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Abstract: In this paper, a mathematical model for a prey-wholly dependent predator system with reserved area has 

been proposed and analyzed. It is assumed that the habitat consisting of unreserved area, where the predator attack 

its sole food the prey, and reserved area, where the prey lived safely. The predator consumes the prey according to 

the Beddington-DeAngelis type of functional response. The existence, uniqueness and boundedness of the solution 

of the system are discussed. The dynamical behavior of the system has been investigated locally as well as globally 

with the help of Lyapunov function. The persistence conditions are established. Local bifurcation near the 

equilibrium points have been investigated. Finally numerical simulation has been used to confirm our obtained 

analytical results and specify the control set of parameters. 
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1. Introduction 

       Mathematical modeling is an important interdisciplinary activity which involves the 

study of some aspects of diverse disciplines. Biology, Epidemiology, Physiology, Ecology, 

Immunology, Genetics, Physics are some of those disciplines. This mathematical modeling has 

raised to the highest level in recent years and spread to all branches of life and drew the attention 

of every one. The application of mathematical models to problems in ecology has resulted in a 

branch of ecology known as mathematical ecology, while the population dynamics deals with the 

dynamical behavior of the model ecological systems.  
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       In the beginning of twentieth century number of attempts has been made to predict the 

evolution and existence of species mathematically. In deed, the first major attempt in this 

direction was due to the well known classical Lotka-Volterra model. It proposed independently 

by the American ecologist Alfred J. Lotka in 1925 as a description of a prey-predator system 

consisting of a plant population and of a herbivorous animal which relies on this plant as its only 

food source and by the Italian mathematician Vito Volterra in 1926 as a model to describe the 

interaction between sharks and fishes in the Adriatic sea. Since then many complicated model 

for two or more interacting species has been proposed according to the Lotka-Volterra model by 

taking in to account the effect of competition, time delay, switching, over-exploitation, over-

predation, environmental pollution, disease etc., see for example [1-9] and the references their in. 

All these models are formulated in terms of a system of nonlinear ordinary differential equations 

and discussed the coexistence and extinction of interacting biological species. 

 Now, in order to protect the species from driven to extinction, appropriate measures such 

as restriction on harvesting, creating reserved zones, etc. should be taken that will decrease the 

interaction of these species with external forces. The role of reserve zones in prey-predator 

dynamics has received considerable attention in literatures [1]. In particular, Krivan [4] proposed 

and analyzed the effects of optimal anti predator behavior of prey in predator-prey system. He 

showed that optimal anti predator behavior of prey leads to persistence and reduction of 

oscillation in population densities. Chattopadhyay et al. [5] studied a prey-predator model with 

some cover on prey species. They observed that global stability of the system around positive 

equilibrium does not necessarily imply the permanence of the system. Dubey et al. [6] proposed 

and analyzed a mathematical model to study the dynamics of a fishery resource system in an 

aquatic environment consisting of two areas, namely a free fishing area and a reserve area where 

fishing is strictly prohibited. It was suggested that even if fishery is exploited continuously in the 

unreserved area, fish populations can be maintained at an appropriate equilibrium level in the 

habitat. Later on, Kar [7] proposed a harvests predator-prey model incorporating a prey refuge. 

He showed that, it is possible to break the cyclic behavior of the system. In the above 

investigations, the dynamics of predator living in unreserved area together with prey has not 

been studied explicitly. Dubey [8] proposed and analyzed the dynamics of a prey-predator model 

with a reserved area; it is assumed that the habitat is divided in to two disjoint areas (unreserved 

area and reserved area). The predators are not allowed to enter in to the reserved area; however it 
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consumes the prey in unreserved area according to linear type (Lotka-volterra) of functional 

response. He concluded that the existence of reserved area has a stabilizing effect on prey-

predator model. Naji and Kasim [9] proposed and analyzed the effects of switching on the 

dynamics of two prey-one predator model. They observed that adding the defensive switching 

behavior to the model has a stabilizing effect on the dynamical behavior of the model. Recently, 

Mukherjee in [10] proposed and analyzed a Holling type-II prey-predator system with a reserved 

area and he concluded that under certain conditions reserved zone has destabilizing effect on 

prey-predator dynamics. However Mukherjee in [11] studied a generalized prey-predator system 

with a reserved area. He assumed that the migration rate of prey population from free area to 

reserved area is predator density dependent. 

             In this paper, the idea of models of Dubey [8] and Mukherjee [11] are adopted together 

and a new mathematical model is proposed and studied. It is assumed that the more general 

predator functional response of Beddington-DeAngelis type, which was proposed independently 

by DeAngelis et al.(1975) and Beddington (1975) [12-13], are used for predation process and the 

migration rate of prey population from unreserved area to reserved area is depends on both a 

constant rate and predator density. The local and global stability of the proposed model are 

investigated. The persistence conditions are established. The local bifurcation analysis is carried 

out. Finally numerical simulation is used to investigate the global dynamics and confirm our 

obtained results. 

 

2. Mathematical model  

  Consider a prey-predator system in which the predator dependent on a sole prey in its 

feeding living in habitat consisting of two zones namely reserved area and unreserved area. In 

order to formulate the mathematical model that describes the above real system the following 

hypotheses are adopted: 

1. The prey in a reserved area is capable of reproducing in logistic fashion with carrying 

capacity 0K  and intrinsic growth rate 01 r . While the prey in unreserved area is 

capable of reproducing in logistic fashion with carrying capacity 0L  and intrinsic 

growth rate 02 r . 

2. The transition of prey from unreserved area to reserved area is proportional with a natural 

moving rate 0  as well as predator density, while the transition in opposite direction 



A PREY-WHOLLY DEPENDENT PREDATOR SYSTEM                                           1117 

is proportional with a natural moving rate 0  only. However, the transition of 

predator species from unreserved area is not allowed. 

3. The predator species consumes the prey species in an unreserved area according to 

Beddington-DeAngelis type of functional response with maximum attack rate 0a , 

half-saturation constant 0b  and a scale of the impact of the predator interference that 

given by 0c . Finally, in the absence of prey species the predator will decay 

exponentially with a death rate given by 0d . 

Now, let )(tx  be the density of prey species in unreserved area, )(ty  be the density of prey 

species in reserved area and )(tz  be the density of predator species at time 0t , then according 

to the above hypothesis the dynamics of the above system can be describe by the following set of 

differential equations: 
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with 0)( tx , 0)( ty  and 0)( tz . Clearly the interaction functions in the right hand side of 

system (1) given by the vector tFFFF ),,( 321  are continuously differential function on 
3
R , 

Hence they are Lipschitizian. Therefore the solution of system (1) exists and is unique. Further, 

all the solutions of system (1) with non-negative initial condition are uniformly bounded as 

shown in the following theorem. 

Theorem (1): All the solutions of system (1) which initiate in 
3
R  are uniformly bounded. 

Proof:  Let ))(),(),(( tztytx  be any solution initiate in 
3
R  and consider the function 
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where },1.{min1 d . Now, since the logistic terms are bounded, then straight forward 

computation shows that 

 

Consequently by using the comparison theorem, We obtain that    for sufficiently large 

t . Hence all the species are uniformly bounded for any initial value in 3
R .           ■ 

 

3. Existence of equilibrium points and stability analysis 

  There are at most three non-negative equilibrium points of system (1), the existence 

conditions and stability analyses of them are described below: 

The vanishing equilibrium point )0,0,0(0 E  always exists. 

The predator free equilibrium point )0,,(1 yxE  , where 
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while x   is a positive root of the third degree polynomial  
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where 01
1 

K

r
A  and 



 1
2

r
A


 , that exists uniquely in the positive quadrant of xy plane if 

and only if the Eq.(3) has a unique positive root x  that satisfy the following condition  

 1
1 r
K

xr
                                                                                                            (4) 

Further, according to the Discard rule, Eq.(3) has a unique positive root if and only if one sets of 

conditions hold, 

 0)( 22   Ar  with 1r                  (5a) 

Or 



A PREY-WHOLLY DEPENDENT PREDATOR SYSTEM                                           1119 

 
L

rA
Ar 2

2
2

12 )(                                                                                                 (5b) 

The positive equilibrium point, ),,(2
 zyxE  exists uniquely in the interior of 3

R  ( 3. RInt ) 

provided that there is a positive solution to the following set of algebraic equations. 
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Straight forward computation shows that 
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Consequently, it is easy to verify that ),,(2
 zyxE  exists uniquely in 

3. RInt  provided that 

the following set of conditions hold 
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Now, in order to investigate the local stabilities of the above equilibrium points, we need to 

consider the Jacobian matrix ),,( zyxJDF   of system (1) that can be written as 
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Clearly, straight forward computation shows that the Jacobian matrix near the vanishing 

equilibrium point )0,0,0(0 E  is  
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Thus the characteristic equation can be written as: 
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here x0 , y0  and z0  represent the eigenvalues of )( 0EJ  in the x-direction ,y-direction and z-

direction respectively. Clearly all the above eigenvalues will be negative provided that the 

following conditions hold 

1r                                                                                                                 (14a) 

 2r                                                                                                                (14b) 
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Since condition (14c) can't satisfied simultaneously with conditions (14a) and (14b), hence  
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Therefore the characteristic equation and the eigenvalue of )( 1EJ  can be written respectively as 
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Finally, the Jacobain matrix of the system(1) near the positive equilibrium point 2E  can be 

written as 
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Therefore the characteristic equation of 2E  can be written as follow 

 032
2

1
3  AAA                                                                                     (20) 

where 

  3322111 aaaA   

 332231133311211222112 aaaaaaaaaaA   

    221323123121122211333 aaaaaaaaaaA   

while 

 
     

  31231233221133223322

311333113311211222112211321

2 aaaaaaaaaa

aaaaaaaaaaaaAAA




 

From the Routh-Hurwitz criterion [14], all the roots (eigenvalues of )( 2EJ ) of Eq. (20) have 

negative real parts and hence ),,(2
 zyxE  is locally asymptotically stable if and only if 

1A , 3A  and   are positive. Therefore in the following theorem we present the sufficient 

conditions of local stability of 2E . 

Theorem (2): Suppose that the positive equilibrium point 2E  of system (1) exists in 
3. RInt . 

Then 2E  is locally asymptotically stable if  
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Now, we will study the global stability of the equilibrium points of system (1) with the help of 

Lyapunov method. The results of this study can be summarized in the following   theorems. 

 

Theorem (3): Suppose that the predator free equilibrium point )0,,(1 yxE   is locally 

asymptotically stable in the 
3
R , then it is a globally asymptotically stable provided that 

 
e

d
xy 




             (22a) 

 
y

x

y

x

b

a













2

           (22b) 

Proof. Consider the following function       zcyyycxxxcV
y

y

x
x

3211 lnln  , where 

3,2,1; ici  are positive constants to be determined. Clearly RRV 
3

1 : , is a continuously 

differentiable positive definite real valued function with 0)0,,(1 yxV  and 0),,(1 zyxV  

otherwise. Further, since 

 

 
dt

dz
c

dt

dy

y

yy
c

dt

dx

x

xx
c

dt

dV
321

1 






 








 
  

Then by substituting the values of 
dt

dy

dt
dx , , 

dt
dz  from system (1) and then simplifying the resulting 

terms we obtains that 
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



z
M

xa
c

y

yx
c

M

axz
ecc

zxcdcxzccyxxcyc

xyycxc
yyxx

yxyx
yy

L

r
cxx

K

r
c

dt

dV


















1231

132121

12
22

2
21

1
1

)(

)()()(

)()()(





  

here czxbM  . So, by choosing the positive constants as 
x

y
cc




 21 ,1  and 

e
c 1

3   we 

get that 

 

z
M

xa

yx

yx
zx

e

d

xz
x

y
yxyx

yxx
yy

L

r

x

y
xx

K

r

dt

dV















































2

222211 1)()()(

 

Clearly, 01 
dt

dV
 provided that the given conditions hold. Hence 1V  is a Lyapunov function and 

hence )0,,(1 yxE   is a globally asymptotically stable.             ■ 

 

According to the above theorem its easy to concludes that, the basin of attraction of the predator 

free equilibrium point is  

 






















  0,:),,()(

2
3

1 z
y

x

y

x

b

a
RzyxE




 

Finally, in the following theorem the conditions of globally asymptotically stable for a positive 

equilibrium point are established. 

 

Theorem (4). Suppose that the positive equilibrium point ),,(2
 zyxE  is locally 

asymptotically stable in the 
3
R , then it is a globally asymptotically stable provided that 

 
K

r

bM

az 1




             (23a) 

 2211
2

12               (23b) 

 3311
2

13               (23c) 

 3322
2

23               (23d) 
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here     czxbM ,  





MM

az
K

r1
2
1

11 , 





x

y




12 , 







 








yy

zx
L

r

x

y 2

2
1

22



 , 








 






 

MM

xba

MM

czbae )()(
13 1 , 

y

y








23  and 





MM

aecx

2
33 . 

Proof. Consider the following function  

      


 













z

z

y

y

x

x zzzdyyydxxxdV lnlnln 3212 ,  

where 3,2,1; idi  are positive constants to be determined. Clearly RRV 
3

2 : , is a 

continuously differentiable positive definite real valued function with 0),,(2  zyxV  and 

0),,(2 zyxV  otherwise. Further, since 

 
dt

dz

z

zz
d

dt

dy

y

yy
d

dt

dx

x

xx
d

dt

dV













 














 














 




321
2  

Then by substituting the values of 
dt

dy

dt
dx , , 

dt
dz  from system (1) and then simplifying the resulting 

terms we obtains that 

 )()(

))(())((

))((
)(

1
)(

)()()(

1212

22

13

2
3

22
2

21
1

2

ydxdyxydxdxy
yyxx

yxxy

zzyy
y

x
dyyxx

y

z
d

zzxx
MM

xba
d

MM

czbae
d

zz
MM

aecx
dyy

yy

zx

L

r
dxx

MM

az

K

r
d

dt

dV

 

































 





































































 

By choosing the positive constants as 





x

y
dd




21 ,1 , 13 d  and using the given conditions 

we get after some algebraic manipulation that: 

 

   

   22

3322

2

3311

2

2211
2

)()(

)()()()(

yxxy
yxx

zzyy

zzxxyyxx
dt

dV

















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Clearly, 02 
dt

dV
 under the given conditions then 2V  is a Lyapunov function and hence 

),,(2
 zyxE  is a globally asymptotically stable.             ■ 

 

4. Persistence of system (1) 

 In this section, the persistence of system (1) is studied. It is well known that the system (1) is 

said to be persistence if and only if each species persists. Mathematically this is meaning that the 

solution of system (1) do not have omega limit set in the boundaries of 3
R . Now before we go 

further to establish the persistence conditions of system (1), we need to show weather there is a 

periodic dynamics in the xy plane or not.  

Consider the system (1) in the interior of xy plane, which can be written as: 

  

),(1

),(1

22

11

yxgyx
L

y
yr

dt

dy

yxgyx
K

x
xr

dt

dx

























           (24) 

Clearly Eq. (24) represents a subsystem of system (1) that has the predator free equilibrium point 

1E  of system (1) as a unique positive equilibrium point. Define 
xy

yxH 1),(   that is obviously  

  0, yxH  and 1C  function in the 2. RInt  of the xy  plane. Now, since 

  yx,  = 0
)()(

2

2

2

121 









yLx

r

xKy

r

y

Hg

x

Hg 
  

Then it is clear that  yx,  does not change sign and it is not identically zero in the 2. RInt  of 

the xy  plane. So by using Dulic-Bendixon’s criterion there is no closed curve in the 2. RInt  of 

the xy  plane. Moreover according to the Poincare-Bendixon theorem,  1E  will be a globally 

asymptotically stable in the 2. RInt  of the xy  plane whenever it exists and locally stable.  

Consequently, in the following theorem, the necessary and sufficient conditions for the uniform 

persistence of the system (1) are derived. 

 

Theorem (5):  The system (1) is uniformly persistence if the following conditions hold 
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 












x

y

K

x
r 11            (25a) 

 












y

x

L

y
r 12            (25b) 

 d
xb

xea



                                  (25c) 

Proof: Consider the average Lyapunov function of the form 321),,(
ppp

zyxzyx  , where each 

3,2,1; ipi  is assumed positive constant. Obviously ),,( zyx  is a 1C  positive function defined 

in 
3. RInt ,  and 0),,( zyx  if  0x  or 0y  or 0z . Consequently we obtain 

 


























































d
czxb

eax
p

y

xz

L

y
rp

czxb

az

x

y
z

K

x
rpzyx

zyx

zyx

322

11),,(

),,(

)(
1

)(1),,(











 

Now, since there are no periodic attractors in the boundary planes then, for any initial point in 

the 
3. RInt , the only possible omega limit set in the boundary planes of the system (1)  is the 

equilibrium points 1E . Thus according to the Gard technique [15] the proof is follows and the 

system is uniformly persists if we can proof that 0)(   at each of these points. Since  

 



















































d
xb

xea
p

y

x

L

y
rp

x

y

K

x
rpE

322

111

1

1)(







                                                      

Obviously, 0)( 1  E  for any positive constants 3,2; ipi  provided that the given conditions 

hold. Then strictly positive solution of system (1) do not have omega limit set in the boundary 

planes. Hence, system (1) is uniformly persistence.                                 ■ 

 

5. The local bifurcation analysis 

 In this section, an application of the Sotomayor's theorem [16] is used to investigate the 

occurrence of the local bifurcation near the possible stable equilibrium points of system (1). 

Since the existence of a non-hyperbolic equilibrium point is a necessary but not sufficient 

condition for bifurcation to occurs, a parameter that makes the Jacobian matrix has a zero real 
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part eigenvalue will be adopted as a candidate bifurcation parameter as shown in the following 

theorems.    

Consider now the Jacobian matrix of system (1) at ),,( zyx  that given by Eq. (10). Then, with 

straight forward computation, it is easy to verify that 

 13
2 )(),)(,,(  ijdVVzyxFD             (26) 

here 
2

3331
2

13

1
11

)(2
2

)(22
v

M

xxbac
vvv

M

zczba

K

r
d










 



  

 
2

2
2

3121

2
2 v

L

r
vvd   

 

 

2
32

313

2
1331

1

2
)()2(

)(2

v
M

czxb

M

acex

vv
M

ae
czbbxczbv

M

zczbae
d








 







 

here tvvvV ),,( 321  is any vector in 3R . Moreover 

 13
3 )(),,)(,,(  ijdVVVzyxFD              (27) 

here  

 

 

  3
343

2
14

2
314

3
1411

)(6
)(3)2(

2

)(3)2(
2)(6

v
M

xxbac
vvzczbcczb

M

a

vvxxbMxb
M

ac
v

M

zczba
d









 

 021 d  

 

 

 

  3
34

2
314

3
2

14

3
1431

)(32

)(4)2(4)(6

))(()2(
6)(6

vczxbccMM
M

acex

vvczbbxczbxxb
M

ace

vvczbczbxczb
M

ae
v

M

zczbae
d










 

Theorem (6). The system (1) at the predator free equilibrium point )0,,(1 yxE   with the 

parameter 
xb
xaed



~

 has  

1. No saddle-node bifurcation. 
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2. Transcritical bifurcation provided that 

 xc
AA

AAx
b 









31

32
~~

~~

            (28a) 

3. Pitchfork bifurcation provided that 

 xcb
AA

AAx










31

32
~~

~~

 and 
3
1c           (28b) 

Proof. According to the Jacobian matrix at the predator free equilibrium point )( 1EJ  that given 

by Eq. (15) and their characteristic equation given in Eq. (16), its easy to verify that   )( 1EJ  has 

zero eigenvalue 0
~
  at 

xb
xaed



~

 and hence 1E  will be a non-hyperbolic point. Let 

tvvvV )~,~,~(
~

321  be the eigenvector that associated with the zero eigenvalue 0
~
  of the 

Jacobian matrix )
~

,(
~

1 dEJJ  , then  

    0
~~~
VIJ 

t

vv
AA

AxA
v

AA

AAx
V























 33

31

21
3

31

32 ~,~
~~

~~

,~
~~

~~
~








 

where 3
~v  represents any nonzero real number and  xrA

K

r12
11

~
, )1(

~
2 xb

axA


  and 

 yrA
L

r22
23

~
. 

Let t)~,~,~(
~

321   be the eigenvector that associated with the zero eigenvalue 0
~
  of the 

transpose of Jacobian matrix )
~

,(
~

1 dEJJ tt  , then  

    0
~~~

IJ t   t3
~,0,0

~
  

where 3
~  represents any nonzero real number. 

Now let ),,( zyxX   then since  

 






































0

0

0

),(0

0

),( 1 dEF

z

dXF dd  

here ),( dXFd  represents the derivative of tFFFF ),,( 321  with respect to d . Then we get that  

 0)0,(
~

1  EFd
t  



1130                                    M.V. RAMANA MURTHY AND DAHLIA KHALED BAHLOOL 

Thus according to the Sotomayor's theorem for local bifurcation, the saddle-node bifurcation 

can't occur while the first condition of transcritical and pitchfork bifurcation is satisfied. Further, 

since 

 








































100

000

000

),(

100

000

000

),( dEDFdXDF ddd  

here ),( dXDFd  represents the derivative of ),( dXFd  with respect to ),,( zyxX  , 

consequently we get 

   0~~~
)

~
,(

~
331  vVdEDFd

t   

Moreover, by substituting 1E  , d
~

 and V
~

 in Eq. (26), it is observed that 

 

3
2

3

31

32

2

3
2

3233121
2

~~
~~

~~

)(

2

~~

)(

2~~~

)(

2
)]

~
,

~
)(

~
,([

~








vxc
AA

AAx
b

xb

ae

v
xb

xace
vv

xb

abe
VVdEFDt
























  

Cleary, if condition (28a) holds then 0)]
~

,
~

)(
~

,([
~

1
2  VVdEFDt

 and hence transcritical 

bifurcation occurs. However if xcb
AA

AAx










31

32
~~

~~

 then 0)]
~

,
~

)(
~

,([
~

1
2  VVdEFDt

, and hence the  

transcritical bifurcation can't occur. Further by substituting 1E  , d
~

 and V
~

 in Eq. (27), it is 

observed that 

 3
3

331
3 ~~)31(

)(

2
)]

~
,

~
,

~
)(

~
,([

~
vc

xb

xace
VVVdEFDt 


   

Cleary, if condition (28b) holds then 0)]
~

,
~

,
~

)(
~

,([
~

1
3  VVVdEFDt

. Hence pitchfork bifurcation 

occurs.                                               ■ 

 

Theorem (7). Assume that condition (21a) holds while condition (21b) is revised and let the 

following conditions hold  

 )]()2()[(]2[ 122
  czbaKKxcMrrczcbKMr       (29a) 

   










 








y
L

r
r

M

xbax
Ly

L

xr



 2

22

2 2)(
2                   (29b) 
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where  

 
)]()2()[(]2[

)]()2()2([2

122

12




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Then system (1) at the positive equilibrium point ),,(2
 zyxE , with the parameter value 

given by L


, has  

1. saddle-node bifurcation. 

2. No transcritical bifurcation.  

3. No pitchfork bifurcation.  

Proof. According to the Jacobian matrix at the positive equilibrium point )( 2EJ  that given by 

Eq. (19) and their characteristic equation given in Eq. (20), its observed that    
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Thus its easy to verify that )( 2EJ  has zero eigenvalue 0


 at the parameter value L


, which is 

positive under condition (29a). Hence 2E  is a non-hyperbolic equilibrium point. 

Let tvvvV ),,( 321


  be the eigenvector that associated with the zero eigenvalue 0


 of the 

Jacobian matrix 332 )(),(  ijaLEJJ
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, where 3,2,1,;  jiijij aa
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 is any nonzero real number and 031233321  aaaa
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here 2


 represents any nonzero real number and 23122213 aaaa


  under condition (29b).  

Now let ),,( zyxX   then since  
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here ),( LXFL  represents the derivative of tFFFF ),,( 321  with respect to L . Then we get that  
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Thus according to the Sotomayor's theorem for local bifurcation, the transcritical and pitchfork 

bifurcation can't occur while the first condition of saddle-node bifurcation is satisfied. Further, 

straight forward computation gives that  
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Hence we obtain that 
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Straight forward computation shows that  0),)(,( 2
2  VVLEFDt


. and hence system (1) has 

saddle-node bifurcation at 2E  with the bifurcation point given by L


.          ■ 

 

6. Numerical Simulation 

    In this section the global dynamics of system (1) is studied numerically. The objectives of 

this study are confirming our analytical results and understand the effects of varying the system's 

parameters on the dynamics of system (1). Consequently, system (1) is solved numerically, for 

different sets of parameters and different sets of initial conditions.   

It is observed that for the following biologically feasible set of hypothetical parameters values, 

different set of parameters values can be adopted too, system (1) is solved for different sets of 

initial values and then the trajectories of system (1) as a function of time are drawn in Fig. (1a)-

(1c). 

 
1.0,75.0,100,75.0,1.0

,10,5.0,9.0,5.0,200,5.1

2

1





deLrc

baKr 
          (30) 

 

Obviously, Fig. (1a)-(1c) shows clearly the convergent of system (1) to the globally 

asymptotically stable positive equilibrium point )6.21,59.104,42.4(2 E , which confirm our 

analytical results.  

Now, in order to discuss the effect of varying the maximum attack rate on the dynamical 

behavior of system (1), the system is solved numerically for different values of the maximum 

attack rate keeping other parameters fixed as given in Eq. (30), and then the  trajectories of 

system (1) as a function of time are drawn in Fig. (2a)-(2b) for the typical values of maximum 

attack rate 1.0,2.0a  respectively. 
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Fig. (1): Time series of the solutions of system (1) that approaches asymptotically to 

)6.21,59.104,42.4(2 E . 
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Fig. (2): Time series of the solutions of system (1).(a) The solution approaches to 

)25.6,65.128,25.21(2 E  for 2.0a . (b) The solution approaches to )0,11.105,27.197(1 E  

for 1.0a . 
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Obviously the solution of system (1) approaches asymptotically to the positive equilibrium point 

for data given in Eq. (30) with 2.0a , while its approaches asymptotically to the predator free 

equilibrium point for the data given in Eq. (30) with  1.0a .  

Further the effect of varying the conversion rate of the amount of food from prey to predator on 

the dynamical behavior of system (1) is studied. The system (1) is solved numerically for 

different values of the conversion rate keeping other parameters fixed as given in Eq. (30), and 

then the  trajectories of system (1) as a function of time are drawn in Fig. (3a)-(3b) for the typical 

values of conversion rate 1.0,25.0e  respectively. 
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Fig. (3): Time series of the solutions of system (1).(a) The solution approaches to 

)77.3,22.144,51.41(2 E  for 25.0e . (b) The solution approaches to )0,11.105,27.197(1 E  

for 1.0e . 

 

According to the above figure the solution of system (1) approaches asymptotically to the 

positive equilibrium point for data given in Eq. (30) with 25.0e , while its approaches 

asymptotically to the predator free equilibrium point for the data given in Eq. (30) with  15.0e .  

Now the effect of varying the predator's death rate on the dynamical behavior of system (1) is 

also studied. The system (1) is solved numerically for different values of the death rate keeping 

other parameters fixed as given in Eq. (30), and then the  trajectories of system (1) as a function 

of time are drawn in Fig. (4a)-(4b) for the typical values of death rate 4.0,2.0d  respectively. 
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Fig. (4): Time series of the solutions of system (1).(a) The solution approaches to 

)16.9,18.117,47.12(2 E  for 2.0d . (b) The solution approaches to )0,11.105,27.197(1 E  

for 4.0d . 

Finally, varying other parameters one at the time keeping the rest of parameters as given in Eq. 

(30) is also investigated numerically, but the solution of the system (1) still approaches to the 

positive equilibrium point. 

 

7. Discussion and Conclusions:  

 In this paper, a mathematical model has been proposed and analyzed to study the real world 

system consisting of a prey interacting with predator that depends on the prey as a sole food. It is 

assumed that the habitat consisting of unreserved area, where the interacting occurs, and reserved 

area, where the prey lived safely. The predator is consumed the prey in an unreserved area 

according to the Beddington-DeAngelis type of functional response. The dynamical behavior of 

the proposed model represented by system (1) has been investigated locally as well as globally. 

The persistence conditions are established. Local bifurcation near the equilibrium points have 

been investigated. It is observed that the system has at most three nonnegative equilibrium points, 

the vanishing equilibrium point that is always exists and unstable saddle point while the predator 

free equilibrium point and the coexistence (positive) equilibrium point are exist and 

asymptotically stable provided that specific conditions are satisfied. Finally in order to confirm 

our obtained analytical results and specify the control parameters on the global dynamics of the 

system (1),  the system is solved numerically for biologically feasible set of hypothetical 

parameters values that given in Eq. (30) and the obtained results can be summarized in the 

following: 
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1. For the data given in Eq. (30) the system approaches asymptotically to the positive 

equilibrium point starting from different initial sets of points, which indicates to the 

existence of a globally stable positive equilibrium point and the system is persist.  

2. Increasing the value of maximum attack rate in the range 15.0a  (conversion rate in the 

range 22.0e ) causes increasing in the density of the predator z  but the system (1) still 

approaches asymptotically to the positive equilibrium point. However decreasing the 

value of maximum attack rate in the range 15.0a  (conversion rate in the range 

22.0e ) causes extinction in the predator species and the system (1) approaches 

asymptotically to the predator free equilibrium point in the xy plane. 

3. Decreasing the value of predator's death rate in the range 35.0d  causes increasing in the 

density of the predator z  but the system (1) still approaches asymptotically to the 

positive equilibrium point. However increasing the value of predator's death rate in the 

range 35.0d  causes extinction in the predator species and the system (1) approaches 

asymptotically to the predator free equilibrium point in the xy plane. 

4. According to the above second and third point its clear that the parameters ea,  and d  

work as a control parameters on the persistence and bifurcation of the system (1). 

5. Finally varying the other parameters one at a time keeping the rest of parameters as given 

in Eq. (30) don't change the dynamics of the system (1) and the system still persist and 

has a stable positive equilibrium point. This results may be changed depending on the 

selected set of data. 

6. The system doesn't have periodic dynamics.  

 

Conflict of Interests 

The author declares that there is no conflict of interests. 

 

REFERENCES 

[1] J.M. Cushing, Two species competition in a periodic environment, J. Math. Biol., 10 (1980): 385-400. 

[2] H.I. Freedman, P. Waitman, Persistence in models of three interacting predator-prey populations, Math. Biosc. 

68 (1984): 213-231. 

[3] A. R. Hausrath, Analysis of a model predator-prey system with refuges, J. Math. Anal. Appl., 181 (1994): 531-

545. 



1138                                    M.V. RAMANA MURTHY AND DAHLIA KHALED BAHLOOL 

[4] V. Krivan, Effects of optimal antipredator behavior of prey on predator-prey dynamics: The role of refuges, 

Theor. Popul. Biol., 53 (1998): 131-142. 

[5]  J. Chttopadhyay, N. Bairagi, R.R. Sarkar, A predator-prey model with some cover on prey species, Nonlin. 

Phenom. Complex System, 3 (2000): 407-420. 

[6] B. Dubey., P. Chandra, P. Sinha, A model for fishery resource with reserve area, Nonlin. Anal.:RWA. 4 (2003): 

625–637. 

[7] T.K. Kar, Modeling the analysis of a harvested prey-predator system incorporating a prey refuge, J. Comp. 

Appl. Math., 185 (2006): 19-33. 

[8] B. Dubey, A prey-predator Model with a Reserved Area, Nonlinear Analysis: Modeling and Control. 12 (2007): 

479-494. 

[9] R.K. Naji, I.H. Kasim. The Dynamics of Food Web Model with Defensive Switching Property. Nonlinear 

Analysis: Modelling and Control, 13(2008): 225–240. 

[10] D. Mukherjee. Bifurcation and Stability Analysis of a Prey-predator System with a Reserved Area. World 

Journal of Modelling and Simulation. 8 (2012): 285-292.  

[11] D. Mukherjee. Persistence in a Generalized Prey-Predator Model with Prey Reserve. International Journal of 

Nonlinear Science. 14 (2012): 160-165. 

[12] D.L. DeAngelis, R.A. Goldstein and R.V. O’Neill, A model for trophic interactions, Ecology 56 (1975): 881-

892.  

[13] J.R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, 

Journal of Animal Ecology 44 (1975): 331-340. 

[14] R.M. May, Stability  and complexity in model ecosystems, Princeton University Press, Princeton, New Jersey, 

1973. 

[15] T.C. Gard and T,G. Hallam, Persistence  in food webs-I, Lotka-Volttera food chains, Bull. Math. Biol., 41 

(1979): 877-891. 

[16] Perko L., Differential equations and dynamical systems. Springer-Verlage, New York, Inc. 1991.   


