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Abstract. We investigate the Naimark-Sacker Bifurcation of the equilibrium of some special cases of the difference
equation

ﬁxnxn—l + yxi_l + 0x,
Bx,x,_1 —&—Cxﬁf1 +Dx,’

Xn+1 =

where the parameters 3,7, 8, B,C, D are nonnegative numbers which satisfy B+C+ D > 0 and the initial conditions

x_1 and xq are arbitrary nonnegative numbers such that Bx,x,_1 + Cx,zlf1 + Dx,, > 0 foralln > 0.
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1. Introduction and Preliminaries

In this paper we study the Naimark-Sacker bifurcation of the equilibrium of some special

cases of the difference equation
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Bxnxn—1+ yxﬁ_l + 0x,
Bxyx,_1+ Cxi_1 + Dx,,

. n=0,1,2,..., (1.1)

Xn4+1 =

where the parameters 3,7, 0, B,C, D are nonnegative numbers which satisfy B+C+ D > 0 and
the initial conditions x_1 and xq are arbitrary nonnegative numbers such that Bx,x, 1 + Cx,%f1 +
Dx;,, > 0foralln > 0.

Equation (1.1), which has been studied in [2, 3, 17], is a special case of a general second

order quadratic fractional difference equation of the form

AX2 + BxyXy—1 +Cx2_ | +Dxy+Exy_1 +F
ax2 + bx,x,_1 + cxrzl_1 +dx,+exy_1+f
with non-negative parameters and initial conditions such that A+B+C >0,a+b+c+d+e+

n=0,1,... (1.2)

Xn+l =

f>0and ax% 4+ bxpx,—1 + cx,%f1 +dxp+ex,—1+f>0,n=0,1,.... Several global asymptotic
results for some special cases of Eq.(1.2) were obtained in [9, 10, 11, 19].

The change of variable x,, = 1/u, transforms Eq.(1.1) to the difference equation

Du? , +Cu,+ Bu,,
Uy = LT =0, (1.3)

where we assume that d + 8 + ¥ > 0 and that the non-negative initial conditions u_ 1, ug are such
that 5u,2171 + Yuy + Bu,—1 > 0 for all n > 0. Thus the results of this paper extends to Eq.(1.3).

The first systematic study of global dynamics of a special quadratic fractional case of Eq.(1.2)
where A =C =D =a = c=d =0 was performed in [2, 3]. Dynamics of some related quadratic
fractional difference equations was considered in the papers [9, 10, 11, 19]. Complete linear
stabilty analysis of the equilibrium and the period-two solution of Eq.(1.1) was presented in
[17], where it was found that 10 special cases of Eq.(1.1) exhibit locally transition from local
attractor to the local repeller by passing through the critical non-hyperbolic case where both
eigenvalues of characteristic equation are complex conjugate numbers on the unit circle. See
Table 1-5 for the list of all special cases of Eq.(1.2), which exhibits this kind of local stability
character.

In this paper we will perform the Naimark-Sacker bifurcation analysis of some special cases
of Eq.(1.1), with mentioned local behavior, which are obtained when one or more coefficients

of equation are set to be zero.
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Now we consider bifurcation of a fixed point of map associated to Eq.(1.1) in the case where

the eigenvalues are complex conjugates and of unit module. For the sake of convinience we

include Naimark-Sacker bifurcation theorem, known also as Poincaré-Andronov-Hopf bifurca-
tion theorem for maps, see [6, 8, 20]:

Theorem 3.1. Let

F:RxR?>—=R?* (A,x) = F(A,x)

be a C* map depending on real parameter M satisfying the following conditions:

(i) F(A,0) =0 for A near some fixed Ao;

(ii) DF(A,0) has two non-real eigenvalues () and fi(A) for A near Ay with | (Ao)| = 1;
(iii) £ |w(A)] =d(h) #0at & = Ao
(iv) uk(Ao) # 1 fork =1,2,3,4.

Then there is a smooth A-dependent change of coordinate bringing f into the form
F(A,x)=F(2,2)+0(| x |°)

and there are smooth functions a(A), b(A), and ®(A) so that in polar coordinates the function

F (A,x) is given by
r () |r —a(A)r

= . 1.5
9 0+ o(A)+b(A)r? 43

If a(Ag) > 0 and d(Ay) > 0 (d(Ay) < 0), then there is a neighborhood U of the origin and
a 6 > 0 such that for |A — | < & and xo € U, the w-limit set of xg is the origin if A < Ay
(A > Ag) and belongs to a closed invariant C' curve T'(A) encircling the origin if A > Ag
(A < Ay). Furthermore, I'(Ag) = 0.

Ifa(Ady) <0andd(Ag) >0 (d(Ay) <O0), then there is a neighborhood U of the originand a § >0
such that for |A — Ag| < & and xo € U, then a-limit set of xg is the origin if A > Ay (A < Ap)
and belongs to a closed invariant C' curve T'(A) encircling the origin if A < Ay (A > Ag).
Furthermore, I'(A9) = 0.

Consider a general map F(A,x) that has a fixed point at the origin with complex eigenvalues

n(d) =a(A)+iB(A)and (L) = a(A) —iB (1) satisfying a(A)? +B(A)> = 1 and B(A) # 0.
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By putting the linear part of such a map into Jordan Canonical form, we may assume F to have

the following form near the origin

F(A,x) = aA) =P [n) | [&rlhxx)) (1.6)

BA) ad) ) \x 82(4,x1,x2)

Then the coefficient a(Ag) of the cubic term in Eq.(1.4) in polar coordinates is equal to

(1- 2#(%))ﬁ2(ﬁo)

1(2o) 11820 —1511!2+!§02|2 Re(fi(Ao)&21), (1.7)

&2 = {<gl)x|x| (81)xax, T 2(82)x1, + i(82)x1x1 — (82)x20, = 2(81)ia |}
S = {(gl)xlxl +(81)xm +1[(82)xm + (82)xml}
So2 = {(gl)ml (81)x22 = 2(82)mmy +i[(82) 513 — (82)320 +2(81)x1, ]}
&2 = {(81>x1x1x1 + (81)xmw T (82)x100x + (82)m200m2

+i [(g2>x1x1x1 +(82)x1000 = (81)xxi — (81)monmo] }-

TABLE 1. Equations of type (1,2)

Equation ‘ Equilibrium point Stability ‘ The eigenvalues ‘ w(do) ‘
: _ 1+i\/4B(B+3)+7
Xntl = anx,j:’:rngl X=4/ BLH a repeller for w(B) = 7"/2(311) ) |u(B)| = ,/%ﬂ +1
6>0,B>0 The eigenvalues{f(8),u(8)}
= _pm | - VACHL LAS for 8 < 2 §) = 4cs =1 (1-iv1s)
T T e #©) CB-+i\[CS(1CE+41/ACTT1+4) K& = {1
a repeller for ¢§ > 2 The eigenvalues {p(8), 1u(8)} & = %
a non-hyperbolic for ¢6 =2 [u(d) =1

The rest of the paper is organized into one section with two subsections where Naimark-
Sacker bifurcation analysis is performed for one equation of type (2,2) and one equation of type
(1,3). It will turn out that indeed both considered equations undergo the Naimark-Sacker bifur-
cation. The bifurcation analysis of the remaining two equations of type (2,2) will be performed
in the separate paper as these two equations exhibit both Naimark-Sacker bifurcation and also
period-doubling bifurcation, see [14, 15, 16]. We believe that in the case when these equations

undergo period-doubling bifurcation we can make our results global.
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TABLE 2. Equations of type (2,1)

Equation Equilibrium point Stability The eigenvalues ‘ u(do) ‘
| Xn+8xn Y V/B2+48+i \/B2+48 24288 \/
Xntl = L ,,,;g;ré X= /524546443 arepeller for §,6 >0 | u(d)= oy ;/(G\Ijﬁzi;i;)éﬁ 280 +h ju(o)| = \;l%fﬁ
The eigenvalues {1(8), u(8)}
= Pt | VP LAS for § < 272 5) = 45 &) =1(1-ivi5
et Gt * 2 o Y #o) i¢5(47<\/72+745+7)+76)+5 H&) =4 ( ' )
a repeller for § > 277 The eigenvalues {¢(8), ()} & =27
a non-hyp. for § = 2% [u(d) =1
2. Naimark-Sacker Bifurcation for Maps
2.1. The case x| = P25-14%% § o~ 0 B >0
n+ Cx%,ﬁ-xn » Y ) jtl
It is easy to see that equation
Xpyy = ot OT 0,1, (2.1)

2
Cx;_;+xn

has the equilibrium point

\/4C8+(B—1)2+B—1‘

e (2.2)

X =

In order to apply Theorem we make a change of variable y, = x, —X. Then, transformed

equation is given by

_ Etn) (BE+Y-)+S)
n+1 — C(f+yn_1)2+)€+yn —X. (23)

By using the substitution u,, = y,—1, v, =y, we write Eq.(2.3) in the equivalent form:

Un+1 = Vn

(2% +v,) (2Bx+ Bu,+0)
Vptl = - - —2X.
C(2x+up)?+2x+v,

Let F be the function defined by:

Y
(x+v)(B(x+u)+95) 7

C(5+u) > +5+v

F (u,v) =
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TABLE 3. Equations of type (2,2)
Equation Equilibrium point Stability Eigenvalues ()
Xng1 = 5%;‘24 x= W LAS for BB? > § u(s) = z\gﬁ);f 1(8) = H\/Z‘g#
arepeller for BB* < § A=4(Bi+x)?(BX+ (B+2)8) & = BB?
—(Bx+8)*>0
non-hyp. B% =§ The eigenvalues {1(8), ()} ()| =1
Yot = ﬁxcx;zz;ix = \/4c5+(ggl>2+b’—1 a LAS for ¢8 < 2(14 B) e (8) = % u(8) = 1;5;15
= (B+3)36+5)
arepeller ¢6 >2(1+f8) A= (CiB+C8)? SO:M
—4(Cx+1)2(B(CE—1) +2C8)
anon-hyp ¢c6 =2(1+ ) | The eigenvalues {p4(8),u—(8)} [n(8o)| =1
T | s -S| w1
3&% <45 or A=4(B+1)22 (Byi— (B+2)8) | T'=(4B+3)(4B+5)
§<202B+ 1)y +(Byi—8) & = (4B+2)p
saddle point for (o) =1
B>105< 8L
non-hyperbolic eq. for
(4b+2)y> =8 or
4(B+2)28 =3(B—1)y* | The eigenvalues {y(8),u—(8)}
repeller for
§>202B+ 1)y
S S P VY BN N S G (V)
and (3*71)&7*1) <$ A= (y—C8)? & = (7+2)(C27+1)
—4(C22 +2Cx+1) (2C5 —2y)
arepeller for A<Oforcd >y [1(do)| =1
5> %
a saddle for The eigenvalues {4 (8),u—(6)}
(3’%7307’” >0
a non-hyperbolic eq. for
SR g
§— (y+2)((:27+1)

Then F has the unique fixed point (0,0) and maps (—#,0)? into (—%, ). The Jacobian matrix

of F is given by

0 1
Jacr (u,v) = | (545) (B(Clt02y+8) 200+ (S4B(AD))  Clati) (64 (x+5)
(C(x+i)2+y+x)2 (Cx2+2C)Ex+C)EZ+y+)E)2
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Equation Equilibrium point Stability The eigenvalues ()
XnXn— '2, Sxn - 2 - . X
xppr = P PO g SRS | A for 6 < y(B +27) u(s) = Brpgie u(&) = YT

A=432 (Bx+28) — (Bx+6)* 8 =v(B+27)
arepeller § > (B +2y) I'=(B+37)(3B+57)

The eigenvalues {u(5),1(6)} [u(d) =1

anon-hyp. 6 = (B +2y)

TABLE 4. Equations of type (1,3)

Equation Equilibrium point Stability The eigenvalues ‘ ()
_ i - _ \/4B+4C+D2-D _ CiivA _20(D*+VT)
Kntl = BxpXy—1+Cx2_ +Dxy r= 2(B+C) LAS for 1(B) = 2(,f(3+lc)+D)2 1(Bo) = (|Dz,zc‘+D2)2
B> CXD" | A= 4(B+20)(X(B+C)+D)>~C? r'=-20?|D*-2C]|
A>0 —(p*—20)’
a repeller for
2_ 2 2 2
B<CD22CD Bo:chzcu
The eigenvalues {u(6), 1u(8)} if C—2D? > 0 then
a non-hyperbolic 1(By) = D2 iy/4c2 Dt w
2 _ 2
e (B =1
At (0,0), Jacr(u,v) has the form
0 1
Jo =JacF(0,0) = 2.5
0 (0,0) _CiB+B-2C5  C(5+B%) (2:5)
(Cx+1)? (Cx+1)?

The eigenvalues of (2.5) are 4 (0) where

£/ (CBE+C8)? —4(CE+1) (B(CF—1)+2C8) + CP7+C8

Hel9)= 2(Cx+1)?
Then we have that
FlY) = —cﬂ3+0ﬁ—2c5 C(S—Ii—ﬁx) e+ /i) , (2.6)
Y (Ci+1)* (Cx+1)2 v f2(6,u,v)
and
f1(8,u,v) =0
f(8,u,v) = (x:(‘)yz)—f-ﬁu(;_—:;)-l-_'—vé) L u(p (fg‘;:)l;zcs) - C(vc(fﬁ)g) .
Let
%:M- (2.7)

C
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_ 1+B [ 0 1
x= c andJo(1 g1 |-
B+2

The eigenvalues of Jy are p (&) and u(dy) where
B+

i/ (B+3)(3B+5)+1
2(B+2) )

For 6 = &y we obtain

u(do) =

The eigenvectors corresponding to (£(8) and p(8) are v(8y) and v(8y) where

([ B-i/(B+3)3B+5)+1
v(50)—< 2B+2) ,1).

One can prove that

(o) =1,
__BB+6)+7  i(B+1)\/(B+3)3B+5)
W) =g 2(B+2)2
3(8y) = C(B+DB(B+5)+11) i/ (B+3)(3B+5)(2 +3)
A= 2(B+2)7 2B +2)°
4(8y) = 17— (B=2)B(B(B+6)+10) i(B+1)\/(B+3)(3B+5)(B(B+6)+7)
H{o0)= 2(B+2) 2(B +2)* ’
from which follows that u*(8) # 1 for k = 1,2,3,4 and B > 0. Substituting § = & and ¥ into
(2.6) we get
u 0 1 u hy(u,v)
Fl | = + :
-0 4 0-)
and

hy(u,v) = f1(60,u,v) =0
C(—C(B+2)+u*(B+1)(Cv—B—2)+uwB(B+1)+v(B+1))

hy(u,v) = f2(6p,u,v) = — (B+2)(C(u(Cu+2)+v)+2CuB +B2+3B+2)

Hence, for 6 = §y system (2.4) is equivalent to

Upi 0 1 u, hi(tn,vn)
= + ) (2.8)
(Vn—H) ( —1 % ) (Vn) (h2(unavn))
Vn MNn

Let
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where

pr1 /(B3GR 0 |

P= ( A2y ) ) and P! = 2B+2) Bl
I 0 JBI0B)  VBBR)

Then system (2.8) is equivalent to its normal form

1 (B+3)(3B+5)
§n+l _ _2%—:4 - 2(B+2) gn LG gn
VEIEE  pet ’
Mn+1 2(B+2) 2B+4 Nn Nn

where
Let

By straightforward calculation we obtain that

& —2u(B+1)

gl(uav): 2(B+2) )
= — B+1 u,v
gZ(MﬂV)_ \/(ﬁ+3)<3ﬁ+5)g1( ) )a

where

Ay = (C (uB +u+vy/(B+3)(3B +5)) +2(B+1)(B +2)>
(C(B+1)+2u(B+1) (Cvi/(B+3)(3B+5) +2B(B+4)+8) + Cv*(B +3)(36+5))

8o =C* (¥ (B+1)*+2uv(B +1)\/(B+3)(3B +5) +*(B+3)(36 +5))

+4C(B+2) (u(ﬁ(ﬁ+3)+3)+v\/(ﬁ+3)(3ﬁ +5)(B + 1)) +4(B+1)(B+2)°
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and furthermore

C\/(B+3)(3B+5)(—B —3)+iC(B*+28—1)

§20(07O) = 4([3 +2)2\/(ﬁ+3)(3ﬁ +5)
BB (B BB
511(0,0) = 4(B+2)3\/(B+3)3B+5) ,
E(0,0) = C\/(B+3)(3B+5) (—B2—4B —5) +iC (B> +7B*+ 17 +13)
02\Y,V) = 4(ﬁ+2)3\/(ﬁ+3)(3[3 +5) 7
£1(0,0) = CPVBFIBEFS) (B2 +3P) +IC?P (3° + 2457 +57p + 40)
2185,9) = 8(B+1)(B+2)*/(B+3)(3B+5) |
Since
- C? 5)+5
m{m&ﬁmmﬁ%=4$ﬁ%&lgf
(1— 21 (A0)) A2 (A0) _CB+D)(B+4)BBB+5)+19)
Re< 1) 511(50)520(50)) — 8(B+2)4(B+3)(3B+5) (2.9)
_ C(B+1)(B+4) |
&11(80)&11(60) = 4(B+2)4(B+3)(3B+5)
_C*(B(B(B+T7)+18)+17)
&02(80)802(b0) = 4(B+2)3(B+3)3B+5)

then by using (2.9) and after lengthy calculation we obtain that

_ C3(B(B(2B+17)+43)+32)

A= BB B3

One can see that

(&) = n(8)u(d) = B(Cx—1)+2C5 _ Z(B (\/4C8+<B_1)2+5—3>+4C5)

)

from which we get

d VIC(B +2)

L Ju(d)| = ’
do (Vacs+(B=17+B+1) \/<4c5+(/3_1>2> (B(VACS+(B=177+B—3)+4C5)
which by substituting (2.7) simplifies to

dlu(9)| C
do

8= 5@ spre)

Thus we have proved the following result:
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!1. : : : t U . Y

FIGURE 1. Figures a) and b): Bifurcation diagram in (8 — x) plane for 8 =
2.2 and C = 3.1; Figure ¢): Phase portraits when 6 = 1.9, x_; = 1.6, xo = 2.1
(blue) x_; = 0.8, xo = 2.5 (red) Figure d): Phase portraits when 6 =2.7, x_| =
1.6, xo = 2.1 (blue) x_; = 0.8, xo = 2.5 (red).

Theorem 2.1. Let

502—2(1+B) and x = \/4C6+(ﬁ_1)2+ﬁ—1.

C 2C

Assume that C,0 > 0 and B > 0. Then there is a neighborhood U of the equilibrium point X and
a p > 0 such that for |6 — 8| < p and xp,x_ € U, the w-limit set of solution of Eq.(2.1), with
initial condition xo,x_ is the equilibrium point X if 8 < &y and belongs to a closed invariant

C! curve T'(8) encircling % if 8 > &. Furthermore, T'(8) = 0.

The visual illustration of Theorem 2.1. is given in Figure 1.
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2.2. The case x, | = anxn_1+)glx2_l+Dxn’ B,C,D >0
Equation
Xn
Xpil = , n=0,1,... 2.10
ntl Bx,x, 1+ Cx%i1 + Dx;, ( )

2
4(B+C)+D* 4D’
In order to apply Theorem we make a change of variable y, = x,, —x. Then, new equation is

has the equilibrium point X =

given by
X+, _
= —x. 2.11
It B(x+vy) (X+vy_1)+C(X+vp_1)2+D(X+vy) (211

By using the substitution u;,, = y,—1, v, =y, we write Eq.(2.11) in the equivalent form:

Upy1 ="Vn

F4v ) (2.12)

\% = — X.
" B4 u) (4 vn) +C X+ ttn) 2+ D (F+vp)

Define the map F as:

y
F(u,v) = o )
B(4u) (F4+v)+C(F+u) +D(F+v)

Then F has the unique fixed point (0,0) and maps (—#,0)? into (—%,0)?. The Jacobian matrix
of F is given by

0 1

B (v+7) (2C (u+3) +B(v+3)) C(u+x)*
(D(v45)+ (u+5) (Cu+x)+B(v+5)))*>  (D(v45)+(u+5) (C(u+x)+B(v+x)))*

At (0,0), Jacp (u,v) has the form

Jacr(u,v) =

0 1

B+2C C
(D+(B+C)%)>  (D+(B+C)%)?

Jo = JacF (0,0) = (2.13)

The eigenvalues of (2.13) are u(B) and u(B) where

B C+i\/4(B+2C) (X(B+C)+D)* -2
N 2(%(B+C)+D)*

1(B)

Y

since

C? —4(B+2C) (x(B+C) +D)* < 0.
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Now we have

u 0 1 u o,u,v
Fl")| = L [1Gww)) (2.14)
v . B+2C C " f (6 " V)
(D+(B+C)%)?  (D+(B+C)%) 235 %
and
f1(0,u,v) =0
x+v u(B+2C Cv _
f2(6,u,v) = — - = = + ( ) 2 - 2
(¥+u)(B(x+v)+C(X+u))+D(X+v) (%(B+C)+D)* (¥(B+C)+D)
Let
c(c-2p?
By = % and C —2D” > 0. (2.15)
For B = By we obtain
D 0 1
x= C and Jy = » lﬁ
C
The eigenvalues of Jy are p(By) and u(By) where
D> +iVA4C? —D*

The eigenvectors corresponding to u(B) and u(B) are v(By) and v(By) where

o(Bo) = (Dz—i\/4C2—D4’l) |

2C

One can prove that

|“(BO)| = 17

2 (By) = D* +iD2\/m_1
AR =50 22 ’

3 D®—3C*D* i(C*—D*)V4Cc?-D*
u (BO) = 3 - 3 )

2C 2C

4(By) = p® 2p* N iD*\/4C? — D* (D* —2C?) .

HB =50 204

from which follows that u¥(Bg) # 1 for k = 1,2,3,4.

Substituting B = By and X into (2.14) we obtain

u 0 1 u h(u,v
A (0 Y () (men),
v -1 £ v hy(u,v)
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and
hi(u,v) = f1(Bo,u,v) =0,

ha(u,v) = f2(Bo,u,v) =

- C3u?v +C?Du (Du? — 2Duv — Dv* +u) — CD? (u?(Dv + 1) — 2Duwv? +v?) + D2
B C(C?uv+D2(Cu(u—2v)+ 1)+ CD(u+v) +D3(—v))

Hence, for B = By system (2.12) is equivalent to

u 0 1 U hy(up,v
n+1 _ i n n 1( n n) ' (216)
Vn+1 —1 % Vn h2(unyvn)
Let
) _ én
Vn nn
where
D*  V4C?—D* 0 1
p=| ¢ 2 and P~! = )
1 0 2C D

VacZ-p*  \/ac2-Dp*

Then system (2.16) is equivalent to its normal form

D? VA4Cc2—pA

. D _VAC:-D*
5’““ - \/4§2C D4 D22C gn +P “Hp 5" ’
Nn+1 2C7 2C Nn Nn
where
u hi(u,v
o _ (u,v)
v ha(u,v)
Let
u u,v u
G _ (&) =P 'H|P
% g2(u,v) %

By a straightforward calculation we obtain that

Au,v)

Y(u,v)
D*A(u,v)

u,v)=— 9
g2(u,7) Y(u,v)V4C* — D*

g1(u,v) =
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where

A(u,v) = 8C*uv? +8C*Dv*(1 — 2Du) — 2C?D? (Du3 —Dw? +4u® + 4v2)
— D*v\/4C2 — D* (—4C** — 4CDu+ D’ (Du* + Dv* +4u))

+2CD° (2Du3 +2Dw?* + 5u® — vz) +D’ (f (Du3 + Duv? +2u® — 2v2)) ,

Y (u,v) = 2CD (2C* (Du* +2Dv* +2u) — 2CD (2D*u* + Du—2) + D’ (u* —v?))

+4Cv\/4C? — D* (C*u+C (D —2D*u) + D*u) .
By Mathematica aided calculation we obtain that

(C—D?) (CVACT=DF + D2V/4CT ~D* +iCD? ~ iD*)

20(0,0)=~ 4CDVACT—D*
(c—p?)* (VAT =DF - ip?)
00 = e vae b
(c—D?) (~D*VACT =D + CD? (VACT=DF — iD?) + C? (VACT = D — 3iD? ) +iD°)
802(0,0) = — 4C2DV4C? —D*
(C—20?) (6iC° ~ 2D*V4CT — DF + 3CD?VAC? — D — SiCD* +2iD°)
1(0,0)= 8CD?\/4C?—D* ‘

Now we have

o2 2
Re <m521(30)> € 2D8)CS2C )

Re((l—ZH(Bo))ﬁz( 0 e (80)En (8 )) (c—p?)’ (3¢*+4cD? — D)

(A0) 16C3D? —4CDS
o (2.17)
E11(Bo)E11(Bo) = 1C2D2 —D°
— (C=D*?(C?+20C*D? +CD* — DO
S02(Bo)S02(Bo) = ( ) E6C3+D2— 4C;ra 8

By using (2.17) after lengthy calculation we obtain that

C3 —10C2D?* +9CD* — 2D°
a(B()) = > 0.
8C (D2 —-20)
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One can see that

uB)P =pBuB =212 _ Brae
(¥(B+C)+D) 2(B+C) D
4(B+C)+D?*+D

from which we obtain

D> <\/4(B+C) +D? +D) —2C\/A(B+C)+D?+2BD
JB+20)(4(B+C) 1 D?) (\/4(B+C) D2 +D> <D <\/4(B+C) T D2 +D) +ZB+2C> ’

d
%\M(B)’ =

which in view of (2.15) yields

d|u(B)] p*

a5 B =50 (D2 —2C)

<0.

Thus we have proved the following.

10 E i r
c) d)

FIGURE 2. Figures a) and b): Bifurcation diagram in (B — x) plane for C = 3.6
and D = 0.5; Figure c): Phase portraits when B = 33.6, x_1 = 0.5, xo = 0.5
(blue) x_; = 1.5, xo = 1.0 (red) Figure d): Phase portraits when B = 60.6, x_| =
0.5, xo = 0.5 (blue) x_; = 1.5, xog = 1.0 (red).



NAIMARK-SACKER BIFURCATION OF A CERTAIN SECOND ORDER DIFFERENCE EQUATION 1041
Theorem 2.2. Let

C(C—2D? D
30:%7 C—2D2>Oand)E:E

Then there is a neighborhood U of the equilibrium point X and a p > 0 such that for |B— By| < p
and xy,x_1 € U, the ®-limit set of a solution of Eq.(2.10), with initial condition xy,x_1 is the

equilibrium point % if B > By and belongs to a closed invariant C' curve T'(B) encircling % if

B < By. Furthermore, I'(By) = 0.

Visual illustration of Theorems is given in Figure 2. Based on our simulations we pose the

following.

Conjecture 2.1. In both considered equations the equilibrium is globally asymptotically stable

whenever is locally stable.

3. Conclusion

In this paper we have found normal forms and performed bifurcation analysis for two special
cases of Eq.(1.1) for which the local stability analysis indicates the possibility of Naimark-
Sacker bifurcation. Indeed, we found the regions of parameters where Naimark-Sacker bifurca-
tion occurs showing in such a way the presence of a locally stable periodic solution of unknown
period. We conjectured that the equilibrium is globally asymptotically stable in the complement

of the parametric region where Naimark-Sacker bifurcation occurs.
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