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Abstract. In this paper, we obtained some coincidence and common fixed point theorems for a pair of weakly

compatible maps on TVS-valued cone metric spaces, satisfying contractive mapping: d( f x, f y) � αd( f x,gx)+

βd( f y,gy)+ γd(gx,gy) and d( f x, f y) � αd(gx,gy)+ β [d( f x,gx)+ d( f y,gy)] + γ[d( f x,gy)+ d( f y,gx)]. Some

corollaries on fixed point theorems on TVS-valued cone metric spaces are also provided.
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1. Introduction

Huang and Zhang [1] generalized the concept of metric space, replacing the set of real num-

bers by an ordered Banach space and established some fixed point theorems for mappings sat-

isfying different contractive conditions. Afterwards many other authors [2-8] studied different

kinds of contractive mappings on cone metric spaces. In addition, several authors [9-12] in-

troduced the notion of TVS-valued cone metric space, which is bigger than that introduced by
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Huang and Zhang, and proved the existence of fixed points. In this paper, we continue to study

fixed point theorems on TVS-valued cone metric space, and get some important results.

2. Preliminaries

Let (E,τ) always be a topological vector space (TVS) and P a subset of E. P is called a cone

if and only if:

(a) P is closed, nonempty and P 6= {θ};

(b) ∀a,b ∈ R,a,b≥ 0,∀x,y ∈ P imply that ax+by ∈ P;

(c) P∩ (−P) = {θ}.

Given a cone P ⊂ E, we define a partial ordering � with respect to P by x � y if and only

if y− x ∈ P. We shall write x ≺ y to indicate that x � y but x 6= y. While x ≺≺ y stands for

y− x ∈ intP (interior of P).

In the following we always suppose E be a topological vector space, θ denotes the zero

element, and � is a partial ordering with respect to P.

Definition 2.1. [10] Let X be a nonempty set. Suppose that the mapping d : X×X→E satisfies:

(d1) d(x,y)� θ for all x,y ∈ X and d(x,y) = θ if and only if x = y;

(d2) d(x,y) = d(y,x) for all x,y ∈ X ;

(d3) d(x,y)� d(x,z)+d(z,y) for all x,y,z ∈ X .

Then d is called a TVS-valued cone metric on X , and (X ,d) is called a TVS-valued cone metric

space.

Definition 2.2. [10] Let (X ,d) be a TVS-valued cone metric space, {xn} be a sequence in X

and x ∈ X . Then

(i) {xn} converges to x whenever for every c ∈ E with θ ≺≺ c, there is a natural number N such

that for all n > N,d(xn,x)≺≺ c. We denote this by limn→∞ xn = x or xn→ x.

(ii) {xn} is a Cauthy sequence whenever for every c ∈ E with θ ≺≺ c, there is a natural number

N such that for all n,m > N,d(xn,xm)≺≺ c.

(iii) (X ,d) is a complete cone metric space if every Cauchy sequence is convergent in X .
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Definition 2.3. [2] Let f and g be self maps of a set X . If ω = f x = gx for some x in X , then x

is called a coincidence point of f and g, and ω is called a point of coincidence of f and g. Self

maps f and g are called weakly compatible if they commute at their coincidence point, that is,

if f x = gx for some x ∈ X , then f gx = g f x.

Lemma 2.4. [2] Let f and g be weakly compatible self maps of a set X . If f and g have a

unique point of coincidence ω = f x = gx, then ω is the unique common fixed point of f and g .

Lemma 2.5. [10] Let (X ,d) be a TVS-valued cone metric space, and P be a cone. Let {xn} be

a sequence in X and {an} be a sequence in P converging to θ . If d(xn,xm)� an for every n ∈ N

with m > n, then {xn} is a Cauthy sequence.

3. Main results

Theorem 3.1. Let (X ,d) be a TVS-valued cone metric space. Suppose that the mappings f and

g are two self-maps of X satisfying

d( f x, f y)� αd( f x,gx)+βd( f y,gy)+ γd(gx,gy) (3.1)

for all x,y ∈ X, where α,β ,γ ≥ 0 and α +β + γ < 1. If the range of g contains the range of

f and g(X) is a complete subspace of X, then f and g have a unique coincidence point in X.

Moreover if f and g are weakly compatible, f and g have a unique common fixed point.

Proof. Suppose x0 be an arbitrary point of X . Since the range of g contains the range of f ,

choose a point x1 in X such that f (x0) = g(x1). Continuing this process, having chosen xn in X ,

we obtain xn+1 in X such that f (xn) = g(xn+1). Then

d(gxn,gxn+1) = d( f xn−1, f xn)

� αd( f xn−1,gxn−1)+βd( f xn,gxn)+ γd(gxn−1,gxn)

= αd(gxn,gxn−1)+βd(gxn+1,gxn)+ γd(gxn−1,gxn),
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which implies that d(gxn,gxn+1)� hd(gxn−1,gxn), where h = α+γ

1−β
< 1. Therefore, for all n, we

have

d(gxn,gxn+1) � hd(gxn−1,gxn)

� ·· · � hnd(gx0,gx1).

Now, for any n > m, we have

d(gxn,gxm) � d(gxn,gxn−1)+d(gxn−1,gxn−2)+ · · ·+d(gxm+1,gxm)

� (hn−1 +hn−2 + · · ·+hm)d(gx1,gx0)

� hm

1−h
d(gx1,gx0).

Let θ ≺≺ c be given. Choose a balanced neighborhood U of θ such that c+U ⊆ intP. Since
hm

1−hd(gx1,gx0)→ θ as m→ ∞, by Lemma 2.5, we deduce that {gxn} is a Cauthy sequence.

Since g(X) is a complete subspace of X , there exists q in g(X) such that gxn → q as n→ ∞.

Consequently, we can find p in X such that gp = q. Also, choose a natural number N1, such that

d(gxn,q)≺≺ 1−β

3 c, for all n≥ N1. Thus

d(gxn, f p) = d( f xn−1, f p)

� αd( f xn−1,gxn−1)+βd( f p,gp)+ γd(gxn−1,gp)

= αd(gxn,gxn−1)+βd( f p,q)+ γd(gxn−1,q)

� α[d(gxn,q)+d(gxn−1,q)]+βd( f p,q)+ γd(gxn−1,q).

Since d(gxn, f p)� d( f p,q)−d(gxn,q), we can get

d( f p,q) � 1
1−β

[(α + γ)d(gxn−1,q)+(1+α)d(gxn,q)

≺ 1
1−β

[d(gxn−1,q)+2d(gxn,q)]

≺≺ 1
1−β

[
1−β

3
c+

2(1−β )

3
c]

= c
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for all n≥N1. Hence, d( f p,q)≺≺ c
m , for all m≥ 1. So c

m−d( f p,q)∈ intP, for all m≥ 1. Since
c
m → θ (as m→ ∞) and P is closed, we deduce −d( f p,q) ∈ P. But d( f p,q) ∈ P. Therefore,

d( f p,q) = θ , and f p = q = gp.

Now we show that f and g have a unique point of coincidence. Assume that there exists

another point u ∈ X , such that f u = gu. Then

d(gu,gp) = d( f u, f p)� αd( f u,gu)+βd( f p,gp)+ γd(gu,gp),

which implies that (1− γ)d(gu,gp)� θ . By 1− γ > 0, we have gu = gp. From Lemma 1.4, f

and g have a unique common fixed point.

Corollary 3.2. Let (X ,d) be a complete TVS-valued cone metric space. Suppose that the

mapping f satisfies

d( f x, f y)� αd(x, f x)+βd(y, f y)+ γd(x,y) (3.2)

for all x,y ∈ X, where α,β ,γ ≥ 0 and α +β + γ < 1. Then f has a unique fixed point in X.

Proof. Inequality (3.2) is obtained from (3.1) by setting g = I. I is identity operator. The results

then follow from Theorem 3.1.

Corollary 3.3. Let (X ,d) be a complete TVS-valued cone metric space. Suppose that the

mapping f satisfies

d( f nx, f ny)� αd(x, f nx)+βd(y, f ny)+ γd(x,y) (3.3)

for all x,y ∈ X, where α,β ,γ ≥ 0 and α +β + γ < 1. Then f has a unique fixed point in X.

Proof. Set f = f n in (3.2), we can obtain that f n has a unique fixed point x∗. But f n( f x∗) =

f ( f nx∗) = f x∗, so f x∗ is also a fixed point of f n. Hence f x∗ = x∗, x∗ is a fixed point of f .

Corollary 3.4. Let (X ,d) be a TVS-valued cone metric space. Suppose that the mappings f

and g are two self-maps of X satisfying

d( f x, f y)� k(d( f x,gx)+d( f y,gy)) (3.4)

for all x,y∈ X, where k ∈ [0, 1
2) is a constant. If the range of g contains the range of f and g(X)

is a complete subspace of X, then f and g have a unique coincidence point in X. Moreover if f

and g are weakly compatible, f and g have a unique common fixed point.
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Corollary 3.5. Let (X ,d) be a TVS-valued cone metric space. Suppose that the mappings f

and g are two self-maps of X satisfying

d( f x, f y)� kd(gx,gy) (3.5)

for all x,y ∈ X, where k ∈ [0,1) is a constant. If the range of g contains the range of f and g(X)

is a complete subspace of X, then f and g have a unique coincidence point in X. Moreover if f

and g are weakly compatible, f and g have a unique common fixed point.

Theorem 3.6. Let (X ,d) be a TVS-valued cone metric space. Suppose that the mappings f and

g are two self-maps of X satisfying

d( f x, f y)� αd(gx,gy)+β [d( f x,gx)+d( f y,gy)]+ γ[d( f x,gy)+d( f y,gx)] (3.6)

for all x,y ∈ X, where α,β ,γ ≥ 0 and α +2β +2γ < 1. If the range of g contains the range of

f and g(X) is a complete subspace of X, then f and g have a unique coincidence point in X.

Moreover if f and g are weakly compatible, f and g have a unique common fixed point.

Proof. Suppose x0 be an arbitrary point of X . Since the range of g contains the range of f ,

choose a point x1 in X such that f (x0) = g(x1). Continuing this process, having chosen xn in X ,

we obtain xn+1 in X such that f (xn) = g(xn+1). Then

d(gxn,gxn+1) = d( f xn−1, f xn)

� αd(gxn−1,gxn)+β [d( f xn−1,gxn−1)+d( f xn,gxn)]

+γ[d( f xn−1,gxn)+d( f xn,gxn−1)]

� αd(gxn−1,gxn)+β [d(gxn,gxn−1)+d(gxn+1,gxn)]

+γ[d(gxn,gxn)+d(gxn+1,gxn)+d(gxn,gxn−1)]

which implies that d(gxn,gxn+1) � hd(gxn−1,gxn), where h = α+β+γ

1−(β+γ) < 1. Therefore, for all

n, we have

d(gxn,gxn+1) � hd(gxn−1,gxn)

� ·· · � hnd(gx0,gx1).
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Now, for any n > m, we have

d(gxn,gxm) � d(gxn,gxn−1)+d(gxn−1,gxn−2)+ · · ·+d(gxm+1,gxm)

� (hn−1 +hn−2 + · · ·+hm)d(x1,x0)

� hm

1−h
d(gx1,gx0).

Let θ ≺≺ c be given. Choose a balanced neighborhood U of θ such that c+U ⊆ intP. Since
hm

1−hd(gx1,gx0)→ θ as m→ ∞, by lemma 2.5, we deduce that {gxn} is a Cauthy sequence.

Since g(X) is a complete subspace of X , there exists q in g(X) such that gxn → q as n→ ∞.

Consequently, we can find p in X such that gp = q. Also, choose a natural number N1, such that

d(gxn,q)≺≺ σ

3 c, where σ = 1−β − γ > 0, for all n≥ N1. Thus

d(gxn, f p) = d( f xn−1, f p)

� αd(gxn−1,gp)+β [d( f xn−1,gxn−1)+d( f p,gp)]

+γ[d( f xn−1,gp)+d( f p,gxn−1)]

= αd(gxn−1,q)+β [d(gxn,gxn−1)+d( f p,q)]

+γ[d(gxn,q)+d( f p,gxn−1)]

� αd(gxn−1,q)+β [d(gxn,q)+d(q,gxn−1)+d( f p,q)]

+γ[d(gxn,q)+d( f p,q)+d(q,gxn−1)].

Since d(gxn, f p)� d( f p,q)−d(gxn,q), we can get

d( f p,q) � 1
1−β − γ

[(α +β + γ)d(gxn−1,q)+(1+β + γ)d(gxn,q)]

≺ 1
σ
[d(gxn−1,q)+2d(gxn,q)]

≺≺ 1
σ
[
σ

3
c+

2σ

3
c]

= c

for all n≥N1. Hence, d( f p,q)≺≺ c
m , for all m≥ 1. So c

m−d( f p,q)∈ intP, for all m≥ 1. Since
c
m → θ (as m→ ∞) and P is closed, we deduce −d( f p,q) ∈ P. But d( f p,q) ∈ P. Therefore

d( f p,q) = θ , and f p = q = gp.
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Now we show that f and g have a unique point of coincidence. Assume that there exists

another point u ∈ X , such that f u = gu. Then

d(gu,gp) = d( f u, f p)

� αd(gu,gp)+β [d( f u,gu)+d( f p,gp)]+ γ[d( f u,gp)+d( f p,gu)]

= αd(gu,gp)+2γd(gu,gp),

which implies that (1−α − 2γ)d(gu,gp) � θ . By 1−α − 2γ > 0, we have gu = gp. From

Lemma 2.4, f and g have a unique common fixed point.

Corollary 3.7 Let (X ,d) be a complete TVS-valued cone metric space. Suppose that the map-

ping f satisfies

d( f x, f y)� αd(x,y)+β [d(x, f x)+d(y, f y)]+ γ[d(y, f x)+d(x, f y)] (3.7)

for all x,y ∈ X, where α,β ,γ ≥ 0 and α +2β +2γ < 1. Then f has a unique fixed point.

Proof. Inequality (3.7) is obtained from (3.6) by setting g = I. I is identity operator. The results

then follow from Theorem 3.6.

Example 3.8 X = [0,1],E be the set of all complex-valued function on X, then E is a vector

space over R under the following operations:

(u+ v)(t) = u(t)+ v(t),(αu)(t) = αu(t)

for all u,v∈ E,α ∈ R. Let τ be the topology on E defined by the family px : x ∈ X of semi-norms

on E, where px(u) =| u(x) |, then (X ,τ) is a topological vector space. Define d : X×X → E as

follows:

(d(x,y))(t) = (| x− y |,2 | x− y |)2t ,P = {(x ∈ E : x(t)≥ 0,∀t ∈ X}. (3.8)

Then (X ,d) is a TVS-valued cone metric space. Define f : X → X as f (x) = x2

4 , then all condi-

tions of Corollary 3.7 are satisfied.

Corollary 3.9 Let (X ,d) be a TVS-valued cone metric space. Suppose that the mappings f and

g are two self-maps of X satisfying

d( f x, f y)� k(d( f x,gy)+d( f y,gx)) (3.9)
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for all x,y∈ X, where k ∈ [0, 1
2) is a constant. If the range of g contains the range of f and g(X)

is a complete subspace of X, then f and g have a unique coincidence point in X. Moreover if f

and g are weakly compatible, f and g have a unique common fixed point.

Proof. Setting α = β = 0 in Theorem 3.6, and k = 2γ ∈ [0, 1
2). The results then follow from

Theorem 3.6.
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