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Abstract: In this paper, a mathematical model for a prey-wholly dependent predator system with reserved area has
been proposed and analyzed. It is assumed that the habitat consisting of unreserved area, where the predator attack
its sole food the prey, and reserved area, where the prey lived safely. The predator consumes the prey according to
the Beddington-DeAngelis type of functional response. The existence, uniqueness and boundedness of the solution
of the system are discussed. The dynamical behavior of the system has been investigated locally as well as globally
with the help of Lyapunov function. The persistence conditions are established. Local bifurcation near the
equilibrium points have been investigated. Finally numerical simulation has been used to confirm our obtained
analytical results and specify the control set of parameters.
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1. Introduction

Mathematical modeling is an important interdisciplinary activity which involves the
study of some aspects of diverse disciplines. Biology, Epidemiology, Physiology, Ecology,
Immunology, Genetics, Physics are some of those disciplines. This mathematical modeling has
raised to the highest level in recent years and spread to all branches of life and drew the attention
of every one. The application of mathematical models to problems in ecology has resulted in a
branch of ecology known as mathematical ecology, while the population dynamics deals with the
dynamical behavior of the model ecological systems.
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In the beginning of twentieth century number of attempts has been made to predict the
evolution and existence of species mathematically. In deed, the first major attempt in this
direction was due to the well known classical Lotka-Volterra model. It proposed independently
by the American ecologist Alfred J. Lotka in 1925 as a description of a prey-predator system
consisting of a plant population and of a herbivorous animal which relies on this plant as its only
food source and by the Italian mathematician Vito Volterra in 1926 as a model to describe the
interaction between sharks and fishes in the Adriatic sea. Since then many complicated model
for two or more interacting species has been proposed according to the Lotka-Volterra model by
taking in to account the effect of competition, time delay, switching, over-exploitation, over-
predation, environmental pollution, disease etc., see for example [1-9] and the references their in.
All these models are formulated in terms of a system of nonlinear ordinary differential equations
and discussed the coexistence and extinction of interacting biological species.

Now, in order to protect the species from driven to extinction, appropriate measures such
as restriction on harvesting, creating reserved zones, etc. should be taken that will decrease the
interaction of these species with external forces. The role of reserve zones in prey-predator
dynamics has received considerable attention in literatures [1]. In particular, Krivan [4] proposed
and analyzed the effects of optimal anti predator behavior of prey in predator-prey system. He
showed that optimal anti predator behavior of prey leads to persistence and reduction of
oscillation in population densities. Chattopadhyay et al. [5] studied a prey-predator model with
some cover on prey species. They observed that global stability of the system around positive
equilibrium does not necessarily imply the permanence of the system. Dubey et al. [6] proposed
and analyzed a mathematical model to study the dynamics of a fishery resource system in an
aquatic environment consisting of two areas, namely a free fishing area and a reserve area where
fishing is strictly prohibited. It was suggested that even if fishery is exploited continuously in the
unreserved area, fish populations can be maintained at an appropriate equilibrium level in the
habitat. Later on, Kar [7] proposed a harvests predator-prey model incorporating a prey refuge.
He showed that, it is possible to break the cyclic behavior of the system. In the above
investigations, the dynamics of predator living in unreserved area together with prey has not
been studied explicitly. Dubey [8] proposed and analyzed the dynamics of a prey-predator model
with a reserved area; it is assumed that the habitat is divided in to two disjoint areas (unreserved

area and reserved area). The predators are not allowed to enter in to the reserved area; however it
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consumes the prey in unreserved area according to linear type (Lotka-volterra) of functional
response. He concluded that the existence of reserved area has a stabilizing effect on prey-
predator model. Naji and Kasim [9] proposed and analyzed the effects of switching on the
dynamics of two prey-one predator model. They observed that adding the defensive switching
behavior to the model has a stabilizing effect on the dynamical behavior of the model. Recently,
Mukherjee in [10] proposed and analyzed a Holling type-II prey-predator system with a reserved
area and he concluded that under certain conditions reserved zone has destabilizing effect on
prey-predator dynamics. However Mukherjee in [11] studied a generalized prey-predator system
with a reserved area. He assumed that the migration rate of prey population from free area to
reserved area is predator density dependent.

In this paper, the idea of models of Dubey [8] and Mukherjee [11] are adopted together
and a new mathematical model is proposed and studied. It is assumed that the more general
predator functional response of Beddington-DeAngelis type, which was proposed independently
by DeAngelis et al.(1975) and Beddington (1975) [12-13], are used for predation process and the
migration rate of prey population from unreserved area to reserved area is depends on both a
constant rate and predator density. The local and global stability of the proposed model are
investigated. The persistence conditions are established. The local bifurcation analysis is carried
out. Finally numerical simulation is used to investigate the global dynamics and confirm our

obtained results.

2. Mathematical model
Consider a prey-predator system in which the predator dependent on a sole prey in its
feeding living in habitat consisting of two zones namely reserved area and unreserved area. In
order to formulate the mathematical model that describes the above real system the following

hypotheses are adopted:
1. The prey in a reserved area is capable of reproducing in logistic fashion with carrying
capacity K >0 and intrinsic growth rate r, > 0. While the prey in unreserved area is
capable of reproducing in logistic fashion with carrying capacity L >0 and intrinsic

growth rate r, > 0.

2. The transition of prey from unreserved area to reserved area is proportional with a natural

moving rate « > 0 as well as predator density, while the transition in opposite direction
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is proportional with a natural moving rate >0 only. However, the transition of
predator species from unreserved area is not allowed.

3. The predator species consumes the prey species in an unreserved area according to
Beddington-DeAngelis type of functional response with maximum attack rate a >0,
half-saturation constant b > 0 and a scale of the impact of the predator interference that
given by c¢>0 . Finally, in the absence of prey species the predator will decay
exponentially with a death rate given by d > 0.

Now, let x(t) be the density of prey species in unreserved area, y(t) be the density of prey
species in reserved area and z(t) be the density of predator species at time t > 0, then according

to the above hypothesis the dynamics of the above system can be describe by the following set of

differential equations:

dx = rlx(l—lj—(a+ z)x+ﬂy—i2 =F (X y,2)

dt K b+x+cz
%%=@vp‘%)+0%+nx—ﬂy=Fxxyl) (1)
dz  eaxz _dz=F3(x,Y,2)

a_b+x+cz

with x(t) >0, y(t) >0 and z(t) >0. Clearly the interaction functions in the right hand side of

system (1) given by the vector F =(F,F,, F3)t are continuously differential function on Rf,

Hence they are Lipschitizian. Therefore the solution of system (1) exists and is unique. Further,
all the solutions of system (1) with non-negative initial condition are uniformly bounded as

shown in the following theorem.

Theorem (1): All the solutions of system (1) which initiate in Rf are uniformly bounded.

Proof: Let (x(t),y(t),z(t)) be any solution initiate in Rf and consider the function

W®=X®+y®+%dﬂ

By differentiate w(t) with respect to time and then simplifying the resulting terms we get that

dw _dx dy 1dz

= +
dt dt dt edt

dw n o - d
— = +D)X—=xX"+ (KL +)y-—=y —-X-y——z2
gr = (X=X +l)y -7y Y-
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dw
— <(r, +1)X
ot (n+1)

+(r, +1)y{1 é}—m(x+ y+§j

X
12 -
[ K(r1+1)/rj L(r, +1) /1,

where z4 =min.{1,d}. Now, since the logistic terms are bounded, then straight forward
computation shows that

dw K(np+1)* L(np+1)°
—_— -:"_: = e
dt WS 4r + 4r,

Ha

Consequently by using the comparison theorem, We obtain that w(t) < i— for sufficiently large

t. Hence all the species are uniformly bounded for any initial value in Rf : [

3. Existence of equilibrium points and stability analysis
There are at most three non-negative equilibrium points of system (1), the existence
conditions and stability analyses of them are described below:

The vanishing equilibrium point Ey = (0,0,0) always exists.

The predator free equilibrium point E; = (X, y,0), where

_ X|nX
V=E{1?+a—r1} )
while X is a positive root of the third degree polynomial
2 2
I 2A AT Asr.
Al 2, 2 2 —li(rz A —%}X—[(rz -Ph+al-0 @

a—l’l

where A = Kr_lﬂ >0 and A, = , that exists uniquely in the positive quadrant of xy —plane if

and Only if the EC](3) has a Unique pOSitive root X that SatiSfy the fO”OWing condition
nx
—+a > 4
o 1 ( )

Further, according to the Discard rule, Eq.(3) has a unique positive root if and only if one sets of
conditions hold,

(rp,=P)A, +a>0with a>r; (5a)
Or
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(5b)

The positive equilibrium point, E, = (x*,y*,z*) exists uniquely in the interior of RZ (Int.R®)

provided that there is a positive solution to the following set of algebraic equations.

X axz
rx|1l—-— —(a-i-Z)X-f- - =90
! ( /(j pr b+ x+cz
y
Zéy(l—zj-F(Ol-l-Z)X—ﬁ)/:O (6)
o eaX g -0
b+ x+cz
Straight forward computation shows that
y*:B3X*2+B4X*2—BS and Z*:le*—Bz (7)
_ 1 d d
here By = £33, B, =2 >0. B3:E K +B)>0, 542%(%—r1+05—|32) and B5:%>0,

however x™ is a positive root of the following fourth order polynomial equation

i h24 N2 3 2
Bix" ——=B3B,x” + L+2B:)B
L 3 L 34 {L( 5) 3

+Bl—%B§—,BBS}x2+{%(L+ZB5)B4 8)

t By~ By x+ Bs[ﬂ—%(u BS)}O

Consequently, it is easy to verify that E, = (x",y",z") exists uniquely in Int.Rf provided that

the following set of conditions hold
ea>d (9a)

9B:|_‘i‘a>r:|_+82 (gb)
e

ﬂ>%(L+ Bs) (9c)
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%(L+ 2B;)Bs + By < %Bf + /B,
OR (9d)

%(L+ZB5)B4 fa>B,+ B,

X" > By (%)
Bl
Byx™ +Byx" > Bg (9f)

Now, in order to investigate the local stabilities of the above equilibrium points, we need to

consider the Jacobian matrix DF = J(x,Y,z) of system (1) that can be written as

J(xY,2) = (Cij)as (10)
where Cy; = rl_ﬂX—(aﬁLZ)——aZ(kH_CZ)g  Cp=p, Cy3 :_X__a(b+X)X2
K (b +x+cz) (b+x+c2)
2r.
Cyu=a+1z,Cy :rz_sz_ﬂ’ Cps =X
ae(b+cz)z eax acexz
=—————5,C=0,Cg=—""—-d-——"
(b+x+cz) b+Xx+cz (b + X +cz)

Clearly, straight forward computation shows that the Jacobian matrix near the vanishing
equilibrium point Ey =(0,0,0) is
n-a f 0
JEp)=| @ 1r-B O (12)
0 0 —d

Thus the characteristic equation can be written as:
2 (6~ + (5~ )+ (6~ a6, — B) — B -d ~ 21 = 0 (12)

Hence the eigenvalues of J(Eg)are

(n—a)+(rp, - p)
2

£\ l(h - @)+ (1~ AP - 405 - )6, — ) - ap]

/IOX , }“Oy =
(13a)

I
|
o

Aoz (13b)
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here Ay, Aoy and Ay, represent the eigenvalues of J(E,) in the x-direction ,y-direction and z-

direction respectively. Clearly all the above eigenvalues will be negative provided that the

following conditions hold

n<a (14a)
r,<p (14b)
N >nf+na (14c)

Since condition (14c) can't satisfied simultaneously with conditions (14a) and (14b), hence
J(Ep) has one positive eigenvalues and then E; is a saddle point.
The Jacobian matrix of the system (1) near the predator free equilibrium point E; = (X,y,0) can

be written as

_ﬂ__ . a(b+ x)
n K X—a p x(l (b+x) ]
WEN=| @ np-yep X = (by) (15)
0 0 X
b+X

Therefore the characteristic equation and the eigenvalue of J(E;) can be written respectively as

# e o-2s)

(16)

(n-Ren-a -] (325 -a)-] o
My Ay = @i%\/[bn +bgy 1% — A[by by —byoby] (17a)
y =bsy = —d (17b)

Now, since r — 2r1 X —a <0 due to existence condition (4), thus all these eigenvalues are

negative or have negative real parts and hence E; is locally asymptotically stable in Rf

provided that

rz <2—[17+ﬂ (18a)
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t%_( <d (18b)
(rl—%i}(rz—2%7)>(r1—%>‘<jﬂ+(r2—2%7}a (18c)
Finally, the Jacobain matrix of the system(1) near the positive equilibrium point E, can be

written as
J(E2) =(aij)3 (19)

where allzrl—ﬂx*—(o”z*)— & (*b+cz*)2,a12:ﬁ>0,
K (b+x"+cz*)

a(b+x™)
(b+x*+cz*)?

* * 2r *
al3:_x {1—}— :|<O,a21=a+2 >O,a22=r2_T2y _ﬂ,

ae(b+cz*)z" —acexz"
" *2>0,a32=0,3.33= " *2<O
(b+x" +cz7) (b+x" +cz)

a23 :X* >O, a.31:

Therefore the characteristic equation of E, can be written as follow
BHAP+AA+A =0 (20)
where
A =—(a3 +2a, +ag;)
Ay = a8y, — a8y + 811833 — 83831 +aas3
Ag = —ags[an 8y — a8 |- ag [apa; —ajza, |
while

A=AA; — Ay =—(ay +ay Japay —apay |- (ay +as fa1a3 — ajzay |
—apass (azz +ag3 )— 2aj 8833 +apax3a3

From the Routh-Hurwitz criterion [14], all the roots (eigenvalues of J(E,)) of Eqg. (20) have
negative real parts and hence E, = (x*,y",z") is locally asymptotically stable if and only if
A, A; and A are positive. Therefore in the following theorem we present the sufficient
conditions of local stability of E, .

Theorem (2): Suppose that the positive equilibrium point E, of system (1) exists in Int.Rf.

Then E, is locally asymptotically stable if
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K <2x* (21a)
L<2y” (21b)
Proof: Straight forward computation gives that conditions (21a)-(21b) guarantee that a;; and
a,, are negative, hence by substituting the elements of J(E,) and then doing simple calculation,

we get that A, A; and A are positive. Hence according to Routh-Hurwitz criterion E, is locally

asymptotically stable in Int.R>. .

Now, we will study the global stability of the equilibrium points of system (1) with the help of

Lyapunov method. The results of this study can be summarized in the following theorems.

Theorem (3): Suppose that the predator free equilibrium point E; =(X,y,0) is locally

asymptotically stable in the Rf , then it is a globally asymptotically stable provided that

i Y<X< d (22a)
(04 e

_\2
E(éj <X (22b)
by ay

Proof. Consider the following function V; = cl[x —-X—X In(%)]-l- czly -y- yln(%)J-i- C3z, Where

c;;1 =123 are positive constants to be determined. Clearly V; :R? > R, is a continuously

differentiable positive definite real valued function with V;(X,y,0)0=0 and V;(X,y,z)>0

otherwise. Further, since

dVlZCl(X_Xj%'FCZ —y_y ﬂ"‘CSE
dt X )dt y )dt dt

Then by substituting the values of %% % from system (1) and then simplifying the resulting

terms we obtains that
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av,
dt

n 2 p) 2  XY—Xy o
=—C = (X=X)°—Co-2(y— CoaX — Ci V)X
1K( ) 2L(y y)© + . [(co0% — ¢\ By)xy

+(C By — CLax)XY |- () — €)Xz — (C3d — ¢y X)z

axz Xy ax
—(c;—Cq8)——| Cy 2= —C;— |z
(¢, 3)M (Zy 1M]

here M =b+x+cz. So, by choosing the positive constants as ¢; =1,c, =Y and C3 =% we

ax

J

get that

dv, n 2 By 2 B o2
—=——=(X=X)"——=-"=(y - ——(Xy—=Xy)" -1~
ot K( ) = L(y y) X)_(y(xy y)

_(g_ijz_[&yz_a_ijz
e axy M

Clearly, % < 0 provided that the given conditions hold. Hence V; is a Lyapunov function and

%
Xl <

hence E; =(X,V,0) is a globally asymptotically stable. [

According to the above theorem its easy to concludes that, the basin of attraction of the predator

free equilibrium point is

N2
B(El)_{(x,y,z)eRf %(%} <ﬂ—§,z>0}
a

Finally, in the following theorem the conditions of globally asymptotically stable for a positive

equilibrium point are established.

Theorem (4). Suppose that the positive equilibrium point E, = (x*,y",z") is locally

asymptotically stable in the Rf , then it is a globally asymptotically stable provided that

*

a4 (23a)

bM K

y12° < 71172 (23b)
2

713" <1173 (23c)

7232 <7V22733 (23d)



A PREY-WHOLLY DEPENDENT PREDATOR SYSTEM 1125

* * * _1|n az _ _1B8Y(n X

ae(b+cz*) 1 a(b+x*) BY" aecx"
=0 ) 14 8220 = and = .
713 MM® ( MM j 723 =75y V33

Proof. Consider the following function
V, =dg|x—x" = x* In(x—’i)]+ dz{y— y —y" In(yiﬂ +dglz-2"-2" In(zi)]

where d;;i=123 are positive constants to be determined. Clearly V2:R3—>R , Is a

continuously differentiable positive definite real valued function with V,(x*,y*,z") =0 and

V5(X,Y,z) >0 otherwise. Further, since

dVZ:dl X=X %erz y—y ﬂ+d3 z—-7 |dz
dt X dt y dt z dt

Then by substituting the values of %% % from system (1) and then simplifying the resulting

terms we obtains that

dv r. az” . r, x*z* aecx” .
—2=—d1{—1—MM*}(x—x 2—d2{—2+ " }(y— ")% —ds Ve —(z-17")?

dt K

o otz

+d2E(X_x*)(y_y*)+d2X_(y_y*)(z_z*)

X X * %
+u xy(doox™ —di By") = x*y" (dpax - dlﬂY)]
XX yy”

By choosing the positive constants as d; =1,d, = By , d3 =1 and using the given conditions
X

we get after some algebraic manipulation that:

Ve ) -y oF [ x) - -2 0F
Wz ty-y)-Jrm@-2f ‘Fy("y*‘x*y)
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Clearly, ddit2<0 under the given conditions then V, is a Lyapunov function and hence

E, =(x",y",z") is a globally asymptotically stable. n

4. Persistence of system (1)

In this section, the persistence of system (1) is studied. It is well known that the system (1) is
said to be persistence if and only if each species persists. Mathematically this is meaning that the
solution of system (1) do not have omega limit set in the boundaries of R®. Now before we go
further to establish the persistence conditions of system (1), we need to show weather there is a

periodic dynamics in the xy —plane or not.

Consider the system (1) in the interior of xy —plane, which can be written as:

% = rlx[l—%j—aﬂﬂy =01(X,Y)
d (24)
d_i/ — rzy[l—%j+ax—ﬂy: gZ(Xv y)

Clearly Eq. (24) represents a subsystem of system (1) that has the predator free equilibrium point

E, of system (1) as a unique positive equilibrium point. Define H(X,y) = Xiy that is obviously

H(x,y)>0 and C* function in the Int.R? of the xy — plane. Now, since

ogaH) gH)_ n p 1 «a
oX oy Ky x? Lx y?2

Alx,y) =

Then it is clear that A(x, y) does not change sign and it is not identically zero in the Int.R? of
the xy — plane. So by using Dulic-Bendixon’s criterion there is no closed curve in the Int.R> of
the xy— plane. Moreover according to the Poincare-Bendixon theorem, E; will be a globally

asymptotically stable in the Int.R> of the xy — plane whenever it exists and locally stable.

Consequently, in the following theorem, the necessary and sufficient conditions for the uniform

persistence of the system (1) are derived.

Theorem (5): The system (1) is uniformly persistence if the following conditions hold
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rl(l— 5) B, (254)
K X

r, (1- %j 4 “7_’_( > B (25h)

X 4 (25¢)

b+X

Proof: Consider the average Lyapunov function of the form o (x, y, z) = xPyP2zP3  where each
p;;i=12,3 is assumed positive constant. Obviously o(x, Y, z) is a c? positive function defined

in Int.R3, and o(x,y,z) >0 if x—0 or y—0 or z—0. Consequently we obtain

Q(x,y,z) = ZXXD pl(rl(l_%j—(a +2) By J

o(x.y.2) X b+x+cz

y) (a+2)x eax
H1l-= |+ —d
+p2[2( Lj+ y ﬁj+p3(b+x+cz j

Now, since there are no periodic attractors in the boundary planes then, for any initial point in
the Int.Rf, the only possible omega limit set in the boundary planes of the system (1) is the
equilibrium points E;. Thus according to the Gard technique [15] the proof is follows and the

system is uniformly persists if we can proof that Q() >0 at each of these points. Since

O(Ey) = pl(rl(l_éj —a+ g]

X

Obviously, Q(E;) >0 for any positive constants p;;i=2,3 provided that the given conditions

hold. Then strictly positive solution of system (1) do not have omega limit set in the boundary

planes. Hence, system (1) is uniformly persistence. [

5. The local bifurcation analysis

In this section, an application of the Sotomayor's theorem [16] is used to investigate the
occurrence of the local bifurcation near the possible stable equilibrium points of system (1).
Since the existence of a non-hyperbolic equilibrium point is a necessary but not sufficient

condition for bifurcation to occurs, a parameter that makes the Jacobian matrix has a zero real
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part eigenvalue will be adopted as a candidate bifurcation parameter as shown in the following
theorems.

Consider now the Jacobian matrix of system (1) at (x,y,z) that given by Eq. (10). Then, with

straight forward computation, it is easy to verify that

D?F(x,Y,2)(V.V) = (dij)sq (26)
= -2 2a(b+cz)z) 2 2ac(b+x)x_ 2
here  dy; = Ly Vy© — 2V ——— 20y
11 [ K VE j 1 1V3 VE 3
521 = 2V;V3 _Z%sz

2ae(b+cz)z
oM

acex( b+x—czj 9
- 1+ V3
M 2 M

Q||

2ae
a1 = v, +[(b+202)x+b(b+cz)]mv1v3

here V = (v;,V,,v3)! is any vector in R®. Moreover

DYF(x,y,2)(V.V.V) = (@) (27)
here

_6a(b+cz)z 3 2ac

=z 2
dy; = YR [(b+2X)M —3(b + x)x]v;v3

6ac(b + x)x V.3

+%[(b +2cz) — 3c(b+ cz) 2y, 2 + VERC

6ae(b+cz)z 3 6ae
- 2 1T
M M

[(0+2cz)x + (b +cz)(b — cz) v, *vs

ace
+ W[6(b + X)X —4(b + 2¢2) X — 4b(b + cz) yv4?

acex 3
+W[2M +CcM —3c(b+x—cz)vg

Theorem (6). The system (1) at the predator free equilibrium point E; =(X,Yy,0) with the
parameter d = 2% has

1. No saddle-node bifurcation.
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2. Transcritical bifurcation provided that
p X+ R+ PPy L
A1A3 —af

3. Pitchfork bifurcation provided that

cX (2823)

b5 _ oy and ¢ = 1 (28b)
Ahg—af 3
Proof. According to the Jacobian matrix at the predator free equilibrium point J(E;) that given

by Eq. (15) and their characteristic equation given in Eq. (16), its easy to verify that J(E;) has

zero eigenvalue A=0 at J:S‘% and hence E; will be a non-hyperbolic point. Let

V = (¥,V,,7;)! be the eigenvector that associated with the zero eigenvalue A =0 of the

Jacobian matrix J = J(El,a) , then

t
T-1y=0= V= ﬂ“A?Af“, Alx*“AZ‘gvS
A A3 —ap AAg -

where V3 represents any nonzero real number and A = —1X—-a, Ay =-X(1+-2-) and

P

b-+X
Ao=r,~7y-B.
Let W = (7,75, 73)" be the eigenvector that associated with the zero eigenvalue A =0 of the
transpose of Jacobian matrix J ¢ = J'(E,,d), then

Ft-T1fF-0= $=0.0)
where /4 represents any nonzero real number.

Now let X =(X,Y,z) then since

0 0
Fq(X,d)=| 0 |= F4(E;,d)=|0
-z 0

here F4(X,d) represents the derivative of F = (F,F,, I:3)t with respect to d . Then we get that

PR, (E£,0)=0
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Thus according to the Sotomayor's theorem for local bifurcation, the saddle-node bifurcation

can't occur while the first condition of transcritical and pitchfork bifurcation is satisfied. Further,

since
0 0 O 0 0 O
DF4(X,d)=|0 0 O |= DF4(E4,d)=/0 0 O
0 0 -1 0 0 -1

here DF,(X,d) represents the derivative of Fy(X,d) with respect to X =(x,y,z) ,
consequently we get
f{?t[DFd (El,a)v]: —aVg %0

Moreover, by substituting E; , d and V in Eq. (26), it is observed that

PUD2E(E, Q) V)] = 2
[D2F (B )V V)= = Ty = =

Cleary, if condition (28a) holds then ‘f‘t[DzF(El,J)(\7,\7)]¢0 and hence transcritical

bifurcation occurs. However if b%:ci then P! [DZF(El,a)(\7,\7)]:O, and hence the
transcritical bifurcation can't occur. Further by substituting E; , d and V in Eq. (27), it is
observed that

2acex
(b+x)3

PD3F(E;,d)V.V,V)]= (L-3c)%,°3

~

Cleary, if condition (28b) holds then Pt [D3F(E1,5)(\/,\7,\7)] # 0. Hence pitchfork bifurcation

occurs. ]

Theorem (7). Assume that condition (21a) holds while condition (21b) is revised and let the

following conditions hold

KM *[o+ca+2c2*]> (B-r,)[reM *(2x" —K) +aK (b +cz™)] (29a)

R Ry (29b)
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where

26,[rney "M ¥ (2x* = K) + KM “y* (b +ca +2cz”) +aKy* (b +cz™)]
KM *[b+ca +2cz*]-(B-1,)[rcM “(2x" —K) +aK(b+cz*)]

L=

M* =b+x"+cz".
Then system (1) at the positive equilibrium point E, = (x*,y",z"), with the parameter value
given by L, has
1. saddle-node bifurcation.
2. No transcritical bifurcation.
3. No pitchfork bifurcation.
Proof. According to the Jacobian matrix at the positive equilibrium point J(E,) that given by

Eqg. (19) and their characteristic equation given in Eq. (20), its observed that

Az = aex e (Zﬁ{% y*(Zx* —K)+ y*[b+0a+202*]+—ay (:\)/;CZ )}

2
M L

_rz[b+ca+zcz*]+(ﬁ_rz)[%(zx*_K)+a<bh;_gz*>ﬂ

Thus its easy to verify that J(E,) has zero eigenvalue A =0 at the parameter value L, which is

positive under condition (29a). Hence E, is a non-hyperbolic equilibrium point.
Let V = (V;,V,,V3)" be the eigenvector that associated with the zero eigenvalue 1 =0 of the
Jacobian matrix j = \](Ez, E) = (éij)3><3 , where é” = aij; Vi, j=1,2,3 with dy =10 _Z_EI’Z y>k —ﬂ .

Then

_ _ — t
1 - Aaa . Apqdan —8orday .
i-ap-0= vz(— 33 gy, 221088 O 31v3,v3]
dszg dpds

here vy is any nonzero real number and 8y a33 —ax383 <0.
Let ¥ = (7,,17,,173)" be the eigenvector that associated with the zero eigenvalue 1 =0 of the

transpose of Jacobian matrix J' = J'(E,, L), then

= ~ = - t

JL_ W 7 dyy _  _  yzdyy —Appdyy -

[Jt—llj\P:O: \P:[_v_zzlﬂzalﬂz, 13 23 V 12923 WZJ
agp apaz




1132 M.V. RAMANA MURTHY AND DAHLIA KHALED BAHLOOL

here 7, represents any nonzero real number and a;3a,, # a,a,3 under condition (29b).

Now let X =(X,Y,z) then since

0 0

ry’ - |y
FL(X,L): 2L_2 :>FL(E2,L): LT

0 0

here F__(X,L) represents the derivative of F = (F,F,, F3)t with respect to L. Then we get that

.2
PR (Ep, L) = rz)E Wy #0

Thus according to the Sotomayor's theorem for local bifurcation, the transcritical and pitchfork
bifurcation can't occur while the first condition of saddle-node bifurcation is satisfied. Further,

straight forward computation gives that

D2F(E,,L)V,V) = (5)3><1

where
:11:_ 2CX \732 rCX 1 +2acx 7.2l ez —(0+x")
* * 3 *
b+cz K(b+cz") M * b+cz
2
= 2cx* o 2r, —x"(ac+b+2cz”) )
d21: S V3 —— —— " " Vv
b+cz L (%(L—Zy )—,Bkb+cz )

- 2aecx N x*)\732 _2acex (b3+ X )\732 _
M M*
Hence we obtain that

0
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P'D2F(E,, L)V, V) = y7ydyy +17,dp

; _
f o~ . 2ex*[rex "M ™ +abK(b+cz*)] |- -
:[E_Z(L—Zy )—1} U (2 ) %%

Kb+cz*)?M*

+2r2x* c(I:—Zy*)_X* ac+b+2cz” _
L | plo+cz™) (%(I:—Zy*)—ﬂ)(b+cz*)

Straight forward computation shows that ¥'D?F(E,,L)(V,V) = 0. and hence system (1) has

saddle-node bifurcation at E, with the bifurcation point given by L. [

6. Numerical Simulation

In this section the global dynamics of system (1) is studied numerically. The objectives of
this study are confirming our analytical results and understand the effects of varying the system's
parameters on the dynamics of system (1). Consequently, system (1) is solved numerically, for
different sets of parameters and different sets of initial conditions.
It is observed that for the following biologically feasible set of hypothetical parameters values,
different set of parameters values can be adopted too, system (1) is solved for different sets of
initial values and then the trajectories of system (1) as a function of time are drawn in Fig. (1a)-
(1c).

rnp =15 K=200,a=0.5, f=0.9, a=0.5b=10,

c=0.1r,=0.75 L=100e=0.75d =0.1

(30)

Obviously, Fig. (1a)-(1c) shows clearly the convergent of system (1) to the globally
asymptotically stable positive equilibrium point E, =(4.42,104.59,21.6) , which confirm our
analytical results.

Now, in order to discuss the effect of varying the maximum attack rate on the dynamical
behavior of system (1), the system is solved numerically for different values of the maximum
attack rate keeping other parameters fixed as given in Eq. (30), and then the trajectories of
system (1) as a function of time are drawn in Fig. (2a)-(2b) for the typical values of maximum

attack rate a =0.2,0.1 respectively.
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Fig. (1): Time series of the solutions of

E, = (4.42,104.59,21.6).

system (1) that approaches asymptotically to
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Fig. (2): Time series of the solutions of system (1).(a) The solution approaches to
E, =(21.25128.65,6.25) for a=0.2. (b) The solution approaches to E; =(197.27,105.11,0)
for a=0.1.
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Obviously the solution of system (1) approaches asymptotically to the positive equilibrium point
for data given in Eq. (30) with a=0.2, while its approaches asymptotically to the predator free
equilibrium point for the data given in Eq. (30) with a=0.1.

Further the effect of varying the conversion rate of the amount of food from prey to predator on
the dynamical behavior of system (1) is studied. The system (1) is solved numerically for
different values of the conversion rate keeping other parameters fixed as given in Eq. (30), and
then the trajectories of system (1) as a function of time are drawn in Fig. (3a)-(3b) for the typical

values of conversion rate e =0.25,0.1 respectively.
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: : : :
0 05 1 15 2 25 3
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Fig. (3): Time series of the solutions of system (1).(a) The solution approaches to

E, =(41.51,144.22,3.77) for e=0.25. (b) The solution approaches to E; =(197.27,105.11,0)
for e=0.1.

According to the above figure the solution of system (1) approaches asymptotically to the
positive equilibrium point for data given in Eg. (30) with e=0.25, while its approaches
asymptotically to the predator free equilibrium point for the data given in Eq. (30) with e =0.15.
Now the effect of varying the predator's death rate on the dynamical behavior of system (1) is
also studied. The system (1) is solved numerically for different values of the death rate keeping
other parameters fixed as given in Eq. (30), and then the trajectories of system (1) as a function

of time are drawn in Fig. (4a)-(4b) for the typical values of death rate d =0.2,0.4 respectively.
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Fig. (4): Time series of the solutions of system (1).(a) The solution approaches to

E, =(12.47,117.18,9.16) for d =0.2. (b) The solution approaches to E; =(197.27,105.11,0)

for d=0.4.
Finally, varying other parameters one at the time keeping the rest of parameters as given in Eq.
(30) is also investigated numerically, but the solution of the system (1) still approaches to the

positive equilibrium point.

7. Discussion and Conclusions:

In this paper, a mathematical model has been proposed and analyzed to study the real world
system consisting of a prey interacting with predator that depends on the prey as a sole food. It is
assumed that the habitat consisting of unreserved area, where the interacting occurs, and reserved
area, where the prey lived safely. The predator is consumed the prey in an unreserved area
according to the Beddington-DeAngelis type of functional response. The dynamical behavior of
the proposed model represented by system (1) has been investigated locally as well as globally.
The persistence conditions are established. Local bifurcation near the equilibrium points have
been investigated. It is observed that the system has at most three nonnegative equilibrium points,
the vanishing equilibrium point that is always exists and unstable saddle point while the predator
free equilibrium point and the coexistence (positive) equilibrium point are exist and
asymptotically stable provided that specific conditions are satisfied. Finally in order to confirm
our obtained analytical results and specify the control parameters on the global dynamics of the
system (1), the system is solved numerically for biologically feasible set of hypothetical
parameters values that given in Eq. (30) and the obtained results can be summarized in the

following:



A PREY-WHOLLY DEPENDENT PREDATOR SYSTEM 1137

1. For the data given in Eqg. (30) the system approaches asymptotically to the positive
equilibrium point starting from different initial sets of points, which indicates to the
existence of a globally stable positive equilibrium point and the system is persist.

2. Increasing the value of maximum attack rate in the range a > 0.15 (conversion rate in the
range e > 0.22) causes increasing in the density of the predator z but the system (1) still
approaches asymptotically to the positive equilibrium point. However decreasing the
value of maximum attack rate in the range a<0.15 (conversion rate in the range
e <0.22) causes extinction in the predator species and the system (1) approaches

asymptotically to the predator free equilibrium point in the xy —plane.

3. Decreasing the value of predator's death rate in the range d < 0.35 causes increasing in the
density of the predator z but the system (1) still approaches asymptotically to the
positive equilibrium point. However increasing the value of predator's death rate in the
range d > 0.35 causes extinction in the predator species and the system (1) approaches

asymptotically to the predator free equilibrium point in the xy —plane.
4. According to the above second and third point its clear that the parameters a,e and d

work as a control parameters on the persistence and bifurcation of the system (1).

5. Finally varying the other parameters one at a time keeping the rest of parameters as given
in Eqg. (30) don't change the dynamics of the system (1) and the system still persist and
has a stable positive equilibrium point. This results may be changed depending on the
selected set of data.

6. The system doesn't have periodic dynamics.
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