(z)\right)>\frac{1}{2}, z \in U$.
(c) If $\operatorname{Re}\left\{\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right)\right\}>-\frac{3}{2}, z \in U$, then f is starlike of order $1 / 2$ (i.e. $f \in S_{n}^{*}(1 / 2)$).
(d) If f is convex of order $1 / 2$, then $f \in R_{n}(1 / 2)$.

REFERENCES

[1] M. Acu and S. Owa, Note on class of starlike functions, RIMS, Kyoto, (2006).
[2] A. Alb Lupas, A note on a subclass of analytic functions defined by Ruscheweyh derivative and multiplier transformations, Int. J. Open Problems Complex Analysis, 2, no. 2, (2010),60-66.
[3] A. Alb Lupas, On a subclas of analytic functions defined by Ruscheweyh derivative and generalized Salagean operator, Acta Univ. Apulensis, no. 22, (2010), 17-22.
[4] A. Alb Lupas, A note on a subclass of analytic functions defined by a generalized multiplier transformations, Acta Univ. Apulensis, no. 22, (2010), 35-39.
[5] A. Alb Lupus and A. Catas, A note on a subclass of analytic functions defined by differential Salagean operator, Bule. Acad. De Stiinte a Repub. Moldova, Mathematica, 60 (2), (2009), 131 - 134.
[6] F. M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator, Int. J. Math. Math. Sci., 27(2004), 1429-1436.
[7] S. S. Bhoosnurmath and S. R. Swamy, On certain classes of analytic functions, Soochow J. Math., 20(1994), no.1, 1 - 9.
[8] A. Catas and A. Alb Lupas, On sufficient conditions for certain subclasses of analytic functions defined by differential Salagean operator, Int. J. Open Problems Complex Analysis, 1, no. 2, (2009),14-18.
[9] A. Catas, On certain class of p-valent functions defined by new multiplier transformations, Proceedings book of the international symposium on geometric function theory and applications, August, 20-24, 2007, TC Isambul Kultur Univ., Turkey,241-250.
[10] N. E. Cho and H. M. Srivastava, Argument estimates of certain analytic functions defined by a class of multiplier transformations, Math. Comput. Modeling, 37(1-2) (2003), 39-49.
[11] N. E. Cho and T. H. Kim, Multiplier transformations and strongly Close-to-Convex functions, Bull. Korean Math. Soc., 40(3) (2003), 399-410.
[12] B. A. Frasin and M. Darus, On certain analytic univalent functions, Int. J. Math. and Math. Sci, 25(5) (2001), 305-310.
[13] B. A. Frasin and J. M. Jahangiri, A new and comprehensive class of analytic functions, Analele Univ.din Oradea, Tom XV, (2008), 61-64.
[14] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49(1975), 109-115.
[15] G. St. Salagean, Subclasses of univalent functions, Proc. Fifth Rou. Fin. Semin. Buch. Complex Anal., Lect. notes in Math., Springer-Verlag, Berlin, 1013(1983), 362 - 372..
[16] S. R. Swamy, Inclusion properties of certain subclasses of analytic functions, to appear in Int. Math. Forum,7,(2012), no.36,1751-1760.
[17] S R Swamy, On univalent functions defined by a new generalized multiplier differential operator, submitted for publication.
[18] S. R. Swamy, On special differential subordinations using a new generalized multiplier transformation and Ruscheweyh derivative, submitted for publication.
[19] S. R. Swamy, On special differential superordinations using a new generalized multiplier transformation and Ruscheweyh derivative, submitted for publication.
[20] B. A. Uralegaddi and C. Somanatha, Certain classes of univalent functions, Current topics in analytic function theory, World Sci. Publishing, River Edge, N. Y., (1992), 371-374.

[^0]: *Corresponding author
 E-mail address: mailtoswamy @rediffmail.com (S R Swamy)
 Received February 16, 2012

