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Abstract. This paper is devoted to introduce a new generalized 4K - function in terms of some special functions. The 

differ-integration of this function is also investigated. A method for deriving the solution of the generalized 

fractional kinetic equation in term of the generalized 4K - function defined, generalized M-Series  
,

, ,m,np q
M z
 

 and 

generalized Mittag – Leffler function  , ,
, ,

p
q zE  

   is investigated. The applied method depends on the fractional 

differ-integral operator techniques. 

Keywords: generalized 4K -function; generalized M-series; generalized Mittag Leffler function; fractional kinetic 
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1. Introduction 

 

Fractional calculus is a field that deals with derivative and integral of arbitrary orders which 

almost used at every field of mathematics namely special functions. The Mittag – Leffler 

function has gained importance during the last century due to its applications in the solution of 

fractional order differential and integral equations, that function is introduced by Mittag – Leffler 

[8] in terms of power series 
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Many authors defined and studied in their research papers different generalization of Mittag – 

Leffler type function like  ,E z  defined by Wiman[25],  ,E z
  studied by Prabahaker [11], 

 ,
,
qE z

  introduced by Shukla and Prajapati [24] and  ,
,E z 

  investigated by Salim [14]. 

 

A new generalization of Mittag – Leffler type function introduced by Salim and Faraj [15] as 
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where         , , , , , min Re ,Re ,Re ,Re 0 , , 0  z p q         

The authors [1] introduced in a recent paper a new generalization of M-Series  
,

, ,m,np q
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where ,, , ,z m n   nonnegative real number, also of the parameter ,j sb  is negative or 

zero. 

The Series in (1.3)  is defined depending on the M-Series  
,p q

M z


introduced by Sharma [22] and 

its generalized M-Series  
,

,p q
M z
 

studied by Sharma and Jain [23]. 

The new generalization of the M-Series (1.3) is interesting because the ( )p q zF hypergeometric 

function and generalized Mittag – Leffler function (1.2) follow as its particular cases [2,15]. 

 

The interest R andG -function defined by Lorenzo and hartely [5], [6], and their populanty have 

sharply increased in view of their importance role and applications in fractional calculus. 
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Recently Sharma [20] defined 4K -function 
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which is closely related to another special functions especially the R and G -function and M-

Series defined by Sharma and Jain [23]. 

 

On the other hand, Fractional kinetic equation have gained importance due to their occurrence in 

science and engineering, the generalized fractional kinetic equation in term of Mittag – Leffler 

function studied by Sexcena, Mathai and Haubold [19], they introduced the solution of the 

generalized fractional kinetic equation associated with generalized Mittag – Leffler function and 

the R -function, for more result one can refer to the work of Sharma [21], Saichev and Zaslavsky 

[13], Sexcena [18], Zaslavsky [26], and Sexcena, Kalla [17]. 

Recently, Gupta and Parihar [3], introduced an alternative method for solving generalized 

fractional kinetic equation involving the generalized functions for the fractional calculus based 

on fractional differ-integral operator technique which differ from Laplace transform operator 

method. 

 

This paper is divided to: 

 Define a new generalized 4K -function and its relation to the other special functions. 

 Investigate the differ-integration properity of the new function. 

 Solving Fractional and general fractional kinetic equation in terms of the new generalized 

4K -function, the generalized M-Series and the generalized Mittag – Leffler function. 

 

2. A new special function 

 

The generalized 4K -function introduced  by the authors is defined as follows. 
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where  Re 0   and    1,2,...,i k
a i p and    1,2,...,j

k
b j q are the Pochhammer symbols. 

The series (2.1) is defined when non of the parameters jb ’s is a negative integer or zero. If any 

numerator parameter ia is anegative integer or zero, then the series terminate to a polynomial of

z . 

From the ratio test it is evident that the series is convergent for all z if  Re pm qn   , also when 

 Re pm qn  it is convergent in some cases, let 
1 1 

  
pm qn

j j

j j

a b . It can be shown that when 

 Re pm qn  , the series is absolutely convergent for 1z if  Re 0 , conditionally 

convergent for 1 z if  0 Re 1  and divergent for 1x if  Re 1 . 

 

Relation with another special functions: 

(i) Putting 1 m n in the generalized 4K -function (2.1) becomes the 4K -function (1.6) 

defined by Sharma [21] 
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(ii) When there is no upper and lower parameters of (2.1) , we get 
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(2.3) 

which reduces to the G -function (1.5) defined by Lorenzo and Hartley [5] devoted 

by  , , , ,G a c z   . 

(iii) If we put 1 in (2.3). 
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which reduces to the R -function (1.4) defined by Lorenzo and Hartley [6] and 

denoted by  , , ,R a c z  . 

(iv) If we take 0 c  in (2.4). 
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Which reduces to the F -function defined by Lorenzo and Hartley [5] and denoted by  ,F a z . 
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Relation between generalized 4K -function and generalized M-Series. 

Putting , 1, 1   a     and 0c  in (2.1) we obtain 
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3. Differ-integration of generalized 4K -function 

 

In this section we will derive the relation between generalized 4K -function and the operator of 

differ-integral given by Oldham and Spainer [9]. The relation is presented in the next theorem as 

follows: 

Theorem 3.1: 

Let  , Re 0, 0       r z c  and r
c zd be the operator of differintegral given by Oldham 

and Spainer then the relation holds: 
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Proof: 

The differ-integral operator defined by Oldham and Springer [9] of function  zf  is given by 
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Using (2.1) and (3.2) we have  
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This shows that the differintegral of the generalized 4K -function is again a generalized 4K -

function with indices  r . 

Particular case: 

(1)    , , , ,, , , ,r
c z rG a c z G a c zd        

 

(2)    , ,, , , ,r
c z rR a c z R a c zd      

 

(3)    0 ,0, ,0,r
z rF a z R a zd    

 

4. Solving general fractional kinetic equation in terms of generalized 4K -function, 

generalized M-Series and generalized Mittag – Leffler function 

 

The generalized Riemann – Liouville operators of fractional calculus [7,9]  are defined as  
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If     
p

p z z a , we have from [10] 
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where    Re 0, Re 0,  v p z a . 

 

On integrating the standard kinetic equation 

    0  i i i i

d
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(4.4) 

Haubold and Mathai [4] derived that 
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(4.5) 

Where 1
0


tD is the standard Riemann integral operator,  i iN N t is number density of species i , 

which is a function of time t and   00 iN N is the number density of that species of time t o . 

By dropping the index i  and replacing he Riemann integral 1
0


tD operator by the fractional 

Riemann – Liouville operator 0
v
tD  , the kinetic equation (4.5) is reduced to 
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Multiplying both side of(4.6)  by   0
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 Replacing r by  1r  in the second sum of above equation and then cancelling the equal terms 
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If , , , 0 ; 0 a v  , then the solution of the general fractional kinetic equation 
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Theorem4.2: 

If , , 0a    and 0v  , then the solution of the  general fractional kinetic equation 
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