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Abstract. This paper is devoted to introduce a new generalized K, - function in terms of some special functions. The

differ-integration of this function is also investigated. A method for deriving the solution of the generalized

a.p
fractional kinetic equation in term of the generalized K , - function defined, generalized M-Series M (z ) and
p.,g,m,n

generalized Mittag — Leffler function E g;g;g (z) is investigated. The applied method depends on the fractional
differ-integral operator techniques.

Keywords: generalized K , -function; generalized M-series; generalized Mittag Leffler function; fractional kinetic
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1. Introduction

Fractional calculus is a field that deals with derivative and integral of arbitrary orders which
almost used at every field of mathematics namely special functions. The Mittag — Leffler
function has gained importance during the last century due to its applications in the solution of
fractional order differential and integral equations, that function is introduced by Mittag — Leffler

[8] in terms of power series
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O ey @ (1)
Many authors defined and studied in their research papers different generalization of Mittag —
Leffler type function like E, ,(z)defined by Wiman[25], E/ ;(z)studied by Prabahaker [11],

E/%(z) introduced by Shukla and Prajapati [24] and E*;(z ) investigated by Salim [14].

A new generalization of Mittag — Leffler type function introduced by Salim and Faraj [15] as

k

kZ:: r ak +/3 ) (1.2)

where z,a,8,7,6C min{Re(a),Re(,B),Re(y),Re(&)}>O , p,g>0

: : . . ap
The authors [1] introduced in a recent paper a new generalization of M-Series M (z) as
p.g,mn

(Z ):i(al)km """ (ap )km - zX (1.3)

where z,a,feC , m,nnonnegative real number, also of the parameter b;,s is negative or
zero.

The Series in (1.3) is defined depending on the M-Series M (z)introduced by Sharma [22] and
P
its generalized M-Series K/’lﬁ(z ) studied by Sharma and Jain [23].

p.q

The new generalization of the M-Series (1.3) is interesting because the ,F,(z)hypergeometric

function and generalized Mittag — Leffler function (1.2) follow as its particular cases [2,15].

The interest R andG -function defined by Lorenzo and hartely [5], [6], and their populanty have
sharply increased in view of their importance role and applications in fractional calculus.

¢ )(k +)a—p-1

[ac,z]= Z k+l) 7) (1.4)

and

k 7 (k+y)a—p-1
aﬂ}/[ac Z] Z k' 1_, ( :/;0:—,8) (15)
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Recently Sharma [20] defined K ,-function

cearsiony) 3 B el ) () o) (e (1.6

k:O(bl)k """ (bq )k F((k +7/)a—,8)
which is closely related to another special functions especially the R and G -function and M-

Series defined by Sharma and Jain [23].

On the other hand, Fractional kinetic equation have gained importance due to their occurrence in
science and engineering, the generalized fractional Kinetic equation in term of Mittag — Leffler
function studied by Sexcena, Mathai and Haubold [19], they introduced the solution of the
generalized fractional kinetic equation associated with generalized Mittag — Leffler function and
the R -function, for more result one can refer to the work of Sharma [21], Saichev and Zaslavsky
[13], Sexcena [18], Zaslavsky [26], and Sexcena, Kalla [17].

Recently, Gupta and Parihar [3], introduced an alternative method for solving generalized
fractional kinetic equation involving the generalized functions for the fractional calculus based
on fractional differ-integral operator technique which differ from Laplace transform operator

method.

This paper is divided to:
e Define a new generalized K ,-function and its relation to the other special functions.

e Investigate the differ-integration properity of the new function.
e Solving Fractional and general fractional Kinetic equation in terms of the new generalized

K ,-function, the generalized M-Series and the generalized Mittag — Leffler function.

2. A new special function

The generalized K ,-function introduced by the authors is defined as follows.

K4(“’ﬁ’y);(a’c)’(p’q) (al ..... a,,0;,..,b,32 ) = K4gﬁ’ﬁ’)7)'(a'°)‘(p’q) (z)

5 @)y () (@) (2=0)
_é (bl)kn ...... (bq )kn k! F((k +7/)a—ﬂ)

(2.1)
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where Re(ay -4)>0and (g ), (i =12,..,p)and(b; ) (j =12....q)are the Pochhammer symbols.

The series (2.1) is defined when non of the parameters b; ’s is a negative integer or zero. If any

numerator parameter a, is anegative integer or zero, then the series terminate to a polynomial of

Z.

From the ratio test it is evident that the series is convergent for all z if pm <gn +Re(«) , also when
pm qn

pm =qn +Re(a)it is convergent in some cases, let ¢=>a;—>'b; . It can be shown that when
j=1 j=1

pm=qgn+Re(r), the series is absolutely convergent for |z|=1if Re(£)<0, conditionally

convergent for z =-1if 0<Re(&)<1and divergent for |x|=1ifRe(&)>1.

Relation with another special functions:
Q) Putting m =n =1in the generalized K,-function (2.1) becomes the K,-function (1.6)
defined by Sharma [21]

K (@5 @PA) (1) _ i (5 )@)(P3) (1) 2.2)

41
(i) When there is no upper and lower parameters of (2.1) , we get
s (k+}/)a—ﬁ—1
(@)@ a) (z—c)
K __ 2.

H(mn) Z Z:; k' F k+}/)a—ﬂ) (2:3)
which reduces to the G -function (1.5) defined by Lorenzo and Hartley [5] devoted
by G, 4, [ac.z].

(iii)  If we put y=1in (2.3).

w (K (k+1)a—p-1
(pa)fa (a) (z-c)

K - - E .

4(m n) Z - 1_, k +l ﬂ) (2 4)

which reduces to the R -function (1.4) defined by Lorenzo and Hartley [6] and

denoted by R, z[ac.z].

(iv) Ifwetake c=p=0in(2.4).
0 k+1)
(a0.1)(a a
Kamm) kZ:; ) ) (2.5)

Which reduces to the F -function defined by Lorenzo and Hartley [5] and denoted by F,[a,z].
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Relation between generalized k ,-function and generalized M-Series.

Putting p=a-p, y=1 a=1 and c=0 in (2.1) we obtain

Qoo o o o o) S BBy O @) ()
(m.n) p V& (b -(bg),, K T((k +Da-(a-B))

= (a) ...(a ) 7 ka
=Zﬂ71 km P Jkm 26
kZ:;; (by)yy - (bg ), T(ker+5) (2.6)
a.p
_Zﬂ_lp,!]\{lm,n<a ..... a,.by,..., bq,z‘”)
also if we put p=q=1in (2.6) we get
(a.a=p.1),(1,0),(L1) ENIRE N (al)km (Za) _,Blpapl{,a
K a,b;;z)=z =z7Earlz
Hmn) (ut1i2) = (b)), T(ak +5) ’ Vl( )

3. Differ-integration of generalized K ,-function

In this section we will derive the relation between generalized K, -function and the operator of
differ-integral given by Oldham and Spainer [9]. The relation is presented in the next theorem as
follows:

Theorem 3.1:

Let—o<r <o, Re(ay—pB)>0, z>c>0and d; be the operator of differintegral given by Oldham

and Spainer then the relation holds:

A O

) by,...bgiz ) =K (”"ﬁ”‘y)‘(a’c)‘(p’q)(al,a2 ..... a,.by,....bq;2 ) (3.1)

A(m.n)
Proof:
The differ-integral operator defined by Oldham and Springer [9] of function f (z) is given by

:df(z)

d:A(2) d(z—c)

(3.2)

Using (2.1) and (3.2) we have

0

k (k+y)a-p-1
A (#0600 gy} g P (8 )y (1) (@) (2-¢)
{ 4(m,n) } {;) (bl)kn ---(bq )kn k! F((k +;/)a—ﬁ)
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5@ B)y () @) Z
_kz_;‘)(bl)kn...(bq)kn k! F((a+k)7—(ﬂ+r))(

= K4§f‘n’ﬁ;r’7)’(a’°)'(p'q) (al,a2 ..... a

This shows that the differintegral of the generalized K ,-function is again a generalized K, -
function with indices g+r .
Particular case:

(1) d; G, 4,[ac.z2]=G, 4., [aC.Z]

(2) d; R, s[ac,z]=R, 4, [aC.Z]

(3) od; F,[a,0,z2]=R,, [a,0,z]

4. Solving general fractional kinetic equation in terms of generalized K, -function,

generalized M-Series and generalized Mittag — Leffler function

The generalized Riemann — Liouville operators of fractional calculus [7,9] are defined as

2D, f (z):%j(z —u)v_lf (z)dz Re(v)>0, z>a (4.1)
with
DX (z)=f (z),and

DI (2)=— (aD#7f (2)) Re(u)>0, k-p>0 (4.2)
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If p(z)=(z-a)”, we have from [10]

.D;" (2 —a)p_lz r'(p) (z —a)'H'_1 (4.3)

where Re(v)>0, Re(p)>0, z >a.

On integrating the standard kinetic equation

SNi)=e N (1) 60 (4.4)
Haubold and Mathai [4] derived that
N (t)=N; (0)=—c¢; (D' N; (t) (4.5)

Where (D *is the standard Riemann integral operator, N; =N, (t)is number density of species i ,
which is a function of time t and N; (0)=N, is the number density of that species of time t =o.
By dropping the index i and replacing he Riemann integral ,D,*operator by the fractional
Riemann — Liouville operator ,D,;" , the kinetic equation (4.5) is reduced to

N (t)-Ng=—<" (Di¥ N (t) (4.6)
Multiplying both side of(4.6) by({V )r oD, and taking the sum over r from 0to « Yyields

i(_cv )r D™ N (t)—i(—cv )r+1 ODt*(rJrl)v N (t):Noi(_Cv )r D™ 1

r=0 r=0 r=0

Replacing r by (r-1)in the second sum of above equation and then cancelling the equal terms

on the left hand side, and applying (4.3) after putting p=10n the right hand side of above

equation
N (1) =No (e ) oD @
r=0
e 0" o)
or N(t):NOrZ:(; r1em) :N(’;r(mv)
Hence,

Theorem 4.1:
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Ifa, 5,,>0 ; v >0, then the solution of the general fractional kinetic equation

N (t)-Not/F T E25m (at"‘):—cVoDﬁ’ N (t) 4.7)
IS given by
N (t):N i L )rK (e.a-p-1v 1),(a,0),(11) (t) 4.8
0> 4(m.n) (4.8)
r=0
Proof:

Multiplying both side of (4.7) by(wV )r oD, " and taking the sum over r from 0to «, we get

S (') oD N (1)-3 (<) " oD N 1)

r=0 r=0

o0

=N (~¢") oD tFTERE™ (at”)

r=0

Replacing r by (r 1) in the second sum of above equation and then cancelling the equal terms on

the left hand side,

o0

N (t)=N OZ(_CV )r oDt Egbﬁrr? (ala>
r=0

s & @n (@) -
NOW D NtﬂlES'b'm(aIa)= ( km D rvtak+ﬂl
oD = 2 Tk +7)

and by applying (4.3), we get

k
- ¢ -1 —abm al _ S (a)km (a) F(O!k +ﬂ) v +aok +p4-1
oD VT EE (a )_kz_(;(b)kn T(ak + f) T(ak + p+rv)|

(k +1)a—(a—/3—rv )—l

e@), @ @
"2 ol K etk @)

Then the solution become

N (1) =N (ot ) Koo )

m,n)
r=0

Theorem4.2:

If «,p,a>0 and v >0, then the solution of the general fractional kinetic equation
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N (t)=Nt5 py@i’n(aﬂ):{vooﬁ N () (4.9)
is given by
N (t)=N Oi(ﬂ ) Ko pmr@0ea) ¢ (4.10)
0
Proof:

Multiplying both side of (4.9) by (# )r oD " and taking the sum over r from 0to «, we get

S (e} oD N ()= D (-¢) oD N (1)

r=0 r=0

:Noi({v)roD{”tﬁ‘l v (at”)
r=0

p,g,mn

Using the same technique of theorem (4.1) , N (t) become

N (1) =NoY () oD 4t M (ae)

p.q,mn
Now

(al)km ---(ap )km (a)k D" (t ak +ﬁ_1)
k=0 (by),, ...(bq )kn I (ak + f)

= N (al)km"'(ap )km (a)k r(ak +,3) v +ak +4-1
_é (bl)kn"'(bq )kn T(ak +p) T (ak +ﬁ+rv)t v

=§: (a),, ...(ap )km (), (a)k ¢ (K D)a—(a-p- )1
= (b)), ...(bq )kn k! F((k +1)a—(a—,3—rv))

_ K4(ava_ﬁ_w 1),(a,0),(p.a) (t )

(m.n)
So that the solution become
v’ a,a—pB-m 1),(a,0),(p,
N (1) =No Y (" ) K A BE0ea) ),
Theorem 4.3:
If ac,y,a,a>0;v >0 and Re(ya—p3)>0, then the equation
N (£)-No K (A E0HP8) (1) - o D N (1) (4.11)

has the solution
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N (£)=No Y (" ) Kol 7ieR)pa) ) (4.12)
r=0

Proof:

Repeating the process applied in the theorem (4.1), (4.2), we get

S (') DN (-3 ) oD N (1)

=0 r=0

-

=NoY (") oD K (A 1)

Hence N (t) become

and by applying (4.3), the solution become

N (t)= Noii(_cv) (G "'(ap)km (7) @) T((k+r)a-p) —b)(k p)a—pan-1

=S () (bg), k! T((k+7)a-p) T((k +y)a=-p+w)

Or

N (£) =N 3 (o' KA 71ee)0a) )
r=0
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