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Abstract. This paper deals with numerical method for the approximate solution of one dimensional heat equation

ut = uxx + q(x, t) with integral boundary conditions. The integral conditions are approximated by Simpson’s 1
3

rule while the space derivatives are approximated by fifth-order difference approximations. The method of lines,

semi discretization approach is used to transform the model partial differential equation into a system of first-order

linear ordinary differential equations whose solution satisfies a recurrence relation involving matrix exponential

function. The method developed is L-acceptable, fifth-order accurate in space and time and do not required the use

of complex arithmetic. A parallel algorithm is also developed and implemented on several problems from literature

and found highly accurate when compared with the exact ones and alternative techniques.
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1. Introduction

Several boundary-value problems arising in plasma physics [12], heat conduction [1, 6], dy-

namics of ground waters [9, 13], thermoelasticity [8], control theory [14] and life sciences [2]

can be converted into nonlocal boundary problems (problems with integral conditions). In this

paper we have considered a non-homogeneous heat equation with nonlocal boundary condition-

s. Much attention has been paid in the literature for the development, analysis and implementa-

tion of accurate methods for the numerical solution of this typical problem.

Consider the heat equation

(1)
∂u
∂ t

=
∂ 2u
∂x2 +q(x, t), 0 < x < 1, 0 < t ≤ T

subject to initial condition

(2) u(x,0) = f (x), 0 < x < 1

and nonlocal boundary conditions

(3) u(0, t) =
∫ 1

0
φ(x, t)u(x, t)dx+g1(t), 0 < t ≤ T,

(4) u(1, t) =
∫ 1

0
ψ(x, t)u(x, t)dx+g2(t), 0 < t ≤ T,

where f ,g1,g2,φ ,ψ and q are known functions and are assumed to be sufficiently smooth to

produce a smooth solution of u. T is a given positive constant.

In this paper the method of lines, semi discretization approach, will be used to transform the

model partial differential equation (PDE) into a system of first order, linear, ordinary differ-

ential equations (ODEs) the solution of which satisfies a recurrence relation involving matrix

exponential terms. A fifth-order rational approximation will be used to approximate exponential

functions which will lead to an algorithm which may be parallelized through the partial fraction

splitting technique.

2. Discretization and treatment of nonlocal boundary condition
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Choosing a positive integer N ≥ 9 and dividing the interval [0,1] into N+1 subintervals each

of width h, so that (N +1)h = 1, and the time variable t into time steps each of length l gives a

rectangular mesh of points with coordinates (xm, tn) = (mh,nl) where (m = 0,1,2, ...,N,N +1

and n = 0,1,2, ...) covering the region R = [0 < x < X ]× [t > 0] and its boundary ∂R consisting

of the lines x = 0, x = 1 and t = 0.

Assuming that u(x, t) is at least seven times continuously differentiable with respect to variable

x and that these derivatives are uniformly bounded, the space derivative ∂ 2u
∂x2 in (1) may be

approximated to the fifth-order at some general point (x, t) of the mesh by using approximations

given by [11].

Applying (1) with approximation for ∂ 2u
∂x2 at all interior mesh points of the grid at time level t = tn

produces a system of N linear equations in N + 2 unknowns U0,U1, ...,UN+1. The integrals in

(3) and (4) are approximated by using Simpson’s 1
3 rule as used by [10]. Here

u(0, t) =
h
3
{φ(0, t)u(0, t)+4

N+1
2

∑
i=1

φ((2i−1)h, t)u((2i−1)h, t)

+ 2

N+1
2

∑
i=1

φ(2ih, t)u(2ih, t)+φ((N +1)h, t)u((N +1)h, t)}

+ g1(t)+O(h5)(5)

u(1, t) =
h
3
{ψ(0, t)u(0, t)+4

N+1
2

∑
i=1

ψ((2i−1)h, t)u((2i−1)h, t)

+ 2

N+1
2

∑
i=1

ψ(2ih, t)u(2ih, t)+ψ((N +1)h, t)u((N +1)h, t)}

+ g2(t)+O(h5).(6)

Solving (5) and (6) simultaneously for U0 and UN+1 and using their values in above the system

we have a system of N linear ordinary differential equations which can be written in vector

matrix form as

(7)
dU(t)

dt
= AU(t)+v(t), t > 0



HEAT EQUATION WITH NONLOCAL BOUNDARY CONDITIONS 1047

with initial distribution

(8) U(0) = f

in which U(t) = [U1(t),U2(t), ...,UN(t)]T , f = [ f (x1), f (x2), ..., f (xN)]
T , T denoting transpose

and matrix A is given by

A =
1

180h2 B

and

B =



α1 α2 α3 α4 α5 α6 ... αN−1 αN

β1 β2 β3 β4 β5 β6 ... βN−1 βN

−13 228 −420 200 15 −12 2

−13 228 −420 200 15 −12 2
. . . . . . . . . . . . . . . . . . . . .

−13 228 −420 200 15 −12 2

γ1 γ2 γ3 γ4 γ5 γ6 ... γN−1 γN

δ1 δ2 δ3 δ4 δ5 δ6 ... δN−1 δN

ζ1 ζ2 ζ3 ζ4 ζ5 ζ6 ... ζN−1 ζN

η1 η2 η3 η4 η5 η6 ... ηN−1 ηN


N×N

where

α1 = 124m1−56, α2 = 124m2−528, α3 = 124m3+925, α4 = 124m4−740, α5 = 124m5+366,

α6 = 124m6−104, α7 = 124m7 +13 and αi = 124mi for i≥ 8

β1 =−13m1+228, β2 =−13m2−420, β3 =−13m3+200, β4 =−13m4+15, β5 =−13m5−

12, β6 =−13m6 +2 and βi =−13mi for i≥ 7

γN−5 = 2nN−5−13, γN−4 = 2nN−4 +228, γN−3 = 2nN−3−420, γN−2 = 2nN−2 +200, γN−1 =

2nN−1 +15, γN = 2nN−12 and γi = 2ni for 1≤ i≤ N−6

δN−6 = 4nN−6− 2, δN−5 = 4nN−5 + 16, δN−4 = 4nN−4− 69, δN−3 = 4nN−3 + 340, δN−2 =

4nN−2−560, δN−1 = 4nN−1 +312, δN = 4nN−41, δi = 4ni, for 1≤ i≤ N−7

ζN−6 = −9nN−6 − 4, ζN−5 = −9nN−5 + 30, ζN−4 = −9nN−4 − 96, ζN−3 = −9nN−3 + 155,

ζN−2 =−9nN−2 +60, ζN−1 =−9nN−1−336, ζN =−9nN +200, ζi =−9ni for 1≤ i≤ N−7

ηN−6 = 128nN−6+9, ηN−5 = 128nN−5−76, ηN−4 = 128nN−4+282, ηN−3 = 128nN−3−600,

ηN−2 = 128nN−2 +785, ηN−1 = 128nN−1−444, ηN = 128nN−84 and ηi = 128ni for 1≤ i≤
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N−7

in which

mi =


4 h

3 (c4φi−c2ψi)
c1c4−c2c3

for i=1,3,5,...,N,
2 h

3 (c4φi−c2ψi)
c1c4−c2c3

for i=2,4,6,...,N-1,

and

ni =


4 h

3 (c3φi−c1ψi)
c2c3−c1c4

for i=1,3,5,...,N,
2 h

3 (c3φi−c1ψi)
c2c3−c1c4

for i=2,4,6,...,N-1.

Here c1 = 1− h
3φ0, c2 =−h

3φN+1, c3 =−h
3ψ0 and c4 = 1− h

3ψN+1 also φi = φ(ih, t) and ψi =

ψ(ih, t). The column vector v(t) contains the contribution from the functions q(x, t), g1(t) and

g2(t) and is given by

v(t)= [ 124l1
180h2 +q1,

−13l1
180h2 +q2,q3,q4, ...,qN−4,

2l2
180h2 +qN−3,

4l2
180h2 +qN−2,

−9l2
180h2 +qN−1,

128l2
180h2 +

qN ]
T , where l1 =

c4g1(t)−c2g2(t)
c1c4−c2c3

and l2 =
c1g2(t)−c2g2(t)

c1c4−c2c3
. The solution of the system (7) and (8) is

given by

(9) U(t) = exp(tA)f+
∫ t

0
exp[A(t + l− s)],v(s)ds

which satisfies the recurrence relation

(10) U(t) = exp(lA)U(t)+
∫ t+l

t
exp[A(t + l− s)]v(s)ds, t = 0, l,2l, ...

To approximate the matrix exponential function in (10), a rational approximation

E5(θ) =
1+b1θ +b2θ 2 +b3θ 3 +b4θ 4

1−a1θ +a2θ 2−a3θ 3 +a4θ 4−a5θ 5 ,(11)

where

(12) a5 =
4

∑
K=0

(−1)K aK

(5−K)!

and

(13) bK =
K

∑
i=0

(−1)i ai

(K− i)!
, K = 0,1,2,3,4
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is used. Choosing the values of parameters a1, a2, a3, a4, a5 as 91
20 , 481

120 , 107
80 , 691

3600 and 1
100 so that

the method uses only real arithmetic. The quadrature term appearing in (10) is approximated as∫ t+l

t
exp((t + l− s)A)v(s)ds = W1v(s1)+W2v(s2)+W3v(s3)+

W4v(s4)+W5v(s5).(14)

The values of W1, W2, W3, W4 and W5 are given by [11].

3. Numerical experiments

In this section the numerical methods described in this paper will be applied to four problems

from literature and result are obtained will be compared with exact solution as well as with the

results existing in literature.

Example 1

f (x) = x2, 0 < x < 1

g1(t) =
−1

4(t +1)2 , 0 < t < 1

g2(t) =
3

4(t +1)2 , 0 < t < 1

φ(x, t) = x, 0 < x < 1

ψ(x, t) = x, 0 < x < 1

q(x, t) =
−2(x2 + t +1)

(t +1)3 , 0 < t ≤ 1, 0 < x < 1,

which has theoretical solution u(x, t) = ( x
t+1)

2 [5].

For comparison purpose the problem is solved for h = l = 0.05, 0.025, 0.01, 0.005, 0.0025,

0.001 at x = 0.6 and t = 1. The relative errors obtained by the new scheme are given in Table 1

and the results are compared with different schemes, BTCS implicit scheme, Crandall method,

FTCS scheme and Dufort Frankel scheme given by [5]. From the table we can see that the

results of the new scheme are for batter than those of the schemes given in [5].

Example 2

f (x) = exp(x), 0 < x < 1

g1(t) = 0, 0 < t < 1
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TABLE 1. Relative errors at various spatial lengths at t=1

Spatial length BTCS Crandall FTCS Dufort-Frankel New scheme

h = 0.0500 7.3×10−02 3.8×10−03 7.5×10−02 7.8×10−02 6.9×10−08

h = 0.0250 1.8×10−02 2.1×10−04 1.9×10−02 1.9×10−02 2.9×10−09

h = 0.0100 4.4×10−03 1.2×10−05 4.0×10−03 3.9×10−03 3.3×10−11

h = 0.0050 1.2×10−02 7.1×10−07 1.0×10−03 1.0×10−03 5.6×10−12

h = 0.0025 3.0×10−04 4.3×10−08 2.5×10−04 2.4×10−04 1.2×10−11

h = 0.0010 7.5×10−05 2.5×10−09 6.1×10−05 6.0×10−05 2.5×10−11

g2(t) = 0, 0 < t < 1

φ(x, t) = ax, 0 < x < 1

ψ(x, t) = bcos(x), 0 < x < 1

q(x, t) =−exp[−x(x+ sint)](1+ cost), 0 < t ≤ 1, 0 < x < 1

where a = e
e−2 and b = 2

(sin(1)−cos(1)+e) [5].

Which has theoretical solution u(x, t) = exp(−(x+ sint)). For example 2 results are given in

Table 3 and Table 3. In Table 2 the results are compared for h = l = 0.05, 0.025, 0.01, 0.005,

0.0025, 0.001 at x = 0.6 and t = 1. The relative errors obtained by the new scheme are given in

Table 2 and the results are compared with different schemes, BTCS implicit scheme, Crandall

method, FTCS scheme and Dufort Frankel scheme given by [5]. From the table it is cleared that

the results are in good agrement as compared with the exact ones as well as better than other

schemes. Moreover the new scheme is fifth-order accurate except for very small values of h and

l when the accumulating error is developed due to large number of arithmetic operations.

Example 3

f (x) = sin(πx)+ cos(πx), 0 < x < 1

g1(t) = 0, 0 < t < 1

g2(t) = 0, 0 < t < 1

φ(x, t) = 2sin(πx), 0 < x < 1

ψ(x, t) =−2cos(πx), 0 < x < 1
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TABLE 2. Relative errors at various spatial lengths at t=1

Spatial length BTCS Crandall FTCS Dufort-Frankel New scheme

h = 0.0500 6.3×10−02 3.9×10−03 6.4×10−02 6.8×10−02 1.1×10−07

h = 0.0250 1.5×10−02 2.4×10−04 1.6×10−02 1.7×10−02 6.9×10−09

h = 0.0100 4.0×10−03 1.5×10−05 4.1×10−03 4.1×10−03 1.8×10−11

h = 0.0050 1.0×10−03 1.0×10−06 1.0×10−03 1.0×10−03 1.4×10−12

h = 0.0025 2.4×10−04 6.4×10−08 2.5×10−04 2.6×10−04 2.1×10−11

h = 0.0010 6.1×10−05 4.0×10−09 4.0×10−05 3.9×10−05 2.5×10−11

TABLE 3. Results for u at different values of t

t Exact u Error Crank-Nicolson The Implicit The Parallel New scheme

h = 0.1 0.7048055 6.0×10−05 5.2×10−05 3.8×10−06 1.8×10−10

h = 0.2 0.6384772 5.2×10−05 4.1×10−05 3.7×10−06 4.1×10−10

h = 0.3 0.5795403 9.7×10−05 7.1×10−05 4.6×10−06 6.1×10−10

h = 0.4 0.5275993 8.0×10−05 6.5×10−05 5.5×10−06 8.0×10−10

h = 0.5 0.4821859 1.2×10−05 8.9×10−05 2.3×10−06 9.8×10−10

h = 0.6 0.4427977 1.1×10−05 9.8×10−05 1.0×10−06 1.2×10−09

h = 0.7 0.4089274 2.5×10−05 1.4×10−05 1.1×10−06 1.4×10−09

h = 0.8 0.3800687 3.8×10−05 2.6×10−05 1.0×10−06 1.6×10−09

h = 0.9 0.3558213 5.8×10−05 4.4×10−05 2.1×10−06 1.9×10−09

h = 1.0 0.3357223 7.1×10−05 6.4×10−05 1.9×10−06 2.1×10−09

q(x, t) = (π2−1)exp(−t){sin(πx)+ cos(πx)}, 0 < t ≤ 1, 0 < x < 1

Which has theoretical solution u(x, t) = exp(−t){sin(πx) + cos(πx)} [4].In this problem the

results are computed for h = l = 0.01 for different values of t at x=0.25 and the results are

presented in Table 4. Table 4 shows that the scheme developed in this paper gives superior

results to other schemes, namely the Crank Nicolson finite difference method [15] and the

parallel techniques [4].
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TABLE 4. Results for u at different values of t

t Exact u Error Crank-Nicolson The Implicit The Parallel New scheme

h = 0.1 1.2796330 5.2×10−05 4.3×10−05 4.8×10−06 1.9×10−10

h = 0.2 1.1578600 6.2×10−05 6.0×10−05 4.7×10−06 3.4×10−10

h = 0.3 1.0476750 6.5×10−05 6.4×10−05 3.9×10−06 3.8×10−10

h = 0.4 0.9479756 6.4×10−05 6.3×10−05 4.8×10−06 3.7×10−10

h = 0.5 0.8577639 6.2×10−05 5.9×10−05 5.3×10−06 3.5×10−10

h = 0.6 0.7761369 5.6×10−05 4.8×10−05 3.7×10−06 3.2×10−10

h = 0.7 0.7022777 5.0×10−05 4.9×10−05 2.3×10−06 2.9×10−10

h = 0.8 0.6354471 1.6×10−05 1.5×10−05 1.6×10−06 2.6×10−10

h = 0.9 0.5749763 4.1×10−05 3.3×10−05 1.1×10−06 2.4×10−10

h = 1.0 0.5202601 5.0×10−05 4.7×10−05 1.0×10−06 2.2×10−10

Example 4

f (x) = x(x−1)+
δ

6(1+δ )
, 0 < x < 1

g1(t) = 0, 0 < t < 1

g2(t) = 0, 0 < t < 1

φ(x, t) =−δ , 0 < x < 1

ψ(x, t) =−δ , 0 < x < 1

q(x, t) = (π2−1)exp(−t){sin(πx)+ cos(πx)}, 0 < t ≤ 1, 0 < x < 1

Which has theoretical solution u(x, t) = u(x, t) = [x(x−1)+δ/(6(1+δ ))]exp(−t) Where δ =

0.0144 [3].

In Example 4 results computed are given in Table 5 and Table 6. In Table 5 results are calculated

for h = l = 0.01 and for different values of t at x=1. From the table it is clear that the numerical

solution calculated by using the scheme developed in this paper is good agrement with the exact

ones. Also solution converges towards exact solution as t increases. In Table 6 results are given

for t = 1 with h = l = 0.01, 0.05, 0.025, 0.0125, 0.0625, at x = 0.5 and t = 1. CPU time taken

for the new scheme developed in this paper is also given in the table.
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TABLE 5. Results for h=0.01 at x=1

t Exact u Numerical Solution Absolute Error

h = 0.1 −0.00681710790377 −0.00681710791411 6.4×10−15

h = 0.2 −0.00061683743112 −0.00616837431411 8.2×10−15

h = 0.3 −0.00558137588787 −0.00558137588786 9.3×10−15

h = 0.4 −0.00505023774747 −0.00505023774746 8.3×10−15

h = 0.5 −0.00456894408389 −0.00456964408388 7.4×10−15

h = 0.6 −0.00413478495421 −0.00413478495420 7.4×10−15

h = 0.7 −0.00374130814210 −0.00374130814209 5.7×10−15

h = 0.8 −0.00338527559937 −0.00338527559937 5.5×10−15

h = 0.9 −0.00306312403268 −0.00306312403267 5.6×10−15

h = 1.0 −0.00277162924085 −0.00277162924085 4.8×10−15

TABLE 6. Results for different spatial lengths at t=1

Spatial length Absolute Errors at x=0.5 Absolute Errors at x=1.0 CPU Time in Seconds

h = 0.100000 1.2×10−09 3.8×10−09 0.032

h = 0.050000 6.8×10−11 1.0×10−11 0.047

h = 0.025000 3.0×10−12 1.7×10−13 0.281

h = 0.012500 8.0×10−13 4.0×10−15 1.1547

h = 0.006250 9.0×10−13 2.7×10−14 11.141

h = 0.003125 1.1×10−14 3.4×10−14 114.266

4. Conclusion

It is observed that the results obtained using new scheme are highly accurate as compared

to those of other schemes. This method do not use complex arithmatics which is unavoidable

while using higher order pade approximations. The use of complex arithmetics needs more

storage capacity and increase CPU time. The scheme developed is fifth-order accurate in space

and time as well L-acceptable. This technique can also be coded easily on serial and parallel

computers.
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