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Abstract: An accelerated hybrid Conjugate Gradient (CG) algorithm represents the subject of this 

paper. The parameter
HYWCFR

k  is computed as a convex combination of  Fletcher and Reeves,
FR

k  

[22] and Wu-Chen, 
WCh

k  [3], i.e. 
WCh

kk

FR

kk

HYWCFR

k   )1( . The parameter k  in the 

convex combination is computed in such a way that the direction corresponding to the CG algorithm is 

the best direction we know, i.e. the Newton direction, while the pair ( ks , ky ) satisfies the classical 

secant condition kkk ysB 1 , where, kkk xxs  1  and kkk ggy  1 . It is shown that both 

for uniformly convex functions and for general nonlinear functions the new proposed algorithm with 

strong Wolfe line search is globally convergent. This algorithm uses an acceleration scheme modifying 

the step-length k  for improving the reduction of the function values along the iterations. The 

technique was given by (Andrei [15]). Numerical comparisons with some similar CG algorithms show 

that the new proposed hybrid computational scheme outperforms the CG algorithms given by Wu-Chen 

and FR. A set of 35 unconstrained optimization problems with  several different dimensions are used in 
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this paper. 
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1. Introduction. 

Our problem is to minimize a function of n variables: 

   )(xfMin , where RR: n f                                                                   (1) 

is a smooth nonlinear function and its gradient (x)f  is available. At the current 

iterative point kx , the CG method has the following form: 

kkkk dαxx 1                                                                                  (2) 
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where k  is a step-length; kd  is a search direction; )(k kxfg   and k  is a 

parameter. Consider .  the Euclidean norm and define kkk ggy  1  . The line 

search in the CG-algorithm is often based on the Wolfe-Powell conditions [21]:  

    k

T

kkkkkk dgxfdxf                                                             (4a) 

      k

T

kk

T

k dgdg 1             (4b) 

    k

T

kkkkkk dgxfdxf             (5a)                                                                                                      

      k

T

kk

T

k dgdg 1                              (5b) 

where  15.00    

Equations (4a)-(4b) and (5a)-(5b) are called the “Standard Wolfe” and “Strong Wolfe” 

conditions, respectively. Different CG-algorithms correspond to different choices for 

the scalar parameter k  [26]. The methods of Fletcher and Reeves (FR) [22];  Dai and 

Yuan (DY) [29] and the Conjugate Descent (CD) proposed by Fletcher [23] are 
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defined by: 

      
k
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k
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k
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gg 11  , 

and have strong convergence properties, but they may have modest practical 

performance due to jamming. On the other hand, the methods of Polak-Ribiere-Polyak 

(PRP) [2,6]; Hestenes and Stiefel (HS) [14] and  Liu and Storey (LS) [27] are defined 

by: 

      
k

T

k

k

T

kPR

k
gg

yg 1 , 
k

T

k

k

T

kHS

k
yd

yg 1 , 
k

T

k

k

T

kLS

k
sg

yg 1 , 

and may not always be convergent, but they often have better computational 

performances. In this paper we focus on hybrid CG-methods. These methods have 

been devised to use the attractive features of the above CG-methods. They are defined 

by (2) and (3) where the parameter k  is computed as projections or as convex 

combinations of different  CG-methods, as in Table (1.1). The hybrid computational 

schemes perform better than the classical CG-methods [15,20]. In [17]  a hybrid CG-

method is presented as a convex combination of the Hestenes-Stiefel and the Dai-

Yuan methods, where the parameter in convex combination is computed so that the 

direction corresponding to the CG-method can be the best known Newton direction, 

while the pair ( ks , ky ) satisfied the secant condition. Numerical experiments with this 

computational scheme proved to outperform the Hestenes-Stiefel and the Dai-Yuan 

CG methods, as well as some other hybrid CG-methods [17]. Here,  we also present 

another variant of the hybrid CG-method for unconstrained optimization, which 

performs much better than the modified PRCG-method by considering the Wu-Chen  

CG-method and using the classical secant condition. The structure of this paper is as 

follows. Section 2 introduces a new hybrid CG-algorithm as a convex combination of 

FR and WC algorithms with classical secant condition, which is an hybrid modified 

version of our WC-algorithm presented in [3]. Section 3 presents the convergence 

analysis of the new proposed hybrid CG-algorithm, while in Section 4 some 

numerical experiments and performance corresponding to this new hybrid CG-
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algorithm are given. The performance percentages correspond to a set of  35 

unconstrained optimization test problems in the CUTE test problem library [8] . Each 

test problem was tested several times for a gradually increasing number of variables 

n=500, 1000,...,4000. It is shown that this new hybrid CG-algorithm outperforms the 

classical FR and WC algorithms. 

 

Table (1.1): Hybrid CG–Parameters 

No. Formula Author(s) 
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2.  A New Hybrid CG-Algorithm. 

Our new proposed algorithm generates the iterates ,...,, 210 xxx  computed by 

means of the recurrence (2), where the step-size 0k  is determined according to 

the Wolfe line search conditions (4) and (5), and the directions kd  are generated by 

the rule: 
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   (7) 

and k  is a parameter satisfying 10  k , which is to be determined. Observe that 

if k = 0, then HYWCFR

k = FR

k , and if k  = 1, then HYWCFR

k  = WCh

k . On the other 

hand, if 10  k , then HYWCFR

k  is a convex combination of FR

k  and WCh

k . 

Generally, the global convergence results for the FR method using the strong Wolfe 

line search will be achieved with  . The PRP method performs much better 

than the FR method from the computation point of view. In addition PRP method [6] 

proved that, when the function f  is strongly convex and the line search is exact, then 

the PRP method is global convergent. As early as 1952, HS method had been 
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proposed by Hestenes and Stiefel. In practical computation, the HS and PR methods, 

which share the common numerator  01  k

T

k yg , are generally believed to be the most 

efficient CG methods, and have got meticulous in recent years. However, Powell [13] 

constructed an example showed that both methods can cycle infinitely without 

approaching any stationary point even if an exact line search is used. This counter-

example also indicates that both methods have a drawback that they may not be 

globally convergent when the objective function is non-convex. Therefore, during the 

past few years, much effort has been investigated to create new formulae. For general 

function the PR and HS methods perform similarly in terms of theoretical property. 

Both methods are preferred to the FR method in its numerical performance, because 

the methods essentially perform a restart after it encounters a bad direction. On the 

other hand, the FR method always generates descent directions, this CG algorithm, 

relating the descent directions to the sufficient descent condition. It is shown that if 

there exist constants 1  and 2  such that 21   kg  for all k, then for any 

 (0,1) , there exists a constant 0c  such that the sufficient descent condition:  

2

111   kk
T
k gcdg             (8)                                                   

Therefore, we combine these two methods in a convex combination in order to have a 

good performance CG-algorithm for unconstrained optimization.  

From (6) and (7). It is obvious that: 
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As we know, when the initial point 0x   is close enough to a local minimum point *x , 

then the best direction to be followed in the current point 1kx  is the Newton direction 

1

1

1

2 )( 



 kk gxf . Therefore, our motivation is to choose the parameter k  in (9) so 

that the direction 1kd  can be the best direction we know, i.e. the Newton direction. 

Hence, using the Newton direction from the equality: 
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Observe that the Newton direction is being used here only as a motivation for 

formula (11). However, in formula (11) for k  the main drawback is the presence of 

the Hessian. One of the first CG-algorithm using the Hessian matrix was given by 

Daniel [11], where ))(())(( 22

1k kk

T

kkk

T

k dxfddxfg   . For large-scale 

problems, choices for the update parameter that do not require the evaluation of the 

Hessian matrix are often preferred in practice to the methods that require the Hessian. 

As we know, for Quasi-Newton (QN) methods an approximation matrix kB  to the 

Hessian kf2  is used and updated so that the new matrix 1kB  satisfies the secant 
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condition kkk ysB 1 . Therefore, in order to have an algorithm for solving large-

scale problems in [17] it is assumed that the pair ( ks , ky ) satisfies the secant 

condition. This leads us to a hybrid CG-algorithm, by using kk gs  , where: 
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Theorem 2.1. In the CG-algorithm (2), (9), (12), assume that  k  is determined by 

the Wolfe line search (4). If 0 < k < 1, then the direction 1kd  given by (9) is a 

descent direction. 

Proof. 

Since,  0 < k  < 1,  from (9) we get: 
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the iterations are in progress or when they jam, ky  becomes tiny while kg  is 

bounded away from zero and 0)(2 1   k

T

kkk gsff . Therefore, from (13), it 

follows that 011  k

T

k dg , i.e. the direction 1kd  is a descent one.   

 

Theorem 2.2. If 0 < k < 1, then the direction 1kd  given by (9) satisfies the sufficient 
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Using exact line searches, in (14) yields: 0,
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k . Using, inexact 

line searches,  in (14) yields: 
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0,
2

111   cgdg kk

T

k . This completes the proof. 

 

Observe that ky  becomes tiny while kg  is bounded away from zero. 

Consequently, the last term in the above inequality becomes negligible, since 

0k

T

k sy  by (4b) and since k

T

kk

T

kk

T

kk

T

k sygssygs 1 . Observe that the parameter 

k  given by (12) can be outside the interval [0,1]. However, in order to have a real 

convex combination in (7) the following rule is used: if k  ≤ 0, then set ( k  = 0) in 

(7), i.e. FR

kk  HYWCFR ; if k  ≥ 1, then take ( k  = 1) in (7), i.e. FR

kk  HYWCFR . 

Therefore, under this rule for k  selection, the direction 1kd  in (9) combines the 

properties of the FR and the WC algorithms in a convex way. 

 

2.3 An Acceleration Scheme of  the Line Search Parameter. 

              In [9] Nocedal pointed out that in CG-methods the step lengths may differ 

from 1  in a very unpredictable manner. They can be larger or smaller than 1 

depending on how the problem is scaled. This is in very sharp contrast to the Newton 

and QN-methods, including the limited memory QN-methods, which accept the unit 



948                  ABBAS Y. AL-BAYATI1,*, RANA Z. AL-KAWAZ 2 

step-length most of the time along the iterations, and therefore usually they require 

only few function evaluations per search direction. Numerical comparisons between 

CG-methods and the limited memory QN-method by Liu and Nocedal [5], show that 

the latter is more successful [20]. One explanation of efficiency of this limited 

memory QN-method is given by its ability to accept unity step-lengths along the 

iterations. In this section we take advantage of this behavior of CG-algorithms and 

consider an acceleration scheme which was presented in [15]. In accelerated 

algorithm instead of (2) the new estimation of the minimum point is computed as: 

         kkkkk dxx 1                          (15) 

where                     

k

k

k
b

a
                               (16) 

kkkzk

T

zkkkk

T

kkk dxzandzfgdggbdga   )(,)(, . Hence, if 

0kb , then the new estimation of the solution is computed as kkkkk dxx 1 , 

otherwise kkkk dxx 1 . Therefore, using the definitions of kkk ysg ,,  and the 

above acceleration scheme (15) and (16) we can present the following hybrid CG-

algorithm. 

 

2.4 Outline of the New Hybrid CG-Algorithm. 

Step1:       Initialization: nRx 1 ; ( 0 ); set k=1, compute )( 1xf  and 1g .  

                  Consider    11 gd  . 

Step2:       Test for Continuation of Iterations:  If 1kg , then stop. 

Step3:    Line Search: Compute k  > 0 satisfying the Wolfe line search condition 

and  compute kkk dxz  , )(, zfgggy zzkk  .  Acceleration 

scheme: compute, k

T

kkkk

T

kkk dybdga   , , If 0kb , then   
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compute,  
k

k

k
b

a
   and update the variables as kkkkk dxx 1 , 

otherwise update the variables as kkkk dxx 1 . 

Step4:    Computation of k : If  0])(2[ 11   k

T

kk

T

kk

T

kkk syggsgff , then set 

0k ; otherwise, compute k  as in (12).    

Step5:        Computation of k :  If 0 < k  < 1, then compute HYWCFR

k  as in (7).  

                  If k ≥ 1, then set HYWCFR

k = WCh

k else if  k  ≤ 0, then set HYWCFR

k  = FR

k   

Step6:    Computation of kd : Compute kkkk dgd HYWCFR

11   . If the restart    

criterion of Powell:   

2

11 2.0   kk

T

k ggg                                                                    (17)  

                   is satisfied, then set 11   kk gd ; otherwise, define ddk 1 .  

Step7:      Computation of iteration: set 1 kk  and continue with Step 2. 

 

It is well known that, if f is bounded along the direction kd , then there exists a 

step-size k  satisfying the Wolfe line search conditions (4) and (5). In our algorithm, 

when the Powell restarting condition (15) is satisfied, then we restart the algorithm 

with the negative gradient. More sophisticated reasons for restarting the algorithms 

have been proposed in the literature [13,21], but we are interested in the performance 

of a CG-algorithm that uses this restart criterion associated to a direction satisfying 

the conjugacy condition when 10  k . Under reasonable assumptions, conditions 

(4), (5) and (17) are sufficient to prove the global convergence of the algorithm. 

 

3. Convergence Analysis. 

Throughout this section, we assume that: 

(i)  The level set })()({ 0
0

xfxfRxL n

x   is bounded. 
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(ii) In a neighborhood U  of 
0

xL , the function f  is continuously differentiable and its 

gradient f  is Lipschitz continuous, i.e. there exists a constant 0L  such that 

yxLyfxf  )()(   for all  x, y U . Under these assumptions on f , there 

exists a constant 0   such that  )(xf  , for all 
0

xLx . The convergence of the 

Steepest Descent  (SD) method with Armijo-type search is proved under very general 

conditions in [12]. On the other hand, in [31] it is proved that, for any CG method 

with strong Wolfe line search, the following general result holds. 

 

Lemma 3.1. Let assumptions (i) and (ii) hold and consider any CG method defined by 

(2) and (3), where kd  is a descent direction and k  is obtained by the strong Wolfe 

line search. If 

                  



1

2

1

k kd
                     (18) 

then 

         0inflim 


k

k

g                                                         (19) 

For uniformly convex functions which satisfy the above assumptions, we can prove 

that the norm of 1kd  given by (9) is bounded above. Assume that the function f  is a 

uniformly convex function, i.e. there exists a constant 0  such that, for all 

0

, xLyx  ,         

(  )())()( yxyfxf T 2
yx                                    (20a) 

and the step-length k  is obtained by the strong Wolfe line search defined in (5). 

Using Lemma-3.1 the following result can be proved. 

 

Theorem 3.2. Suppose that the assumptions (i) and (ii) hold. Consider the algorithm 

(2), (9) and (12), where 10  k  and k  is obtained by the strong Wolfe line search. 
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If ks  tends to zero and there exists nonnegative constants 1  and 2  such that: 

kkkk sgsg 2
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,                                                                 (20b) 

and f  is a uniformly convex function, then  
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Proof.  

From (20a) it follows that 
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k ssy  . Now, since 10  k , from uniform 

convexity and (20a) we have: 
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But    kk sLy  , 

)12(
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2 
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 



 k

kk

HYWCFR

k
s
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s
 

Hence,         )12(
11

2
11 


  



 kk

HYWCFR

kkk

L
sgd  

which implies that (18) is true. Therefore, by Lemma-3.1 we have (19), which for 

uniformly convex functions is equivalent to (21). Powell [13] showed that, for general 

functions, the PRP method is globally convergent if the step-length kkk xxs  1  

tends to zero, i.e. 1 kk ss  is a condition of convergence. For the convergence of 

our algorithm from (5b), we see that, for k≥1, the gradient must be bounded as: 

12

22

1  kkk sgs  . If the Powell condition is satisfied, i.e. ks  tends to zero, 
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then 1

2

 kk ss  and therefore the norm of the gradient can satisfy (20).  In the 

numerical experiments, we observed that (20) is constantly satisfied in the last part of 

the iterations. For general nonlinear functions, the convergence analysis of our 

algorithm exploits insights developed by Gilbert and Nocedal [10], by Dai and Liao 

[33] and by Hager and Zhang [25]. The global convergence proof of the new 

algorithm is based on the Zoutendijk condition combined with the analysis showing 

that the sufficient descent condition holds and kd  is bounded. Suppose that the level 

set L is bounded and the function f  is bounded from below. 

 

Lemma 3.3. Assume that kd  is a descent direction and f  satisfied the Lipschitz 

condition kk xxLxfxf  )()(   for all x  on the line segment connecting kx  

and 1kx , where L is a constant. If the line search  satisfies the second Wolfe condition 

(5), then 

2

1

k

k

T

k

k

d

dg

L





                                                                                       (22) 

Proof. 

Subtracting k

T

k dg  from both sides of (4b) and using the Lipschitz condition we have 

2

1 )()1( kkk

T

kkk

T

k dLdggdg                                                    (23) 

Since kd  is a descent direction and σ< 1, then (22) follows immediately from (23).   

 

Theorem 3.4. Let assumptions (i) and (ii) hold. Assume that 10  k  and that, for 

every,  k≥0, there exists a positive constant   such that 01   as well as the 

constants   and   such that  kg . Then, for the computational scheme (2), 

(9), (12), where k  is determined by the Wolfe line search (4), either 0kg  for some 

k or 0inflim 


k

k

g . 
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Proof. 

From the Wolfe condition (4a) we have: 

k

T

kk

T

kkk sgsgff )21()(2 1                                                             (24) 

By Theorem-2.2 and the assumption 1≥ ω, it follows that  
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111   kkk

T

k ggdg   

Therefore, 
2

111   kk

T

k gdg   

On the other hand, kkkk sLggy  1  . Hence, kkkk

T

k sLygyg   11  

With these, from (7) we get: 
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

DLsLyg
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yg kkk

k

T

k

k

T

k 





  

where },:max{
0

xLzyzyD   is the diameter of the level set
0

xL . On the other 

hand, 
2

2

11






k

T

k

k

T

k

gg

gg
 and )12(

)(2 1 
   k

k

T

k
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T

kkk
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sgff
. 

Therefore, E
DL

k

HYWCFR

k 





 )12(
22

2




                                      (25) 

Now, we can write: 

EDsgd k

HYWCFR

kkk   11                                               (26) 

Since the level set L is bounded and the function f is bounded from below, using 

Lemma-3.3, from (4) it follows that: 

   


0
2

2)(
0

k k

k

T

k

d

dg
                                       (27) 

i.e. the Zoutendijk condition holds. Therefore, from Theorem-2.2 using (27) the 

descent property yields: 
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which contradicts (26). Hence, 0inflim 


k

k

g .    

Therefore, when 10  k , our CG-algorithm is globally convergent, meaning 

that either 0kg  for some k or (19) holds. Observe that, in the conditions of 

Theorem-2.2, the direction 1kd  satisfied the sufficient descent condition 

independently of the line search. 

 

4. Numerical Experiments. 

  In this section, we present the computational performance of a Fortran 

implementation of the new algorithm on a set of 35 nonlinear unconstrained 

optimization test problems. All the tests are performed on a PC. These test problems 

are contributed in CUTE and their details are given in the Appendix. Each of them is 

tested  several times for a gradually increasing number of variables n=500, 

1000,...,4000. At the same time, we present comparisons with other CG algorithms, 

including the performance percentage of Dolan and Moré [7]. All algorithms 

implement the same stopping criterion 610


kg , where 


. is the maximum 

absolute component of a vector. The comparisons of algorithms are given in the 

following context. All codes are written in double precision Fortran and compiled 

with visual Fortran (default compiler settings) on an Intel Pentium 4, 1.86 GHz 

workstation. 

Table (4.1) 

COMPARISON BETWEEN :NEW ,(WU & CHEN) and (FR) METHODS  

n= 500, 0100, … ,4000 

Prob

. 

FR/1964 

NOI/NOFG/TIME 

Wu & Chen/2010 

NOI/NOFG/TIME 

New Hybrid CG 

NOI/NOFG/TIME 

1 362 692 0.8 1210 1611 2.34 300 579 1.04 

2 265 639 0.15 207 428 0.12 203 424 0.14 
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3 122 339 0.25 63 134 0.16 63 134 0.18 

4 1065 1976 2.24 2116 2239 5.26 477 586 1.21 

5 289 566 0.18 834 921 0.49 182 267 0.12 

6 245 475 0.79 283 305 0.99 405 424 1.52 

7 296 777 0.18 6674 6724 3.19 71 96 0.02 

8 93 294 0.53 141 166 0.72 141 166 0.73 

9 215 498 0.09 278 399 0.15 150 248 0.09 

10 182 425 0.37 152 223 0.35 144 206 0.31 

11 352 705 0.39 392 511 0.5 254 390 0.34 

12 165 430 0.1 149 267 0.09 152 245 0.07 

13 94 323 0.13 33 57 0.04 33 57 0.03 

14 614 1157 0.35 2962 3037 1.8 260 332 0.16 

15 2033 3020 1.35 13542 13614 8.36 128 190 0.08 

16 123 341 0.19 88 113 0.11 69 95 0.09 

17 121 337 0.19 89 192 0.17 89 192 0.19 

18 136 356 0.21 97 164 0.16 91 187 0.17 

19 315 650 0.2 833 918 0.52 212 308 0.13 

20 123 342 0.22 63 134 0.17 66 154 0.18 

21 305 653 0.18 809 896 0.46 277 369 0.16 

22 318 568 0.44 569 613 0.82 180 238 0.3 

23 646 1262 0.98 817 890 1.44 373 407 0.71 

24 133 369 0.07 109 219 0.07 73 178 0.05 

25 215 505 0.16 192 280 0.14 204 313 0.14 

26 599 1193 0.8 693 725 0.93 296 320 0.46 

27 117 334 0.08 121 188 0.07 109 176 0.06 

28 107 330 0.31 64 129 0.19 64 129 0.19 

29 101 302 0.37 58 74 0.17 58 74 0.16 

30 121 420 0.36 32 64 0.12 32 64 0.13 
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31 182 425 0.35 154 219 0.32 149 215 0.29 

32 566 1096 0.3 1019 1159 0.59 299 430 0.17 

33 42 369 0.09 36 95 0.02 38 117 0.05 

34 78 94 0.08 66 90 0.1 66 90 0.09 

35 176 416 0.1 174 251 0.09 106 196 0.06 

Tota

l 
10916 22678 13.58 35119 38049 31.22 5814 8596 9.82 

 

TABLE (4.2) 

PERCENTAGE  PERFORMANCE  OF  TABLE (4.1) 

 

 

 

 

 

  

       

 Clearly, from the above table, we have found that the new proposed algorithm beats 

FR algorithm in about (46%) NOI; (62%) NOFG and (27% )Time. From this table we 

have also concluded that the new algorithm beats the standard WC-algorithm in about 

(83%) NOI; (77%) NOFG and (68%)Time. 

 

Table (4.3) 

COMPARISON BETWEEN: NEW ,(WU & CHEN) and (FR) METHODS  

n= 000, 300, … ,900 

Prob

. 

FR/1964 

NOI/NOFG/TIME 

Wu & Chen/2010 

NOI/NOFG/TIME 

New Hybrid CG 

NOI/NOFG/TIME 

1 288 545 0.16 936 1099 0.7 254 296 0.19 

2 149 364 0.02 113 208 0.02 110 205 0.01 

New Hybrid 

 

FR 

(1964) 
TOOLS 

53.3 % 100 % NOI 

37.9 % 100 % NOFG 

72.3 % 100 % TIME 

New 

Hybrid 

WU & Ch 

(2010) 
TOOLS 

16.6 % 100 % NOI 

22.6 % 100 % NOFG 

31.5 % 100 % TIME 
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3 64 192 0.03 37 47 0 37 47 0 

4 393 745 0.22 775 848 0.46 225 299 0.13 

5 172 333 0.03 513 559 0.05 126 165 0.03 

6 148 284 0.13 151 163 0.09 173 185 0.15 

7 161 465 0.03 5474 5488 0.54 38 49 0 

8 50 173 0.06 84 99 0.09 81 98 0.09 

9 125 298 0.01 168 228 0.03 81 141 0 

10 107 255 0.05 93 134 0.05 93 120 0.04 

11 205 404 0.07 219 289 0.05 163 217 0.04 

12 103 263 0.01 89 140 0 87 138 0.02 

13 38 179 0.02 18 35 0.02 18 35 0 

14 378 709 0.05 660 698 0.09 222 255 0.03 

15 373 779 0.06 3311 3349 0.52 117 154 0.02 

16 79 211 0.1 65 75 0.03 42 52 0.01 

17 77 201 0.03 45 60 0.01 45 59 0.02 

18 71 200 0.03 54 65 0.02 54 68 0.03 

19 199 411 0.05 639 683 0.09 141 201 0.03 

20 64 192 0.02 37 47 0.01 37 47 0 

21 180 393 0.01 455 494 0.04 137 180 0.01 

22 185 325 0.05 374 404 0.12 107 137 0.05 

23 397 780 0.14 429 492 0.16 168 204 0.08 

24 82 224 0 68 87 0 61 80 0 

25 130 307 0.02 119 174 0.04 122 141 0.01 

26 395 761 0.11 510 549 0.14 192 215 0.06 

27 76 207 0.02 74 99 0.01 55 102 0.01 

28 62 196 0.04 40 80 0.03 40 81 0.03 

29 70 201 0.05 43 53 0.04 43 53 0.03 

30 66 235 0.05 22 38 0.02 22 38 0.02 
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31 107 255 0.05 95 122 0.04 93 120 0.03 

32 339 666 0.04 572 632 0.06 196 248 0.02 

33 5 15 0 12 35 0 13 42 0 

34 45 55 0.02 39 55 0 40 55 0.02 

35 109 257 0.01 98 144 0.01 61 131 0.01 

Tota

l 
5492 12080 1.79 16431 17772 3.58 3494 4658 1.22 

 

TABLE (4.4) 

PERCENTAGE  PERFORMANCE  OF  TABLE (4.3) 

 

 

 

 

 

       

Clearly, from the above table, we have found that the new proposed algorithm beats 

FR algorithm in about (37%) NOI; (61%) NOFG and (31% )Time. From this table we 

have also concluded that the new algorithm beats the standard WC-algorithm in about 

(78%) NOI; (73%) NOFG and (65% )Time. 

 

Table (4.5) 

COMPARISON BETWEEN: NEW ,(WU & CHEN) and (FR) METHODS  

n= 000, 400,700 ,0000 

Prob

. 

FR/1964 

NOI/NOFG/TIME 

Wu & Chen/2010 

NOI/NOFG/TIME 

New Hybrid CG 

NOI/NOFG/TIME 

1 107 206 0.06 892 1008 0.67 230 346 0.18 

2 123 296 0 87 164 0.01 84 161 0.01 

3 57 160 0.03 29 38 0.02 35 78 0.03 

New 

Hybrid 

FR 

(1964) 
TOOLS 

63.6% 100 % NOI 

38.5% 100 % NOFG 

68.2% 100 % TIME 

New 

Hybrid 

WU & CHEN 

 (2010) 
TOOLS 

21.3% 100 % NOI 

26.2 % 100 % NOFG 

34.1% 100 % TIME 
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4 330 626 0.2 627 681 0.41 173 214 0.09 

5 138 270 0.03 406 443 0.06 92 125 0.03 

6 111 219 0.11 137 147 0.1 115 124 0.1 

7 144 391 0.03 3426 3457 0.46 29 40 0 

8 38 140 0.08 66 79 0.1 66 79 0.11 

9 102 242 0.01 141 183 0.01 65 113 0.02 

10 84 202 0.05 84 119 0.03 75 94 0.04 

11 149 303 0.03 233 285 0.07 115 168 0.03 

12 82 208 0 98 138 0.02 87 140 0.01 

13 31 142 0.02 14 28 0 14 28 0 

14 295 559 0.05 510 538 0.08 134 164 0.01 

15 318 615 0.04 2156 2188 0.42 59 91 0 

16 66 171 0.02 53 61 0.06 33 41 0.04 

17 63 162 0.03 36 48 0.01 36 47 0.01 

18 69 178 0.03 43 52 0.02 43 54 0.02 

19 158 324 0.03 510 545 0.07 102 141 0.02 

20 57 160 0.02 29 38 0.01 30 47 0 

21 151 324 0.02 379 412 0.07 121 150 0.02 

22 159 272 0.03 334 355 0.14 85 106 0.04 

23 308 618 0.12 386 428 0.19 99 147 0.07 

24 68 184 0 56 84 0 41 79 0.01 

25 103 246 0.03 98 124 0.01 102 119 0.03 

26 289 576 0.11 333 357 0.14 138 170 0.07 

27 58 161 0.01 61 84 0.02 49 80 0 

28 49 156 0.05 32 64 0.03 32 66 0.01 

29 55 158 0.05 35 43 0.03 35 43 0.03 

30 54 191 0.04 18 30 0.01 18 30 0.02 

31 84 202 0.05 76 95 0.05 75 94 0.03 
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32 266 531 0.03 393 437 0.05 180 224 0.03 

33 4 12 0 9 27 0 7 21 0 

34 36 44 0 32 44 0 32 44 0.02 

35 87 205 0.02 78 115 0.02 49 108 0.01 

Tota

l 
4293 9454 1.43 11897 12939 3.39 2680 3776 1.14 

 

TABLE (4.6) 

PERCENTAGE  PERFORMANCE  OF  TABLE( 4.5) 

 

 

 

 

 

 

       

Clearly, from the above table, we have found that the new proposed algorithm beats 

FR algorithm in about (37%) NOI; (60%) NOFG and (20% )Time. From this table we 

have also concluded that the new algorithm beats the standard WC-algorithm in about 

(77%) NOI; (70%) NOFG and (66% )Time. 

   

Figures (4.1 and 4.2) show the Dolan and Moré CPU performance percentages of 

HYWCFR versus FR and WC, respectively. When comparing the new method against 

FR (Fig.4.1) subject to the number of iterations, we see the new method was better in 

33 problems (i.e. it achieved the minimum number of iterations in 33 problems), FR 

was better in 2 problems, etc.  

New 

Hybrid 

 

FR 

(1964) 
TOOLS 

62.4 % 100 % NOI 

39.9 % 100 % NOFG 

79.7 % 100 % TIME 

New 

Hybrid 

 

WU & 

CHEN 

(2010) 

TOOLS 

22.5 % 100 % NOI 

29.2 % 100 % NOFG 

33.6 % 100 % TIME 
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Figure (4.2)
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Similarly, in (Fig.4.2) we see the number of problems for which HYWCFR is better 

than WC. Observe that the convex combination of FR and WC expressed as in (12) is 

far more successful than FR and WC algorithms. From the tables and figures, we can 

see that the new method was the top performer. Since these codes use the same Wolfe 

line search and the same stopping criterion, they differ in their choice of the search 

direction. Hence, among these CG-algorithms, the new algorithm appears to generate 

the best search direction. 

  

Figure (4.1)
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5. Conclusions. 

There exists a large variety of CG-algorithms. In this paper, we have presented 

a new hybrid CG-algorithm in which the parameter k  is computed as a convex 

combination of FR

k  and WCh

k . For uniformly convex functions, if the step-size ks  

approaches zero, the gradient is bounded in the sense that 
2

12

22

1  kkk sgs   

and the line search satisfies the strong Wolfe conditions, then our hybrid CG-

algorithm is globally convergent. For general nonlinear functions, if the parameter k  

from HYWCFR

k  definition is bounded, then our new hybrid CG-algorithm is globally 

convergent. The performance percentage of our new proposed algorithm is higher 

than those of the well established CG-algorithms for a test set consisting of (35) 

unconstrained optimization problems, some of them from the CUTE library. 

Additionally, the proposed hybrid CG-algorithm is more robust than the FR and the 

WC-algorithms.  

 

Appendix. 

1-   Extended Trigonometric Function.                  

2-   Extended Penalty Function.                             

3-   Raydan 2  Function.                                       

4-   Diagonal2 Function.                                       

5-   Generalized Tridiagonal-1 Function.                 

6-   Extended  Tridiagonal-1 Function.                 

7-   Extended 3-Exponential Terms Function.        

8-   Diagonal4 Function.                                       

9-   Diagonal5 Function.                                       

10- Extended Himmelblau Function.                      

11- Extended PSC1 Function.                                    

12- Extended Block Diagonal BD1 Function.               

13- Extended EP1 Function.                                  
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14- DIXMAANA CUTE- Function.                       

15- DIXMAANB CUTE- Function.                       

16- DIXMAANC CUTE- Function.                       

17- Broyden Tri-diagonal Function.                       

18- EDENSCH    CUTE- Function. 

19- VARDIM CUTE- Function. 

20- LIARWHD CUTE- Function. 

21- DIAGONAL 6 Function. 

22- ENGVAL1 CUTE- Function. 

23- DENSCHNA CUTE- Function. 

24- DENSCHNB CUTE- Function. 

25- DENSCHNF CUTE- Function. 

26- Generalized Quartic GQ1 function. 

27- Diagonal 7 Function. 

28- Diagonal 8 Function. 

29- Full Hessian Function. 

30- SINCOS Function. 

31- Generalized quartic GQ2 function. 

32- ARGLINB CUTE-Function. 

33- FLETCHCR  CUTE-Function. 

34- HIMMELBG CUTE-Function. 

35- HIMMELBH CUTE-Function. 
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