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Abstract. In applied science, the physical models are usually described by nonlinear initial/boundary value prob-

lems. The exact solutions for such nonlinear models are not always available, the reason that many authors resort

to the numerical methods. One of these numerical methods is the Chebyshev pseudospectral method. This method

is applied in the current paper to solve some nonlinear initial and boundary value problems of particular interest

in applied sciences and engineering. In order to explore the effectiveness and the validity of the present method,

many physical models of nonlinear type such as generalized nonlinear oscillator, relativistic oscillator, and Bratu’s

equations have been solved numerically. The obtained results are compared with other published works through

tables and graphs where good accuracy has been achieved.

Keywords: Chebyshev collocation method; Nonlinear oscillator; Initial and boundary value problems; Bratu’s

problem.
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1. Introduction

Physical models in applied mathematics and engineering sciences are usually formulated as

nonlinear initial or boundary value problems. The exact solutions of such models can not be

obtained in the most cases, especially, when the considered model is of complex nonlinearity.
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Because of the difficulty of obtaining the exact solution for nonlinear differential equations with

complex nonlinearities, many mathematicians resort to one of the efficient numerical method-

s. Chebyshev have proven successfully in the numerical solution of various boundary value

problems [1,2] and in computational fluid problems [3,4]. The spectral method distinguishes

itself from the finite-difference and finite-element methods by the fact that global information

is incorporated in computing a spatial derivative. The spectral method can yield greater accu-

racy for a smooth solution with far fewer nodes and therefore less computational time than the

finite-difference and finite-element schemes [5].

Chebyshev pseudospectral methods are widely used in the numerical approximation of many

types of ordinary and partial differential equations which arise from the engineering problem-

s [6-9]. Therefore, when many decimal places of accuracy are needed, the contest between

pseudospectral algorithms and finite difference is not an even battle but a rout: pseudospectral

methods win hands-down. Moreover, engineers and mathematicians who need accurate many

decimal places have always preferred spectral methods [10]. Elbarbary and El-Sayed [11-13]

has recently introduced a new pseudospectral differentiation matrix to decrease the round off

error, specially on increasing N (the number of degrees of freedom) or number of equations.

Hence, on solving nonlinear equations in the present results the error becomes nearly zero

[11-13]. Hua Chen et al. [14] discussed notes on a conservative nonlinear oscillator. Ebaid

[15] investigated analytical periodic solution to a generalized nonlinear oscillator: application

of He’s frequency-amplitude formulation. [16] studied He’s frequency formulation for the rel-

ativistic harmonic oscillator. He’s frequency–amplitude formulation for the Duffing harmonic

oscillator was investigated by Fan [17]. Fang Liu [18] studied He’s variational approach for

nonlinear oscillators with high nonlinearity. Zhao [19] studied He’s frequency amplitude for-

mulation for nonlinear oscillators with an irrational force. Li Zhang [20] investigated periodic

solutions for some strongly nonlinear oscillations by He’s energy balance method. Shawagfe-

h [21] studied analytic approximate solution for a nonlinear oscillator equation. Moreover,

modification of Lesnic’s approach and new analytic solutions for some nonlinear second-order

boundary value problems with Dirichlet boundary conditions was investigated by Ebaid [22].
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Wazwaz [23] discussed A domian decomposition method for a reliable treatment of the Bratu-

type equations. An efficient computational method for second order boundary value problems

was studied by Zhou et al. [24].

The purpose of this work is to study the applicability of the Chebyshev collocation method

to solve this kind of issues; see [10, 15, 16, 18, 21, 22, 23]. The absolute errors of the present

results are compared with those obtained by other methods. The nonlinear oscillator with both

initial and boundary conditions is investigated in this paper utilizing Chebyshev collocation

method. It is hoped that the results obtained will not only provided useful information for

applications but also serve as a complement to the previous studies.

2. Analysis

A numerical solution based on Chebyshev collocation approximations seems to be a very

good choice in many practical problems (as described in the literature review and for example

(Canuto et al. [3] and Peyret [7]). Accordingly, Chebyshev collocation method will be applied

for the presented model. The derivatives of the function f (x) at the Gauss-Lobatto points, xk

= cos
(kπ

L

)
, which are the linear combination of the values of the function f (x) [13]

f (n) = D(n) f ,

where,

f = [ f (x0), f (x1), ..., f (xL)]
T ,

f (n) = [ f (n)(x0), f (n)(x1), ..., f (n)(xL)]
T ,

D(n) = [d(n)
k, j ],

or

f (n)(xk) =
L

∑
j=0

d(n)
k, j f (x j),

where,

d(n)
k, j =

2γ∗j
L

L

∑
l=n

l−n

∑
m=0

(m+l−n)even

γ
∗
l an

m,l (−1)[
l j
L ]+[mk

L ]xl j−L[ l j
L ]

xmk−L[mk
L ],

an
m,l =

2nl
(n−1)!cm

(s−m+n−1)! (s+n−1)!
(s)! (s−m)!

,
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such that 2s = l + m− n and c0 = 2,ci = 1, i ≥ 1,where k, j = 0,1,2, ...,L and γ∗0 = γ∗l =

1
2 , γ∗j = 1 for j = 1,2,3, ...,L−1. The round off errors incurred during computing differentiation

matrices D(n) are investigated in [13].

3. Applications

In this section, the proposed method, ChCM [25-30] is applied to solve various nonlinear

initial and boundary value problems that have been analyzed by the authors [10, 15, 16, 18, 21,

22, 23]. The grid points (xi,x j) in this situation are given as xi = cos
(

iπ
L1

)
, x j = cos

(
jπ
L2

)
for

i = 1, ...,L1−1 and j = 1, ...,L2−1.

The domain in the x-direction is [0,xmax] where xmax is the length of the dimensionless axial

coordinate and the domain in the η-direction is [0,ηmax] where ηmax corresponds to η∞. The do-

main [0,xmax]× [0,ηmax] is mapped into the computational domain [0,xmax] × [−1,1]. Cheby-

shev pseudospectral method will be introduced for the following nonlinear initial and boundary

value problems. The computer programs of the numerical method was executed in Mathemati-

ca. The numerical results of the considered models are discussed in section 4.

3.1. Nonlinear oscillator.

The general nonlinear oscillator was introduced by Fang Liu [18] in the form:

u′′+ f (u) = 0, (1)

where,

f (u) = u+a u3 +b u5 + c u7,

with the initial conditions:

u(0) = A, u′(0) = 0. (2)

The approximate solution can be readily obtained by Fang Liu [18]:

u(η) = A Cos(

√
1+

3
4

a A2 +
5
8

b A4 +
35
64

c A6η). (3)



CHEBYSHEV PSEUDOSPECTRAL METHOD 601

The nonlinear oscillator equation (1), with initial conditions (2) are approximated by using

Chebyshev collocation method and the equation (1) is transformed into the following equation:(
2

ηmax

)2
(

L∗

∑
l=0

d(2)
j,l ul

)
+u j +a u3

j +b u5
j + c u7

j = 0, (4)

This system of equations for the unknowns u j where j = 1(1)L∗ (take L∗ = 32) is solved by

Newton-Raphson iteration technique [30]. This technique shall be also used for next problems.

3.2. The relativistic oscillator.

The nonlinear differential equation of a relativistic oscillator was discussed by Chu Cai and

Ying Wu [16] in the form:

d2u
d2η

+
u√

1+u2
= 0, (5)

with initial conditions

u(0) = B, u′(0) = 0, (6)

where the approximate solution was obtained by Chu Cai and Ying Wu [16] as

u(η) = A Cos(

√√√√ 1√
1+ 3

4 B2
η). (6)

As described in the previous problem, equation (5) is transformed into the following equations:(
2

ηmax

)2
(

L∗

∑
l=0

d(2)
j,l ul

)
+

u j√
1+u2

j

= 0. (7)

3.3. The generalized nonlinear oscillator.

The nonlinear oscillator was generalized by Ebaid [15] in the form:

u′′+Ω up +
λ uq

µ +σ ur = 0, (8)

under the initial conditions

u(0) = A, u′(0) = 0. (9)
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The approximate solution was obtained by Ebaid [15] as

u(η) = A Cos (ω η), (11)

where,

ω
2 =

µ Ω Ap−1 Γ( p
2+1)

Γ( p +3
2 )

+
σ Ω Ap+r−1 Γ( p+r

2 +1)
Γ( p +r +3

2 )
+

λ Aq−1 Γ( q
2+1)

Γ( q +3
2 )

√
π

2 µ +
σ Ar Γ( r +3

2 )

Γ( r
2+2)

.

According to the current method of solution, the nonlinear oscillator equation (9) is transformed

into the following equation:(
2

ηmax

)2
(

L∗

∑
l=0

d(2)
j,l ul

)
+Ω up

j +
λ uq

j

µ +σ ur
j
= 0. (12)

3.4. Oscillator with open nonlinearity.

The nonlinear oscillator equation is solved by Ebaid [22] in the form:

u′′+ω
2 u = λ um, (13)

with the boundary conditions

u(0) = 0,u(1) = α, α > 0, (14)

where,

ω
2 =

5
4
, λ =

1
2
,α = sn (1 | 1

4
),

using only three terms of the ADM decomposition series and the approximate solutions φ1(x),

φ2(x) and φ3(x) were compared with the exact solution:

u = sn (η | 1
4
), (15)

where, sn.is the Jacobi-elliptic funcation [21]. Equation (13) becomes(
2

ηmax

)2
(

L∗

∑
l=0

d(2)
j,l ul

)
+ω

2 u j−λ um
j = 0. (16)

3.5. Bratu’s model

Bratu’s model has application as such as the fuel ignition of the thermal combustion theory

Buckmire [31] and in the Chandrasekhar model of the expansion of the universe. It stimulates a
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thermal reaction process in a rigid material where the process depends on the balance between

chemically generated heat and heat transfer by conduction [32]. The exact solutions of the

initial and bounary value problems of Bratu-type was discussed by Wazwaz [23].

u′′−2eu = 0, 0 < x < 1, (17)

The initial value problem of Bratu-type in the form:

u(0) = u′(0) = 0. (18)

The exact solution is given by

u(x) =−2 ln(cos(x)). (19)

It is followed from equation (17) that(
2

ηmax

)2
(

L∗

∑
l=0

d(2)
j,l ul

)
−2 eu j = 0. (20)

An additional boundary value problem of Bratu-type is in the form [23]

u′′+π
2e−u = 0, 0 < x < 1, (21)

with the boundary conditions

u(0) = u(1) = 0, (22)

where the exact solution is given by

u(x) = ln(1+ sin(πx)). (23)

We have from equation (21), that(
2

ηmax

)2
(

L∗

∑
l=0

d(2)
j,l ul

)
+π

2e−u j = 0. (24)

3.6. Fluid flow over a stretching surface.

In this final problem we consider the following boundary value problem which describes the

fluid flow over a stretching surface with variable heat flux[33]
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f ′′′(η)+ f (η) f ′′(η)+( f ′(η))2 = 0,

f ′(0) = 1, f (0) = 0, f ′(∞) = 0. (25)

The exact solution is given by

f (η) =
√

2 tanh(
η√

2
). (26)

Here, equation (25) is transformed into the following equations:(
2

ηmax

)3
(

L∗

∑
l=0

d(3)
j,l fl

)
+

(
2

ηmax

)2

f j

(
L∗

∑
l=0

d(2)
j,l fl

)
+

(
2

ηmax

)2
(

L∗

∑
l=0

d(1)
j,l fl

)2

= 0. (27)

4. Results and discussion

In this section, the numerical results obtained by using Chebyshev collocation method for

the present physical models shall be validated through comparisons with the available exact or

approximate solutions. Such comparisons are reported in terms of tables and graphs.

The present numerical results have been compared with the approximate solution given by

Eq. (3) , where good agreement has been achieved in most cases as displayed in Fig. 1.

In addition, the approximate solution given in (7) for the relativistic oscillator has been also

compared with the current results in Fig. 2 and in this case the current numerical results can

viewed as effective.

Regarding the initial value problem describing the generalized oscillator, the solution given

by Eq. (11) is depicted in Fig. 3 with the ChCM solution at (Ω = ω2 = 5
4 , p = 1,µ =−1,σ =

0,q = 3) with different values for λ and A . It can be concluded form this figure that when the

amplitude A takes high values, λ should be very small to ensure the accuracy.

In Fig. 4 the present numerical results for Eqs. (13-14) have been compared with the

approximate solutions φ1(x), φ2(x) and φ3(x) obtained by [22] along with the exact solu-

tion given in Eq. (15). Furthermore, Table 1 displays the values of u(η) obtained through

Mathematica using the (NDSolve)-command with the present method (ChCM) at m = (2 and

8.5),ω2 = 5/4,λ = 0.5,α = sn(1 | (1
4)) are represented in Table (2− a) and Table (2− b).

Also, the present results have been compared with the two terms approximate solution whose
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obtained by Shawagfeh [21] and the the exact solution in equation (15) at m = 3 as shown in

Table (2− c). These comparisons declare that the present numerical method is accurate and

effective.

For the fifth model, the obtained numerical results have been compared with initial and

boundary value problems of Bratue-type which have been discussed by Wazwaz [23] as shown

in Fig. 5 (a−b). Finally, for the sixth model 6 Table (3−a) and Fig. 6 represent comparisons of

the values of f (η) for the exact solution, the shooting method and the present method (ChCM).

The maximum absolute error of Shootting method (Ee,Shooting) and (the error Ee,ChCM) of the

present method is given in Table (3− b). From the obtained results for these fifth and sixth

models we can also conclude that the current approach is accurate and therefore it can be used

to analyze similar physical models.

5. Conclusion

A comprehensive numerical study is conducted for a class of nonlinear initial and boundary

value problems. The results are reported in terms of tables and graphs. This is done in order

to illustrate special features of the solutions. So, the obtained results using the present method

indicate that it is an adequate scheme for the solution of the present problems. Therefore, the

current approach may be useful to analyze similar nonlinear problems.
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Table 1. Values of u(η) for the exact solution, the Adomian decomposition

method (ADM) [22] and the present method (ChCM ) at m = 3.

η Exact solution Ebaid [22] Present results
0 0 0 0

0.0215 0.021527753184314 0.021496840449489 0.021527753184314
0.0381 0.038048750666070 0.037994258467514 0.038048750666070
0.0590 0.058996522078775 0.058912488704097 0.058996522078775
0.0843 0.084140701923113 0.084022009055905 0.084140701923113
0.1135 0.113190917768906 0.113033703017937 0.113190917768906
0.2643 0.260503473299994 0.260193408528946 0.260503473299994
0.3087 0.302636337275760 0.302300382303633 0.302636337275760
0.4025 0.389261774816383 0.388902811746843 0.389261774816383
0.5000 0.475082936028531 0.474741879621621 0.475082936028531
0.6913 0.627920287048594 0.627693211433239 0.627920287048594
0.7357 0.660039308172239 0.659845026792322 0.660039308172239
0.8865 0.759023161243265 0.758940502736828 0.759023161243265
0.9157 0.776316925238970 0.776255547519948 0.776316925238970

1 0.822635578129862 0.822635578129862 0.822635578129862



Table 2. Represents the values of u(η) for Mathematica (NDSolve)

and the present method (ChCM) at m = 2.

η NDSolve ChCM ENDSolve,ChCM

0 2.216844 × 10−21 0 2.2168E − 21
0.0215 0.02112836209 0.02112837356 1.14668E − 08
0.0381 0.03734293177 0.03734294319 1.14200E − 08
0.0590 0.05790246281 0.05790246281 1.10838E − 08
0.0843 0.08258160883 0.08258161968 1.08447E − 08
0.1828 0.17821000669 0.17821001951 1.28265E − 08
0.2643 0.25583270380 0.25583271758 1.37779E − 08
0.3549 0.33982975211 0.33982977033 1.82279E − 08
0.4510 0.42570059687 0.42570060781 1.09385E − 08
0.5000 0.46794941921 0.46794942643 7.22079E − 09
0.6913 0.62130146059 0.62130146166 1.06673E − 09
0.7778 0.68379903935 0.68379903789 1.46641E − 09
0.8865 0.75579078097 0.75579077351 7.46462E − 09
0.9904 0.81731628075 0.81731627326 7.48671E − 09

1 0.82263558573 0.82263557812 7.60120E − 09



Table 3. Represents the values of u(η) for Mathematica (NDSolve)

and the present method (ChCM) at m = 8.5.

η NDSolve ChCM ENDSolve,ChCM

0 −5.41969 × 10−21 0 5.41969E − 21
0.0215 0.02197144187461 0.02197145295276 1.10781E − 08
0.0381 0.03883294543526 0.03883295616852 1.07333E − 08
0.0590 0.06021244.58721 0.06021245745128 9.86407E − 09
0.0843 0.08587477504774 0.08587478403168 8.98394E − 09
0.1828 0.18527486029162 0.18527486790503 7.61341E − 09
0.2643 0.26584043801347 0.26584044369167 5.6782E − 09
0.3549 0.35274481836500 0.35274481998803 1.62303E − 09
0.4510 0.44103016433725 0.44103015713759 7.19966E − 09
0.5000 0.48414214397530 0.48414213161335 1.23619E − 08
0.6913 0.63747018932352 0.63747015608099 3.32425E − 08
0.7778 0.69768758507902 0.69768754859829 3.64807E − 08
0.8865 0.76438852645325 0.76438849111688 3.53364E − 08
0.9904 0.81816684814189 0.81816681635677 3.17851E − 08

1 0.82263560971081 0.82263557812986 3.15809E − 08



Table 4. Comparison of the values of u(η) for the exact solution,

the two terms approximation(Shawagfeh) [21]

and the present method (ChCM ) at m = 3.

η Exact solution Shawagfeh [21] ChCM
0 0 0 0

0.1 0.099792 0.0996758 0.09979204601963
0.2 0.198345 0.1981148 0.19834539121447
0.3 0.294466 0.294127 0.29446555154955
0.4 0.3875042 0.386609 0.38704242323395
0.5 0.475083 0.474580 0.47508293602853
0.6 0.557734 0.557202 0.55773380237106
0.7 0.634293 0.633792 0.63429327633511
0.8 0.704212 0.703813 0.70421214154716
0.9 0.767085 0.766860 0.76708523758272
1 0.822636 0.822636 0.82263600000000



Table 5. Values of f(η) for the exact solution, the shooting method and

the present method (ChCM ).

η The exact solution ChCM Shootting method
0 0 0 3.1102 × 10−21

1.17157 0.961141183786619 0.9611070045979400 0.9611054342686112
1.77772 1.202428601606520 1.2023643183102284 1.2023645509982483
2.46927 1.330665896574968 1.3305704365379722 1.330570838696424
3.60793 1.397114413277153 1.3969685880488372 1.396968522682298
4.39207 1.4085494708083601 1.4083673080884052 1.408367284942106
5.16114 1.4123021434700513 1.4120834942495526 1.4120834612222437
5.88559 1.4135271302075076 1.4132736020214456 1.4132735693434024
6.53757 1.4139405233760458 1.4136553770920586 1.4136553408479557
7.09204 1.4140889100927603 1.4137767754240098 1.4137767398762842
7.52769 1.4141462431225706 1.4138128682103317 1.4138128330749593
7.92314 1.4141750797928212 1.4138224084323320 1.4138223729952500
η∞ = 8 1.4141790433479533 1.4138226201158337 1.4138225847075525



Table 6. Themaximumabsoluteerror

Ee,ChCM Ee,Shooting

0 3.1102 × 10−21

3.41792 × 10−5 3.57495 × 10−5

6.42833 × 10−5 6.40506 × 10−5

9.546 × 10−5 9.50579 × 10−5

1.45825 × 10−4 1.45891 × 10−4

1.82163 × 10−4 1.82186 × 10−4

2.18649 × 10−4 2.18682 × 10−4

2.53528 × 10−4 2.53561 × 10−4

2.85146 × 10−4 2.85183 × 10−4

3.12135 × 10−4 3.1217 × 10−4

3.33375 × 10−4 3.3341 × 10−4

3.52671 × 10−4 3.52707 × 10−4

3.56423 × 10−4 3.56459 × 10−4
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