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1. Introduction

Quasi-uniformities have the following different approaches as follows the entourage ap-
proach of Lowen [2,10-14,17] , the uniform covering approach of Kotzé [13] and the unification

X
approach of Hutton [6,9,20] based on the powersets of the form LX L
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Many researcher introduced the notion of fuzzy uniformities in unit interval [0,1] ([3,4,14,15]),
complete distributive lattices ([9,13,17,20]), commutative unital quantales ([8,11,12]) and com-
plete quasi-monoidal lattices ([6,8,19]). Ramadan [18] investigated the relations among the
families of L-topology, L-neighborhood system and L-quasi-uniformity in complete residuated
lattices.

In this paper, we study the relations among the families of L-topology, L-neighborhood sys-
tem and L-quasi-uniformity as extensions of Lowen’s definitions in complete residuated lattices.

We give their examples.
2. Preliminaries

Definition 2.1. [1,7] An algebra (L,A,V,®,—, 1, T) is called a complete residuated lattice if
it satisfies the following conditions:

(Cl) L= (L,<,V,A, T,1) is a complete lattice with the greatest element T and the least
element L ;

(C2) (L,®,T) is a commutative monoid;

C)xoy<Lziffx <y—zforx,y,z € L.

An operator * : L — L defined by a* = a — 0 is called a strong negation if a** = a.
For a € L,A € I#, we denote (& — A), (¢ @A), 004, Ty, TE€ LA as (@ — A)(x) = a0 —
A0, (@A) = @@L (), axx) = a,

T.0) T, ify=ux, ) 1, ify=ux,
x\Y) = y) =
1, otherwise, ) T, otherwise.

In this paper, we assume that (L,V,A,®,—,*, T, 1) be a complete residuated lattice with a
strong negation *.
Lemma 2.2. [1,7] Let (L,V,\,®,—,*, T, L) be a complete residuated lattice with a strong
negation *. For each x,y,z,x;,y; € L, the following properties hold.

DIlfy<z thenx®Oy<x®z

Q) Ilfy<z thenx —-y<x—zandz—>x<y—x.

Bx—=y=Tiffx<y.
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Dx—>T=Tand T —-x==x.
BO)xOy<xAy
(©) x® (Vieryi) = Vier(x©yi) and (Vierxi) ©y = Vier(xi ©y).
(M) x = (Nieryi) = Nier(x = yi) and (Vierxi) = y = Nier (xi = y).
(8) Vierxi = Vieryi = Nier(xi = yi) and Nierxi = Nieryi 2 Nier (xi = i).
O (x—=y)ox<yand (x—=y)®(y—2z) < (x—2).
(1) x—=y<(y—=z2)=>(x—z)andx—y<(z—x) = (z—=Y).
(D) Nierx] = (Vierxi)* and Vicrxj = (Aier )"
(12) (xOy) = z=x—=>(y—z)=y— (x—=27)and (xOy)" =x = y*".
(I13)x* = y* =y —xand (x > y)" =xOy".

(I4)y—=z<x0y—=x02z

Lemma 2.3. [4,5,16] For a given set X, define a binary mapping S : LX x LX — L by
S(,m) = N\ (A(x) = p(x)).
xex
Then, for each A, l1,p,v € LX, and o € L, the following properties hold.
(DA< piffS(A,u)=T,
() If A <, then S(p,A) < S(p, ) and S(A,p) > S(1,p) for each p € L¥,
B)S(A, ) ©S(v,p) <S(A OV, uEOP).

Definition 2.4. [8] A map 7 : LX — L is called an L-topology on X if it satisfies the following
conditions.

(T Lx, Tx e,

(T2)if A,p €1, then A O U € T,

(T3)If A; € T foreachi € I, then \/; Ajcr € T.

An L-topology is called enriched if

(R)ifA,pert, thena®A € tforall a€L.

The pair (X, 7) is called an L-topological space.

Let (X, 1) and (Y, 72) be two L-topological spaces. A mapping ¢ : X — Y is said to be

L-continuous iff ¢ (A) € 7y for each A 1.
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Definition 2.5. [8] Amap N : X — LX" is called an L-neighborhood system on X if N satisfies
the following conditions

(N1) Ny(Tx) = T and Ny(0x) = L,

(N2) Ne(A ® ) > Ny(A) © Ny(u) for each A, u € LX,

(N3)If L < u, then Ny(A) < Ni(u),

(N4) Ny (1) < A(x) forall A € LX,

(N5) Ne(A) < VA{N«() | 1(y) < Ny(4), Vy € X}

An L-neighborhood system is called stratified if

(R) Ne(®A) > O Ny(A) forall A € LX and a € L.

The pair (X,N) is called an L-neighborhood space.

Let (X,N) and (Y,M) be two L-neighborhood spaces. A mapping ¢ : X — Y is said to be
L-continuous at x € X iff My, (1) < Nx(¢* (1)) for each A € LY ¢ is L-continuous if it is

L-continuous at every x € X.

We define L-quasi-uniformity in a sense of Lowen [14].

Definition 2.6. [18] A map U C LX*X is called an L-quasi-uniformity on X iff the following
conditions are fulfilled
(QUI) Txxx €U,
QU Ifv<wuandveU,thenuc U,
(QU3) Foreveryu,ve U,u®velU,
(QU4) If u € U then T A < u where
T, ifx=y
Talxy) =
1, ifx#y,
(QUS) For each u € U, there exists v € U such that vov < u where

vov(x,y) = \/ v(x,2) ©v(z,y), Vx,y € X.
zeX

An L-quasi-uniformity U on X is said to be stratified if
S)ifueU,thenaxOuel.

An L-quasi-uniformity U on X is said to be L-uniformity if
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(U)ifu € U, then u~! € U where u~!(x,y) = u(y,x).
The pair (X,U) is called an L-uniform space.
Let (X,U) and (Y,V) be L-quasi-uniform spaces, and ¢ : X — Y be a mapping. Then ¢ is

said to be L-quasi-uniformly continuous if (¢ x ¢ ) (v) € U, forevery v € V.

Theorem 2.7. [18] Let (X, T) be an L-topological space. Define a map N* : X — L by

NF) =\{p(x) [p <A, p et}

Then (X,N%) is an L-neighborhood space.

Theorem 2.8. [18] Let (X,N) be an L-neighborhood space. Define ty C LX as follows
o ={A € L¥|A(x)=N,(A),Vx e X}.

Then,
(1) Ty is an L-topology on X such that N = N™.,
(2) If (X, 7) is an L-topological space, then T = Ty«.

Theorem 2.9. [18] ¢ : (X,tx) — (Y,ty) is L-continuous iff ¢ : (X,N*) — (Y,N¥) is L-

continuous.

Theorem 2.10. [18] Let (X,U) be an L-quasi uniform space. Define two maps rNY ,INY : X —
s by
rNY (L) = \/ S(ulx],A), VA € X x€X,

uclU

INY(2) = \/ S]], A), VA € I¥, x€ X,

uel
where ulx](y) = u(y,x) and u[[x]](y) = u(x,y).
Then (X,rNY) and (X,INY) are stratified L-neighborhood spaces.

Theorem 2.11. [18] Let (X,U) be an L-quasi uniform space, (X,rNV) and (X ,INY) L-neighborhood

spaces. Define 1, ‘L'll] C LX as follows
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;= {4 eLX | A(x) = rNg(l),‘v’x eX},

th={AelX|A(x)=INY(A),vxe X}.
Then (1) 77, is an enriched L-topology on X such that rN U=NTw.
(2) ’L'fj is an enriched L-topology on X such that INY = N W,

3. L-neighborhood systems, L-topologies and L-quasi-uniformities

Let A € LX and p € LY, we define the product A x u € LX*Y as follows:
(A x p)(x,2) = A(x) © pu(z).

Theorem 3.1. If N and N, are L-neighborhood systems on X and Y respectively satisfy-
ing N1 (A1) © Na(Ap) = L for each Ay x Ay = Lxvy, then their product Ny x Ny is an L-
neighborhood system on X x Y defined by for all u € LX*Y

(N1 X No) (1) = \/{N1 (M) © Na(R2) | Ay x A <}

Proof. (LN1)

(N1 X N2)(1xxy) = VNI (1x) O N (1y) | 1x x 1y < lxxy}
=V{ToT|ToT<ST}=T.

Also, (N; XN;)(Oxxy)= L.

(LN2) For A, € LX and Ay, up € LY, we can prove that

(N1 X N2)(A) © (N1 X Np) (1)
= VN (M) ON2(A2) [ M x Ao S A} O VAN (1) O N2 (2) | iy X p < p}
< VAN (A1) ON1 (1) ©N2(A2) ONa(p2) | (A1 X A2) © (i1 X o) S A O}
SVINM(A o) 0N (0 p) | (M Op) X (O p) <Aou}
<V{Ni(p) oM (v) [pxv<Aou}t = (N1 xNo)(A O p).

(LN3) and (LN4) are clearly true.

(LNS)Let A € LX*Y A, € LX and 2, € LY, then we have
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(N1 X Np)(A) = V{N1 (A1) ON2(Az) | A x A < A}

< VAVAN:A() | i < Ny(A)} © VAN (p2) | 2 S Nw(A2)} | A1 x Ao < A}
< VAVAN (1) ON(t2) | 1 © pt2 < Ny(A1) O Ny(A2) }, A x Ap < A}

= V{V{N:(t1) ON(p2) | i (v) x 2 (w) < Ny(A1) ©Nw(A2) }, Ay x A <A}
S VAN« ON (X i) | i X o (y,w) < VAN, © Niw(Ay X A2) }}

SVIMON (1) [ 1 <N ONy(A)}-

Theorem 3.2. Let (X,N) be an L-neighborhood space. Then ¢ : (X,N) — (X x X,N X N)
defined by ¢ (x) = (x,x) is L-continuous.

Proof. If x € X and A € LX*X then we have

(N XN)g()(A) = V{Ne(A1) © Nx(A2) | (A1 X A2)(x) <A (9 (x))}
S VN4 ©22) | A1(x) X Az (x) < A((x)) = ¢ (A)(x)}
< Ne(97(4)).

Theorem 3.3. Let f:(X,N)— (Y,M') and g: (X,N)— (Z,M?) be L-continuous. Define
a mapping ¢ :X —Y xZ by ¢(x) = (f(x),g(x)). Then ¢ : (X,N) = (Y x Z,M" x M?) is

L-continuous.

Proof. Let L € LY*% A, € LY and A, € L%, then forall x € X we have

¢ (A1 x A2)(x) = A1 X A2(9(x))

=M x 1(f(x),8(x)) = (M (f(x)), A2(g(x)))

= (" (M)(x),8" () (x)) = (f () x g™ (A2))(x)
= ([T (M)©g™ (M) (x).
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Thus,

(M' x M?), wA)=V {M1 (/11)®M2 (/12)|)q><12</1}

(x)

S VAN (M) ONe(87 (A2)) [ A1 X A2(9(x)) < A(¢(x))}
S VAN (M) ONe(87 (A2)) [ 97 (A x A2) <97 (A1)}
S VN () 0g7 (A2)) [ /7 (A1) x g7 (h) <97 ()}
= VN (M) ©g" (A2) | /7 (M) ©g™ () <97 (A1)}
< Ne(97(4))-

Theorem 3.4. Let Ny and N, be L-neighborhood systems on X satisfying N1 () © Na(Ua) =
forall ny ® Uy, = Lx. Then Ny & N, is an L-neighborhood system defined for all u € LX by

(N1 @ N2) (1) = \/{Ni (1) © Na(p2) | 1 © po < i}

Proof. It is similar to the proof of Theorem 3.1.

Theorem 3.5. Let T and 1, be L-topologies on X. We define
1@ ={\ 4|4 =410, 1 €T7,Ap € B}
jer
Then the following properties hold.
(1) T1 @ Ty is the coarsest L-topology on X which is finer than T| and 7.
(2) N @NT2 = NTS%,

(3) If Ny and N, are L-neighborhood systems on X, then Ty, © Tn, = Ty, oN,-

Proof. (1) (T1) Tx € Ty & 1 because Tx ® Tx = Tx for Ty € 7;,i = 1,2. Similarly, Ly €
T D .
(T2) For every A,p € 71 @ Ty, then there exist Ay; € T;, pji € T; wWith
A=V (iOka), p=\(pj1 ©pi2)
kek jel

Then

AOP = Viexk (M1 ©42) ©Ves(Pj1 © pr2)

= Viek Vjes(M1 ©pj1) © (2 ©pr2)) € 71 S .
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(T3) For every A € 71 ® Ty, then there exist A;, € 71, A, € 71 with A = Ve (Ai, © Ay ).
Then

A=V =V Vi) €n10m

keK keK i€l
IfA; € T1,then Ay = A1 ® Tx suchthatA; € 71, Tx € T». Hence 4| € 71 hiie. 71 C 11 D .
Similarly, T; C 71 & 1. If 7; C 7 and 7 is an L-topology, for A € 7| ® T, there exist A;; € T; € T;

with

A= \/ (lkl @lkz).

kek
Since A; € T, then Ay ©A44p € 7. Hence A € 7. So, 71 D 1 C 7.
(2) Since 4] ® A, = Ly, then Ny' (A1) ON2(Az) < A1 (x) ® A2 (x) = L. Hence Ni' ® N, exists.
Since N (N%(2;)) = N¢'(A;) and Ty = 7; from Theorem 2.8(2) for i = 1,2, then N"(L;) € 7;
fori=1,2.

Suppose there exist x € X, A € LX such that
N{OR(A) 2 (NS &N ().
By the definition of Ny' @ N2, there exist A; with A; ® A, < A such that
N2 () 2 N2 (A1) ©N2) (A2).
On the other hand,

NETP) =VIp() [p <A, pe oD}
> VNS (M) ©NE(A2) | N (M) © NP (A2) < A, N (&) € 7}

It is a contradiction. Hence NJ'92 > NI @ N2.

Suppose there exist x € X,p € LX such that

NJC2(p) £ (NJ' @ N2)(p).

Then there exist p; = pj; © pjo with p;; € 7; such that

pj(x) £ (Ny' ©N&2)(p).-
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On the other hand, since N (pji) = pji(x),i =1,2, we have
(N @ N2)(p) > (N @ N:2) (py)
>N (pj1) ONS2(pj2) = pji(x) © pja(x) = pj(x)

It is a contradiction. Hence NJ'92 < N @ N2. Thus, NO' 92 < NI o N2,

(B)Let A € ™, DN, - Then A = \/jejlj with 7Lj = Afjl @)sz and lji € TN, I = 1,2. Thus,

Aj(x) = Aj1(x) © A (x) = (N1)x(Aj1) © (N2)x(A12)
<

j2(x) =
(N1 ®N2)x(4)) < A;(x).

Then A; = (N1 @ N>)(A)) for each j € J.

A=\ A=\ N () < NI\ 25) <\ A =2

jeJ jeJ jeJ jeJ
Hence 2 = Ny (1). So, A € Ty,an,.-
Let p € v en,- Then p(x) = (N1 ®N2)x(p) = (N1)x® (N2)x) (p) = VIN1)x(p1) © (N2)x(p2) |
p1©p2 < p}. Since (Ni)x((Ni)-(pi)) = (Ni)—(pi),i = 1,2, then (N;)—(pi) € T, So, p €

™, DN, -
Theorem 3.6. Let U and U, be L-quasi-uniformities on X. We define
U ®U; ={u e XX | uy Qup <u, uy € Up,up € Un}.

Then we have the following properties.
(1) Uy @ U, is the coarsest L-quasi-uniformity on X which is finer than U; and U,.
(2) rNYt @ rNY2 = rNU1OU2 gnd INU1  INY2 = [INV19U2,
(3) ’C{Jl @ T{JZ = Tlrh@Uz where
T(rjl @’L’(rjz ={A=M40|A¢€ T{Jl_,i =1,2}.

l I _ 2l
(4) T, © Ty, = W eu, where

’L'll]l@’b'll]z = {l =A0O0M ’ Ai € ’L'(l]i,l': 1,2}.

Proof. (1) (QUI) Txxx €U @ Uy because Txxx ® Txxx = I xxx for Txxx € Ui,i = 1,2.
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(QU2) If v <wuand v € Uy @ Uy, then there exist v; € U;,i = 1,2, with vi © vy < v < u. Thus
ueclU eU,.

(QU3) For every u,v € Uy & U, then there exist u;,v; € U;,i = 1,2, with u; ©up < u and
VIOV <v. Thusu; Qury ®vi ©@vy <u®v. Henceu ®v € Uy P U,.

QU4 If u € U; ®U,, then there existu; € U, i = 1,2, withu; Quy < u. Sinceu; € Ui = 1,2,
by (QU4), TA <u;,i=1,2. Hence T o < u.

(QUS) For each u € Uy ¢ Uy, there exist u; € U} and up € U, such that u; ©® uy < u. For each

u; € U;,i = 1,2, there exists v; € U; such that v;ov; < u;.

(1 ©v2) o (vi©w))(x,y)

= Veex (1 ©2)(x,2) © (vi ©v2)(z,¥))

= Vex((v1(x,2) ©v1(z,9)) © (v2(x,2) ©v2(z,y)))

< Veex ((V1(x,2) ©v1(2,)) © Vyyex (v2(x, w) ©va(w, y)))
= (viov)(x,y) © (v20v)(x,y)

an

S~— N~

= u1(x,y) Oua(x,y) < u(x,y).
Thus, there exists (vi ®vy) € Uy @ U, such that (vi ©@vy) o (vi ©vs) < u.

Ifu; €Uy, thenu; © Txyxx =uj suchthatu; € Uy, Txxx € Up. Hence u; € Uy D Ussie. Uy C
Uy @ U,. Similarly, Uy CU; @ U,. If U; CV and V is an L-quasi-uniformity, for u € U; & Uy,
there exists u; € U; such that u; ©up < u. Since u; € V, then uy Guy € V. Hence u € V. So,
UaeU,CV.

2)

(rNY" @ rNS?) (p) = Vaou<p Ny (1) © N> ()

= Vaeu<pi Viyev, S [x],2)} OV, er, S(ualx], ) } }

= Vaou<p i Vs ety uper, S x], 1) © S(ua[x], 1)) }}
<Viaeu<p iV ev, wmev, S [x] ©ua[x],A © ) }} (by Lemma 2.3 (3))
<Viaou<p Vi omeviau, S((1 ©uz)[x],A © u) }

< Viaou<p{ Vuev,aov, SUX],A O )}

<Viouzp N2 (A O p)

= rNgl@Uz(p)
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Suppose there exist x € X, p € LX such that
N (p) £ (rNS @ NS ().
Then there exist u € Uy & U, such that

S(ulx], p) £ (PN @ rN*) (p).-

Then there exist u; € U; with u; ® up < u such that
S((ur ©ua) ¥, p) = S(u1 [x], u2[x] — p) £ (rNy' @ rN>) (p).

On the other hand, since (uz[x] — p) ©uz[x] < p, we have

NS (p) = N (uax] — p) © rNY (ua )
> S(urlx],uzlx] = p) © S(uz[x], uz[x]) = S(ur[x], uz[x] = p) © T.
It is a contradiction. Hence rNY'%Y2 < yNY' @ rNY2. Thus, rNV1 Y2 — w NV @ rND2
Similarly, INY1%Y2 = INYT @ INP2.

(3)Let A € 7, © 17, such that A =V ey Aj. Then there exist A;; € 7,8 = 1,2 such that

(%) = 2j1 () © Ao (x) = N (A1) © rNE2(A12)
= rN{ @ N2 (A) < eNYYEP () < 4G ().

Then A; = rNJ 1OV (Aj) foreach j e J.

A=\ A=\ NI (R;) < hNDPU(\/ 1) <\ A=A
jeJ jeJ jeJ jeJ
Hence A = rNY'“%2(1). So, A € U,
Let p € 1)) 4, Then p(x) = rNy Y2 (p) = (rNy* @ rN) (p) = V{rNY (p1) © 7N (p2) |
p1Op2 < p}. Since rNY (rNY (p;)) = rNY (p;),i = 1,2, then rNY (p;) € T, So. p € T & 1.
(4) It is similarly proved as (3).

Example 3.7. Let (L = [0, 1],®,—) be a complete residuated lattice defined by

I, ifx<y,

y, otherwise.

XOYy=xAy, x—>y=
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Let X = {x,y,z} be a set and uy,uz,w € LX*X such that

I 05 05 I 06 038
up=1 06 1 0.6 up=104 1 04
03 03 1 05 05 1
1 05 05

w=uANup=1| 04 1 04
03 03 1
Define U; = {u € LX** | u > u;} for eachi=1,2.
(1) Since u; ou; = u;, U; is an L- quasi-uniformity on X for each i = 1,2. By Theorem 3.6(1),
Ui ®Uy = {u € X" | u>w} is an L- quasi-uniformity on X.

(2) Since rNJ (A) = Vuev, S(ui[x], 1), we have

PN (A) =V ey S, A) = A (x) A (0.6 = A(3)) A (0.3 = A(2)),
PNV (A) = Voey S, A) = (0.5 = A(x)) AA(y) A (0.3 = A(2)),
PN (A) =V ey Sz, ) = (0.5 — A(x)) A (0.6 = A(y)) AA(2).
PN (A) = Voey S, A) = 2(x) A (0.4 = A(y)) A (0.5 = A(2)),
NY2(A) = Ve Sy, A) = (0.6 = A(x)) AA(y) A (0.5 = A(2)),
PN (L) = V,yey S(ulz], 1) = (0.8 = A(x)) A (0.4 — A(») AA(2).

By Theorem 3.6(2), we have rNY' @ rNY2 = rNUV19U2 from:

NP2 (L) = S(wlx],A) = A(x) A (0.4 = A(y)) A (0.3 = A(2)),
rNIT2 () = S(wly], A) = (0.5 = A(x)) AA(Y) A (0.3 = A(2)),
NI P2 () = S(wlz],A) = (0.5 = A(x)) A (0.4 = A(y)) AA(2).

(3) Since INY (1) = V,,ey S(u[[x]], A), we have
ING () = Vaew S@lil], A) = A(x) A (0.5 = (7)) A (0.5 — A(2)),

= (0.6 = A(x)) AA() A (0.6 = A(2)),
INY(A) = Ver S]], A) = (0.3 = A(x)) A (0.3 = A(y)) AA(2).
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ING () = Vaew S@lil], A) = A(x) A (0.6 = A(7)) A (0.8 = A(2)),
INy*(2) = Vaew S@lD]],A) = (0.6 = 2()) AAK) A (0.6 = A(2)),
IN2(2) = Vaew S@llE]l.2) = (0.5 = A(x)) A (0.5 = A(y)) AA(2).

By Theorem 3.6(2), we have INY' @ INY2 = INV1®U: from:

IN2(2) = View S]], 2) = 2(0) A (0.5 = A7) A (0.5 = A(2)),
INY' 2 (2) = View S@lD]] 2) = (0.4 = A(x)) AL() A (0.4 = A(2)),

INS'2(2) = View S(ull2]], 2) = (0.3 = A(x)) A (0.3 = A(3)) AA(2).

(4) Since tj;, = {A € L* | A(x) = rNY (A),Vx € X} from Theorem 3.5, we have

p
A:Otx,

A(x) <0.6 = A(y),A(x) <0.3— A(2),
A(y) <0.5— A(x),A(y) <0.3— A(2),

A(z) <0.5 = A(x),A(z) <0.6 = A(z),

k = =

A€y iff

Aetl if

A(z) 0.3 = A(x),A(z) <0.3 = A(2),

A = ay,

A(x) <0.4— A(y),A(x) <0.5— A(2),
A(y) 0.6 = A(x),A(y) < 0.5 — A(2),
A(z) <0.8 = A(x),A(z) < 0.4 — A(2),

A€ Ty, iff

A = ay,

A(x) <0.6 > A(y),A(x) <0.8 = A(2),
A(y) <04 —A(x),A(y) <04 — A(2),
A(z) 0.5 = A(x),A(z) <0.5— A(z),

Aet iff
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r I .
By Theorem 3.6(3), we have T, & T, = Ty oy, from:

(
/X:ax,

A’ < T{}]@Uz l\/f

\

By Theorem 3.6(3), we have ’L'[l]l @ TllJz = ’L'll]1 s, from:

(2 = ay,

A(x) <0.5 = A(y),A(x) <0.5 = A(2),
A(y) <04 — A(x),A(y) <0.4 — A(z),
A(z) 0.3 = A(x),A(z) <0.3— A(z).

! .
A€ TUlEDUz lff
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