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1. Introduction

Quasi-uniformities have the following different approaches as follows the entourage ap-
proach of Lowen [2,10-14,17] , the uniform covering approach of Kotzé [13] and the unification
approach of Hutton [6,9,19] based on the powersets of the form LX LX.

Many researcher introduced the notion of fuzzy uniformities in unit interval [0,1] ([3,4,14,15]),
complete distributive lattices ([9,13,17,19]), commutative unital quantales ([8,11,12]) and com-

plete quasi-monoidal lattices ([6,8,18]).
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In this paper, we study the relations among L-topology, L-neighborhood system and L-
uniformity as extensions of Lowen’s definitions in complete residuated lattices. We give their

examples.
2. Preliminaries

Definition 2.1. [1,7] An algebra (L,A,V,®,—, L, T) is called a complete residuated lattice
if it satisfies the following conditions:

(Cl) L= (L,<,V,A, T,1) is a complete lattice with the greatest element T and the least
element L ;

(C2) (L,®,T) is a commutative monoid;

C)xoy<Lziffx <y— zforx,y,z € L.

An operator * : L — L defined by a* = a — 0 is called a strong negation if a** = a.
For a € L,A € I#, we denote (& — A), (¢ @A), 004, Ty, TE€ LA as (@ — A)(x) = a0 —
A(x), (@OA)(x) =t ©A(x), aalx) = a,

T.0) T, ify=ux, T4 0) 1, ify=ux,
x\y) = y) =
1, otherwise, ) T, otherwise.

In this paper, we assume that (L,V,A\,®,—,*, T, 1) be a complete residuated lattice with a
strong negation *.

Lemma 2.2. [1,7] Let (L,V,A,®,—,*, T, 1) be a complete residuated lattice with a strong
negation *. For each x,y,z,x;,y; € L, the following properties hold.

(HIfy<z,thenx®Oy<x®z

QIfy<zthenx—y<x—zandz—>x<y—nx.

B)x—y=Tiff x <y.

@Hx—>T=Tand T —-x=x.

B)xOy<xAy.

(6) x© (Vieryi) = Vier(x©yi) and (Vierxi) ©y = Vier(xi © ).

(7 x = (Nieryi) = Nier(x = yi) and (Vicrxi) = y = Ajer(xi = y).

(®) Vierxi = Vieryi = Nier(xi = yi) and Ajerxi = Aieryi > Nier(xi = i)
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Q) (x—=y)ox<yand (x—=>y)O(y—2) < (x—2).
(1) x—y<(y—=z)—>(x—zandx—>y<(z—=x)— (z—y).
(1) Areraf = Vier ) and Vierf = (Arerxi)”
(12) (x@y) v z=x—(y—z)=y— (x—=z)and (xOy)* =x — y*.
(I13)x* - y*=y—xand (x > y)* =xOy".

(I4)y—=z<x0y—=x0z.

Definition 2.3.[1,4,5,16] Let X be a set. A function R : X x X — L is called an L-prtial order
if it satisfies the following conditions:

(E1) reflexive if R(x,x) = T for all x € X,

(E2) transitive if R(x,y) ® R(y,z) < R(x,z), for all x,y,z € X,

(E3) if R(x,y) = R(y,x) = T, then x = y.

Lemma 2.4. [4,5,16] For a given set X, define a binary mapping S : LX x LX — L by
SA,p) = N\ (A(x) = p(x).
xeX

Then, for each A,u,p,v € LX, and « € L, the following properties hold.
(1) S is an L-partial order on LX.
QA<piff SA,u)=T,
(3)If A <, then S(p,A) < S(p,u) and S(A,p) > S(u,p) for each p € LX,
@D SA,n)oS(v,p) <SAOV,uep).

Let ¢ : X — Y be an ordinary mapping. Define ¢ : LX — LY and ¢ : LY — LX by

07 (A)y) =\ Alx) fordelX yey,
¢ (x)=y

O (1) (x) = pu(¢(x)) =pod(x) foruel”,

respectively.
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Lemma 2.5. [5,16] Let ¢ : X — Y be an ordinary mapping. Define ¢~ : LX — L' and
o< LY — X by

0" =\ Alx), VAeLX yey,
¢ (x)=y

0 (1)(x) = pu(9(x) = poo(x), VueL.

Then for A,u € LX and p,v LY,
S(A,pn) <S(@7(A), 07 (1)),

S(p,v) <S(0(p), 9" (v)),

and the equalities hold if ¢ is bijective.

Definition 2.6. [8] A map 7 : LX — L is called an L-topology on X if it satisfies the following
conditions.

(T1) Lx, Tx €,

(T2)if A,p €T, then A O U € T,

(T3)If A; € T foreachi € I, then \/; Ajcr € T.

An L-topology is called enriched if

R)ifA,pert, thena®A € tforall a € L.

The pair (X, 7) is called an L-topological space.
Let (X, 7)) and (Y,7;) be two L-topological spaces. A mapping ¢ : X — Y is said to be

L-continuous iff ¢ (A) € 1y for each A 1.

Definition 2.7. [8] Amap N : X — L is called an L-neighborhood system on X if N satisfies
the following conditions

(NI Nx(Tx) = T and Nx(0x) = L,

(N2) Ny (A © ) > Ni(A) © Ne(u) for each A, u € LX,

(N3) If A <, then Nx(A) < Ni(u),

(N4) Ny(A) < A(x) for all A € LX,

(N5) Nx(A) < VANe(p) | u(y) <Ny(A), Vy € X}

An L-neighborhood system is called stratified if
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(R) Ny(@®A) > a®N(A) forall A € LX and a € L.
The pair (X,N) is called an L-neighborhood space.
Let (X,N) and (Y,M) be two L-neighborhood spaces. A mapping ¢ : X — Y is said to be
L-continuous at x € X iff My, (1) < Nx(¢* (1)) for each A € LY ¢ is L-continuous if it is

L-continuous at every x € X.

We define L-uniformity in a sense of Lowen.

Definition 2.8. [24] A map U C LX*X is called an L-quasi-uniformity on X iff the following
conditions are fulfilled

(QUI) Txxx €U,

QU Ifv<wuandveU,thenuc U,

(QU3) Foreveryu,ve U,u®velU,

(QU4) If u € U then T Ao < u where

T, ifx=y
1, ifx#y,

Talxy)=
(QUS) For each u € U, there exists v € U such that vov < u where

vov(x,y) = \/ v(x,2) Ov(z,), ¥ x,y € X.
zeX

An L-quasi-uniformity U on X is said to be stratified if

SIfueU,thenaxGuel.

An L-quasi-uniformity U on X is said to be L-uniformity if

(US)If u € U, then u~! € U where u~'(x,y) = u(y, x).

The pair (X,U) is called an L-uniform space.

Let (X,U) and (Y,V) be L-uniform spaces, and ¢ : X — Y ba a mapping. Then ¢ is said to

be L-uniformly continuous if (¢ x ¢)“(v) € U, forevery v € V.
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3. L-neighborhood systems, L-topologies and L-uniformities

Theorem 3.1. Let (X, 7) be an L-topological space. Define a map N*: X — Lt by

Ni2) =\ {p( |p<h pet).
Then the following properties hold.
(1) (X,N7) is an L-neighborhood space.
(2) If 7 is enriched, then N7 is stratified and

Ni(2) =\ (p(x)©S(p,4).

pet

Proof. (1) (N1) Since Tx, L € 7, N} (Tx) =T and N7 (L) = L.
(N2)

NE(A) O NE(p)
= (Viu) [4 <A, 4 et)) o (V{pix) [p1 <p, p1 €7>5})
<V{tiop)x) [Liopr<Aop, iOp1 €T}
<N (AOPp).
(N3-5) follow from the definition of N°.
(N6) Put N*(A,r) = \/{p | p <A, p € T} with N¥ (x) = N¥. Then N¥(1) € 7. By (N3) and
the definition of N7,
NI(NE(R)) =N{(A).
For r > ry,
N (A) = N¢(NZ(4))
< VNI (p) [ p(y) <N (A)}.
Thus (X,N7) is an L-neighborhood space.
(2)
aON{(A)=aoV{p|p <A, pert}
<V{oop|laop<aoi, a®p et <N (aoOA).
Put y(x) = V,e(p(x) ©S(p,A4)). Let p with p < A and p € 7. Then p(x) ©S(p,A) =
p(x) © T = p(x). Thus p(x) < y(x). Therefore Nf(A) < y(x).
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Let p(x) ®S(p,A) with p € 7. Since 7 is enriched, p ©® S(p,A) € 7 and p(x) © S(p,A) <
p(x)® (p(x) = A(x)) < A(x). Then y(x) < NF(A).

Theorem 3.2. Let (X, N) be an L-neighborhood space. Define Ty C L* as follows
o ={A €L | A(x) =N:(1),Vx e X}.

Then,

(1) Ty 1s an L-topology on X,

(2) If N is stratified, then 7y is an enriched L-topology.
(3) N=N™W.

(4) If (X, 7) is an L-topological space, then T = Tyr.

Proof. (1) (T1) Since Ny(Tx) =T and N,(Lx) = L, we have Tx, Lx € ty.

(T2) Let A,p € Ty. Since Ny(A ®p) > Ny(A) ©@Ny(p) = (A ®p)(x) and (N4), then A © p €
TN.

(T3) Let A; € ty for all i € T'. Since Ny(VicrAi) > VierNx(Ai) = VierAi and (N4), then
Vierdi € .

(2) R) Let A € y. Since Ny (€ ©A) > ot © Ny(A) = c ©® A(x) and (N4), then o ©® A € Ty.

(3) Since Ny(A) < Ny(N_(A)) < Ny(A) from (N3) and (N5), N(A) < Ny(N_(A)) for all
x € X. Since N_(A) € 7, by the definition of N, Ny (1) < N;¥(A).

Since N¢V (A) = V{pi(x) | pi < A, p;i € Tv} and p;(x) = Ny(p;), then

V pil) \/N pi) < Ny(N® \/pl <\/pz
Hence N (N™ (1)) = NSV (A). Since NV (1) < A, by (N3),
NN () = No(N2'(A)) < Ne(R).

Thus N2V = N, for all x € X.
(4)Let A € Tyr. Then A =N*(A) € 7.

Let p € 7. Then p(x) = N (p) for all x € X. Then p € Tyz.

Theorem 3.3. ¢ : (X, 7x) — (¥, 7y) is L-continuous iff ¢ : (X,N*) — (Y,N¥) is L-continuous.



18 A.A. RAMADAN, E.H. ELKORDY, YONG CHAN KIM

Proof. (=) Since ¢ (p) € tx for each p € 1y, we have

NI () =V{p(6(x)) | p < Ap € 7}
=V{o7(p)(x) [ 97 (P) <97 (1),07 (p) € x}
<Ny (0 (1)),
(<) Let A € 1y. Since Ty = Ty from Theorem 3.2(4), A(¢(x)) = N;’Ex) (L) < NF (9 (A)).

Hence ¢ (1) € 1.

Theorem 3.4. Let (X,U) be an L-quasi uniform space. Define two maps rNV,INV : X — s

by
rNS(A) = \/ S(ulx],A), VA eL*, x e X,
uclU
INY(A)="\/ S(u ,VaelX xeX,
uclU

where ulx](y) = u(y,x) and u[[x]](y) = u(x,y).
Then
(1) (X,rNY) is a stratified L-neighborhood space.
(2) (X,INY) is a stratified L-neighborhood space.

3N/ (A) =V {p()lulp] <A ueU}=V{px)©S(ulp],A) | u€ U} where

ulp](x) = \/ u(x,y) ©p(y),

yeX

@ INY(A) =V {p(x) [ullp]] <A [ue U} =V{p(x) ©S(ul[p]],A) | u € U} where

u[[p]](x) = \/ u(y,x) ©p(y).

yeX

Proof. (1) (N1) Foru € U, by (QU4), T A <u. Then

rNY (Lx) = Vyeu S(ulx], Lx)
< Ve (u(x,x) - L) = L.
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Hence rNV(Lx)= L. Also, rNY(Tx) = T, because

PN (Tx) > N (Taly) = Tx()=T.
yeX

(N2) By Lemma 2.4 (4) , we have

rN{ (A) O N (1) = (Vuew Slx], 1)) © (Vyer SO, 1))
= VM(DVEU S(u[x],},) QS(V[X]MLL) < VuQVEU S(<”®v) [x],?L @[.L)
<Vyer SWhl,A0p) =rN (Ao w).
(N3) By Lemma 2.4 (3), we have
rNY (L) = View S(ulx], 4)

< Vuer S(ulx], 1) = rNY (1)
(N4) For u € U, by (QU4), T A < u. We have

rNY(A) = Vyew Nyex (u(y,x) = A(y))
< Vuey (u(x,x) = A(x)) < A(x).
(NS)
rN{ (A) = Vyeu S(ulx], 1)
= Vuev Nyex (u(y,x) = A(y))
< Viev Ayex ((vov)(y,x) = A(y))
= Vyev Nyex (Veex v(z,x) ©v(,2)) = A(y))
= Vyev Nyex Neex (v(z,x) ©v(,2)) = A(y))
(by Lemma 2.2 (12))
= Vyev Nyex Neex (v(z,x) = (v(y,2) = A(y))
= Viev Neex(v(2,X) = Ayex (v(y,2) = A(y)).
Let p(z) = Ayex(v(y,2) = A(y)). Then p(z) <rNY(A) forall z € X. Thus,

N (L) < Vyeu{Awex(v(z:x) = p(2) [ p(2) <NJ(R)}
<V, {rV{(p) | p(2) <NV (2)}.
Thus, (X,NY) is an L-neighborhood space.
Since a @ ulx](y) © S(u[x],A) < ax O ulx](y) © (u[x](y) = A(y)) < a ®A(y), we have

o ®S(ulx],A) <S(ulx],a®).
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Thus, NV is stratified from:
a@rNy(A) =aOV,eySup],A) = V,ey(a@©S(ufx], 1))
< Ve (S(ul], 0 ®2)) = rN/ (@ © 1).
(2) It is similarly proved as (1).
(3) Puty=\{p(x) | u[p] < A|lu € U}. We show that rNY = y from the following statements.
Let p = Aex (u(x,y) = A(x)). Then

ulp](z) = Vyex (u(z,y) ©p())

= Vyex (u(2,5) © (Axex (u(x,y) = A(x))))

< Vyex (u(z,5) © (u(z,y) = A(2))) < A(2)-
Hence rNY < 7.

Let ulp](z) = Vyex (u(z,y) ©p(y)) < A(z). Then

p(y) < A (u(z,y) = A(2)).

z€X
Hence rNY > 7.
Put 6 = \/{p(x) ®S(u[p],A) | u € U}. We show that & = y from the following statements.
Let p € LX with u[p] < A and u € U. Then S(u[p],A) = T. Hence p(x) ® S(ulp],A) =
p(x) < 8(x). So, y(x) < 8(x).
Let p © S(u[p],A) with u € U. Since

ulp © S(ulp], )] (x) = Vyex (ulx,y) © p(y) © S(u[p], 1))
= ulp](x) ©S(ulp],A) < A(x).
we have u[p ® S(u[p],A)] < A. Then p(x) ©® S(u[p],A) < y(x). Thus, 6 = 7.

Theorem 3.5. Let (X,U) be an L-uniform space, (X,rNY) and (X,INY) L-neighborhood

spaces. Define 77,7, C LX as follows

w ={A elX | A(x) =rNY(A),Vx € X},
o ={AelX | A(x)=INV(X),VxeX}.

Then,
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(1) 17, is an enriched L-topology on X.
2) ‘L'f] is an enriched L-topology on X.
(3) rNY =N%.
(4) INV = N%.

Proof. (1) (T1) Since Ny(—l—x) =T and N)fj(J_x) = _1,wehave Ty, Lx € 1p.

(T2)Let A,p € 1. Since NY (A ®p) > NV (L) ONY (p) = (A©p)(x) and (N4), then A ©p €
.

(T3) Let A; € 1y for all i € T'. Since NY (V;erAi) > Vier NY (Ai) = V,er A and (N4), then
Vierdi € .

(R)Let A € 1. Since NV (¢ ®A) > a ©NY(1) = e ©® A (x) and (N4), then ¢ ® A € 1p.

(2) It is similarly proved as (1).

(3) Since rNY (1) < rNY (rNY (1)) < rNY (1) from (N3) and (N5), rNY (1) = rNY (rNY (1))
for all x € X. Since rNY(1) € 1J;, by the definition of N, rNY (1) < N (A).

Since N = \/{pi(x) | pi < X, p; € 7, } and p;(x) = rNY (p;), then

Vi) = \/ VY (pi) < VY (N (2)) = VY (V) < \/ i)

Hence rNY (N (L)) =N%(2). Since N (1) < A, by (N3), N (1) =rNY (N7 (1)) <rNY ().
So, rNV = N

(4) It is similarly proved as (3).

Theorem 3.6. If ¢ : (X,U) — (Y,V) is L-quasi-uniformly continuous, then
(D¢ (X, rNY) =
(2) ¢ : (X,INY) —
(3) amap ¢ : (
(4) amap ¢ : (

— (Y,rN") is L-continuous.
(Y,INV) is L-continuous.
T (Y,7{,) is L- continuous.

X, 1) =
X,t,) — (Y,7l,) is L- continuous.

Proof. (1) First we show that ¢ (v[¢(x)]) = (¢ x ) (v)[x] from

0 (Vo)) (2) =vIo()](¢(2)) = v(9(2), ¢ (x))
= (¢x9)"()(zx) = (¢ x9)" (V)X (2).



22 A.A. RAMADAN, E.H. ELKORDY, YONG CHAN KIM

Thus, by Lemma 2.5, we have

S(ip(x)],4)

IN

ST (o)), 07 (1))
S((9 x¢)"(v)I, 97 (1)).

Ny (A) = Viev) SCIO ()], A) < Vyey S((9 x 9) 7 (v)[x], 97 (1))
< V(pxp)-mev S(9 x )T (v)[x],07 (1)) < rN/ (97 (1))

(2) It is similarly proved as (1).

(3)Let A € 7j;(1). Then A = rNY (). Then ¢ (1) = ¢ (rNY(1)). Since ¢~ (rNY (1)) <
rNY (¢ (1)), then ¢ (A) = ¢ (rNY (1)) < rNY (9 (1)). By (N3), ¢ (1) = rNY (¢ (1))
Hence ¢ (1) € 1/,(¢(1)).

(4) It is similarly proved as (3).

Example 3.7. Let (L = [0, 1],®,—) be a complete residuated lattice defined by

I, ifx<y,
XOYy=xAy, x—=y=
y, otherwise.

Let X = {x,y,z} be a set and w € LX*X such that

1 06 038
w=1| 04 1 04
05 05 1

Define U = {u € LX*X | u>w}.
(1) Since wow = w, U 1is an L- quasi-uniformity on X.

(2) Since rNY (1) = \/,,cpy S(u[x], 1), we have

PNU(A) = Vyey S, A) = A(x) A (0.4 — A()) A (0.5 — A(2))
PNY(A) = Ve S(ly], 2) = (0.6 = A(x)) AA(y) A (0.5 — A(2))
PNY(A) = Vyey S(ufz),A) = (0.8 = A(x)) A (0.4 — A (y)) AA(2).

(3) Since INY (A) = V/,epy S(u[[x]], ), we have

Y
Y

)
)
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IN{ (A) = View S[[A]], 1) = 2(x) A (0.6 = A(y)) A (0.8 = A(2)),
INJ (A) = View S[B]], 4) = (0.6 = A (x)) AL (y) A (0.6 — A(2)),
IN(A) = Vyew S(l[z]],A) = (0.5 = A(x)) A (0.5 = A()) AL (2).
(3) Since 1}, = {A € LX | A(x) = rNY (1), Vx € X} from Theorem 3.5, we have

X

(
A:a)ﬁ

A(x) <04 —A(y),A(x) <0.5— A(2),
A(y) 0.6 > A(x),A(y) <0.5— A(z2),
| A(2) 0.8 = A(x),A(z) <04 — A(2),

A€ 1 iff

A

A
A €1l iff

A

A

For A = (0.6,0.5,0.6),A € T/yy, A & T/,

A =(0.1,0.9,0.5),A & T\u,A & T,

r

A =(0.5,0.5,0.6),A & T\u,A € Thu.
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