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1. Introduction 

The differential and integral inequalities occupy a privileged position in the theory of differential 

and integral equations. In recent years, these inequalities have been greatly enriched by the 

recognition of their potential and intrinsic worth in many applications of the applied sciences. 

Since the appearance of Gronwalls fundamental paper[13] in 1919, an enormous amount of 

effort has been devoted to the discovery of new type of inequalities and to the application of 

inequalities in many parts of analysis. Integral inequalities were motivated by certain 

applications in the theory of partial differential and integral equations [1-12] of two independent 

variables.  

 

2. Main Results 
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In what follows, R denotes the set of real numbers and ],0[ R is the subset of R . ),[ 01 xxI  , 

),[ 02 yyI  , are the given subsets of R , and 21 IID  .The first order partial derivatives of a 

function 

),( yxz defined for Ryx , with respect to x and y are denoted by ),( yxzx
and ),( yxz y

respectively. Throughout in this paper we use summation convention ,all the functions and their 

partial derivatives appear in the inequalities are assumed to be real valued and all the integrals 

involved are of positive values and exist on the respective domains of their definitions. 

 

Theorem 2.1: Let ),( yxu and ),( yxg
 
be nonnegative real valued continuous functions defined 

for D  such that xsx 0
, yty 0

. Suppose that 1),( yxH and ),( yxH x
, ),( yxH y and 

),( yxH xy be nonnegative and continuous functions defined for Ryx , . If 
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Proof:  Define a function ),( yxz by the right-hand side of (2.1).Then 
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Then 1),( yxz .From (2.1) and (2.4),we have 
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Keeping x fixed in (2.8),set ty   and then integrating with respect to t  from
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Now keeping y fixed in (2.9),set sx   and then integrating with respect to s  from
0x  to x ,we 

get 
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By using (2.5) in (2.10) and from (2.10),we observe that  
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Which can be rewritten as 
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Or                            
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From (2.6) and (2.12).we get 
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Where ),(0 yxE is defined as (2.3). 

 

Theorem 2.2: Let ),( yxu and ),( yxg
 
be nonnegative real valued continuous functions defined 

for D  such that xsx 0
, yty 0

. Suppose that 1),( yxH and ),( yxH x
, ),( yxH y and 

),( yxH xy be nonnegative and continuous functions defined for Ryx , . If 
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Proof:  Define a function ),( yxz by the right-hand side of (2.13).Then 
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)17.2(                ),(),(          ),,(),(           ),,(),(       where 00000000 yxHyxzyxHyxzyxHyxz   

Then 1),( yxz .From (2.13) and (2.16),we have 
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Now keeping y fixed in (2.21),set sx   and then integrating with respect to s  from
0x  to x ,we 

get 
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By using (2.17) in (2.22) and from (2.22),we observe that 
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From (2.18) and (2.23).we get 
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Where ),(1 yxE is defined as (2.15). 

 

Theorem 2.3: Let ),( yxu and ),( yxg
 
be nonnegative real valued continuous functions defined 

for D  such that xsx 0
, yty 0

. Suppose that 1),( yxH and ),( yxH x
, ),( yxH y and 

),( yxH xy be nonnegative and continuous functions defined for Ryx , . If 
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Proof:  The proof of Theorem 2.3 is the same as proof of Theorem 2.1 with suitable 

modifications. 

 

3. Application 

As an application,we obtain the bound on the solution of a nonlinear partial differential equation 

                      )),(,,(),( yxuyxfyxxyu                                                (2.26) 

with the given boundary conditions 

                              0)()(   , )(),( ,  )(),( 02012010  yaxayayxuxayxu                         (2.27)                                                                                                                            
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where      ,, ,, RRDCfRDCu  and  0,0),,(  yxyxD  such that 
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The remaining proof will be the same as the proof of Theorem 2.1 with suitable modifications. 

We note that Theorem 2.1 can be used to study the stability, boundedness and continuous 

dependence of the solutions of (2.26). 
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