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Abstract. In this paper the prediction problem is studied under members of a class §* of multivariate
distributions, constructed by AL-Hussaini and Ateya [7—8]. More attention is paid to bivariate compound

Rayleigh (BV CR) distribution, which is a member of this class, as illustrative example.
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1. Introduction

Suppose that a class & of distribution functions is of the form

3 :{F . F = Fyje(z|0) = 1 — exp[—06\,(2)],

(1)
0<a<z<b<oo (6,0 >0,(0,0n) EQ)},

where a and b are non-negative real numbers such that ¢ may assume the value zero and

b the value infinity, A, (z) is a continuous, monotone increasing and differentiable function

*Corresponding author
E-mail addresses: ekalh2011@yahoo.com (E. K. AL-Hussaini), said_f_atya@yahoo.com (S. F. Ateya)

Received February 20, 2012
967



968 ESSAM K. AL-HUSSAINT' AND SAIEED F. ATEYA®®*

of x such that A\, (z) - 0 as x — a™, \,(x) = oo as  — b~ and 7 is a parameter (could
be a vector), (0,0,n) belongs to a parameter space € . This class covers some important
distributions such as the Weibull, exponential, Rayleigh, compound Weibull, compound
exponential (Lomax), compound Rayleigh, Pareto, power function, beta, Gompertz and
compound Gompertz distributions, among others. The failure rate and survival functions
corresponding to F' € & are, respectively, 50/\;7(@ and e=%*(®) o that the probability

density function (pdf) is given, for 0 < a < z < b < oo, by
, d
(2) fxje(z]0) = 66)\77(95)6110]9[—95/\”(@], /= e

The class & was used by AL-Hussaini and Osman [9], AL-Hussaini [4], Ahmad [1 — 2],
Ahmad and Fawzy [3], AL-Hussaini and Ahmad [5 — 6] and Jafar et al [12].

1.1. A Class of multivariate distributions

AL-Hussaini and Ateya [7 — 8] constructed a class of multivariate distributions by com-
pounding members of the class & with the gamma distribution. The resulting multivariate
distributions form a class %, given by
J* = {F* = Fx(x) = ffx(u)du},
where [ = [7 .. [, w = (uy, ..., up), du = dug...duy and fx (x) is the pdf of the random
vector X = (X1, ..., Xy), given by

bl

) = F(?(—jz)k) {QCM(%)] [1 + gcm (xi)} et

(3)

¢ =0;/8,0<a<x;<b<oo,i=1,2..k.
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It was assumed that © is a positive random variable following the gamma(«, ) distri-

bution with pdf ge () given by

(4) ge(0) = %00‘1659,9 >0,(a>0,8>0).

The pdf fx(x) in (1.3) was obtained by writing

fx (@) = /0 h [li in@(a:iW)} g0 (0)d0.

Maximum likelihood and Bayes estimation of the parameters of members of the class 3*
were obtained by AL-Hussaini and Ateya [7 — 8] and particularly when the underlying
population distribution is bivariate compound Weibull or bivariate compound Gompertz.

In this paper, the prediction problem is studied under members of class &*. More
attention is paid to bivariate compound Rayleigh (BVCR) distribution as illustrative

example.

1.2. Generation of a multivariate random sample of size n from

the class &*

Knowing that Fy,e(z;]0) = 1 —exp[—0;\,, (z;)] and go(0) = 520>~ 'e~#? /T'(a), an ob-
servation z;; is obtained by first generating 6, from Gamma(a, ), w; from Uniform(0,1)
and then setting z;; = )\;il < —(In ui)/ejéi) ,J=1,2,...,n,i=1,2,...,k. This is repeated

until we obtain the required multivariate random sample.
1.3. One-sample prediction

Suppose that X; < Xy, < ... < X, is the informative sample, representing the first r
ordered lifetimes of a random sample of size n drawn from a population with probability
density function (pdf) fx(z), cumulative distribution function (cdf) Fx(z) and reliability
function (rf) R(z). In one-sample scheme the Bayesian prediction intervals (BPI) for
the remaining unobserved future (n —r) lifetimes are sought based on the first r observed

ordered lifetimes.
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For the remaining (n — ) components, let Yy = X, denote the future lifetime of the
h

s'" component to fail, 1 < s < (n —r). The conditional density function of Y; given that

the r components had already failed is

(5)  91(ys10) o< [R(zy) — R(ys)]® VIR(ys)]" " [R(@)] ™" fx(ys] 0), s > 2y,

0 is the vector of parameters.

The predictive density function is given by

(© il ) = [ 9100107 (6]2)d6. . > 1,
)
7*(0|x) is the posterior density function of € given & and « = (xq, ..., x,).

A (1 —7) % BPI for y; is an interval (L, U) such that

(7) P(YS>L|CB)=/ g’{(ys|:c)dys:1—%,L>a:T,
L

®) P, > Ule) - |

. T
91 (ys| x)dys = oX U > z,.
U

By solving equations (7) and (8), we get the interval (L, U).
1.4. Two-sample prediction

Let X; < Xo < ... < X, and 7y < Zy < ... < Z,, represent informative (type II
censored) sample from a random sample of size n and a future ordered sample of size

m, respectively. It is assumed that the two samples are independent and drawn from a
population with (pdf)fx(x), (cdf)Fx(x) and (rf)R(x).
Our aim is to obtain the BPI for Z,,s = 1,2,...,m. The conditional density function

of Z,, given the vector of parameters 0, is
(9) g2(2518) o< [1 = R(z,)] " V[R(20)]"™ " fx (2] 0), 2 > 0,

0 is the vector of parameters.

The predictive density function is given by

(10) (2] @) = /@ 0(22] 0)7* (6] ), 2 > 0,
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7*(@|x) is the posterior density function of @ given & and = (1, ..., x,).

A (1 —17) % BPI for z, is an interval (L, U) such that

(11) P(Z;> Llz) = / G5 (zs|x)dzg =1 — %,
L
(12) P(Z, > Ulz) = / g3 (=l @)dz = <
U

By solving equations (11) and (12), we get the interval (L, U).
2. Baysian prediction intervals for future bivariate observations

The main goal in this section is to study the one-sample and two-sample prediction
problems in case of bivariate informative observations.

While ordering a set of univariate random variables is a clear and straight-forward
matter as it can be done by simply ordering the set of random variables, such ordering is
not as clear if we are dealing with a set of random vectors.

Barnett [10] classified the principles used for ordering multivariate date into four prin-
ciples : marginal, reduced (aggregate), partial and conditional (sequential) ordering. An
interesting detailed discussion of such principles with illustrative examples are given in
Barnett’s paper.

In our paper, we wish to predict bivariate random vectors. The first components of the
predicted random vectors are based on the ordered first components of the informative
sample, as is done in the univariate case. To predict the second components, we compute
the norms of each vector of the informative sample, order the norms and then predict the
future norms as is done in the univariate case. The relation between the components of
vectors and norms enables us to obtain the second components of the predicted vectors.
In other words, we obtain the second component of a predicted vector from the knowledge

of the values of the first component and the norm of the vector.

2.1. One-sample prediction
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Let (X1,Y1), ..., (X,, Y,) be the first  bivariate informative observations from a random
sample of size n of bivariate observations. Suppose that the first components of such
informative vectors are ordered, that is X; < Xy < ... < X, and that their norms are
given by 21, Zs, ..., Z,.

To obtain BPI's for the remaining future vectors, denoted by (X7, Y7),..., (X} ., Y.* ),

where X7 < X5 < ... < X we apply the following

n—r

and norms 2} < Z; < ... < Z;

n—r

steps:

(1) based on ordered 7y, Zs, ..., Z,, denoted by Zi.., Zo.y, ..., Zy, compute the BPI's
for Z¥, s =1,2,...,(n —r), say (L5, Urs),

(2) based on X; < X3 < ... < X, compute the BPI's for X}, s =1,2,...,(n —r), say
(Las, Uas),

(3) from (1) and (2), compute the BPI's for Y}, s = 1,2, ..., (n —r) which are ([L%, —
L2 )Y2, U2 — U2]Y/?). This is true, since 2 = (22 + y*2)1/2,

(4) from (2) and (3), the BPI's for (X}, Y),s =1,2,...,(n — ) is
(Las, [L3, — L3)Y?), (Uns, (UL, — U ]').

2.2. Two-sample prediction

In this case the first r bivariate informative observations (Xi, Y1), ..., (X, Y,) from a
random sample of size n is such that X; < X3 < ... < X, with norms 71, 2>, ..., Z,. An
independent future sample of size m is (X7, Y}, ..., (X}, Y.), where X] < XJ < ... < X,

and norms 7} < Z; < ... < Z* . To obtain the BPI's of the future sample, we apply the

following steps:

(1) based on ordered 7y, Zs, ..., Z,, denoted by Zy.., Zo.r, ..., Z., compute the BPI's
for Z¥ s =1,2,...,m, say (L5, Uss) ,

(2) based on X; < Xy < ... < X, compute the BPI's for X¥ s = 1,2,...,m, say
(Las, Uss),

(3) from (1) and (2), compute the BPI's for Y, s = 1,2,...,m which are ([L3, —
L3)'V2, (U7, = UR]'?) .
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(4) from (2) and (3), the BPI's for (X!, Y.}),s=1,2,....m
is (LQSa [L%s - L%s]1/2>’ (UQSa [UIQS - U225]1/2)'

3. One-sample prediction in case of (BVCR) distribution

If, in (3), k = 2,\,(x) = 2%\, (y) = y*,01 = 62 = 1 so that ¢; = ¢, = 1/ = ¢, then
(X,Y) has a bivariate compound Rayleigh (BVCR) pdf, given by

(13) fxy(ey) =da(a+1)Eay[l+c@@®+ )] a2 >0,y > 0.
The marginal pdf’s of the random variables X and Y are given, respectively, by

(14) fx(@) =2acx [l +ca?]" @) 2 >0,

(15) fry) =2acy[l+cy’] ) y > 0.

In this section we apply the steps given in Subsection 2.1.

Step 1

The norm Z of the vector (X,Y) is given by Z = (X2 + Y?)¥/2. In APPENDIX A

the pdf and hence cdf and rf are derived. Such functions are given by

(16) fz(2) =2a(a+1)E2[1+ 2?7 2 > 0,
(17) Fr(z) =1—ac2? 14?7 — 14+ ¢2%7, 2 > 0,
(18) R(z) = acz?[1 4+ c¢2®]7@) £ [1 4 ¢2?]7%, 2 > 0.

From (16) and (18), the conditional density of Z¥ given (¢, «) is obtained ( see APPENDIX
B ), as

(19 g1(zf| ¢, a) o Z Bijiscaf (a4 1) 22CGR=DT8) (1 4 ¢ pr2)moki—hiti—a=2

2(ko—1 2 \—ako—ko+l
.ZT':(T ) (1 _'_CZT':'I") ?
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where

&858 o))

i=0 j=0 =0 i J l
ki=n—r+i—sk=s—i—(n—r)—Lki=1—j—1lLki=—75—1.
Suppose that the prior belief of the experimenter is given by the pdf
(e, a) = mi(cla) m(a), cla ~ Gamma(cy, o) and o ~ Gamma(ca, cs).

So that
(20) 7T(C, Oé) o a61+62—1 Ccl—l e—a(c+63).

The likelihood function of (¢, «) given Z.,, ..., Z,... is given by

L(c, a2y, oovy Zrp) < [R(20)]" 7" H f(z)

i1=1
(21> r 3 r —(a+2) n—r n—r
=2"a" *(a+1) ( H zh) (H(l + czfl)) Z ( )a”_r_llc”_T_ll
i1 i1 151 l

22(71*7‘*11)(1 + ngzr)fa(nfr)f(nfr)+l1.

rr
Since the posterior density 7*(c, |21y ..., 2rp) X w(C, @) L(c, |21, ..y 20y ), 1t follows,

from (19) — (21) that
g1(z5] e, )T (¢, af 21, ooy Zpy) AZszlsll ntrter—j=l-h

r 3 r —(a+2)
O{n+01+82*j*lfl1fl<Ck + 1>T+1 (Hzil) <H<1 + CZi)) Z:(Z(klf]’)+3)

i1 i1

(22)
(1 +CZ*2)—ak1—k1+j—o¢—2 ZQ.(s—i—h—l—l) (1 + 022. )—oc (s—i—1)—s+i+l1+1+1
exp|—ac — acgl,

where A is a normalizing constant and

* n—r
§ : E E j,l,s L — »J,Z,S ( ) .

11=0 I

It then follows, from (6) and (22) that the predictive density function of Z¥ is given by

(23) 91 (22 21y ey Zpr) :/ / g1(z2| e, )™ (¢, ] 21,0y oovy 2 )de dr.
o Jo
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To obtain (1 — 7) % BPI for Z*, say (Lis,Uis),we solve the following two nonlinear

equations, numerically,

(24) P(Z: > Llsl Z1irs -~-azr:7") - / QT(ZQ Zliry voes Zr:r)dz;k =1- %7 Lls > Zpory
Ll.s
(25> P(Z: > Uls| Bl ---727":7“) - / g;(z;kl ARSRET Zr:r)dZ: = %a Uls > Zpp-
Uls

Step 2

By using the pdf (14) and its cdf, the predictive density function of X} can be written as

follows

(26) gl (x| zy, .y xy) :/ / g1(z| ¢, )7 (e, | 21, ..., . )de day,
o Jo
where

s—1 T
g1(z%| ¢, )™ (¢, | 21, oy ) = Ay Z B; s ¢ttt (H %‘1)
i=0 i1

(27) ! —(a+1) ' |
(H(l + cxfl)) o (1+ chZ)(*a (n—r+i—s+1)-1) (1+ca?)™ (s—i—1)

i1

exp|—ac— acgl,

s—1
where A; is a normalizing constant and B; ; = (—1)" < >
i

To obtain (1 — 7) % BPI for X7, say (Las, Uss),we solve the following two nonlinear

equations, numerically,

[ee)
(28) P(X! > Log|xy, ..., x,) = / g1 (@i xy, .z )dal =1 — g,Lgs >z,
Las
(29) P(X: > Uyl xy, ..., zp) = / gi(xi| z1,y ey )dals = %,UQS > X
Uss

Step 3
From steps 2 and 3, a (1 — 7) % BPI for Y} is ([L?, — L3,]V?,[U?, — U]'/?).

4. Two-sample prediction in case of (BVCR) distribution
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In this case we apply the steps in Subsection 2.2 as follows
Step 1

Substituting from (16) and (18) in (9) and then using (20) and (21) we can write

*k

92(2:| c, 04)71'*(0, O./’ Pl e Zr:r) — A Z BZj,s,m Cn+r+01—l1+k—j+1

r 3 r —(a+2)
an+01+62+k7]711 (Oé + 1)r+1 (H Zil) (H(l + czi)) Z;s(2(kfj)+3)

(30) - .
(1 + CZ;«Q)—ak—k—i-j—a—Q Zr2~(rn_r_ll) (1 + Czir)_a (n—r)—(n—r)+i
exp[—ac— acsl,

where

= sol konor s—1 k n—r
Z: Z 7BZ],s,m_( 1)1( )()( )7k:m_8+i7
=0 j=01=0 i J I

and A is a normalizing constant.

It then follows that the predictive density function of Z7 is given by

(31) G5 (25| 21y eovy Zror) :/ / g1(22| e, )™ (¢, e 210y oovy 2 )de dor.
o Jo

To obtain (1 — 7) % BPI for Z, say (Lis,Uss),we solve the following two nonlinear

equations, numerically,

32 P(Z; > Ly Rlipsy »eey Brip) = g* z, Rlipy «eos Brir dz; =1 — Z7L18 > 0,
s 2\~s s 2
Lis
(33) P(Z: > Uss| 210y ooy Zrr) = / G5 (22| 21y oovy 2 )d2s = g, Ups > 0.
Uis

Step 2



BAYESIAN PREDICTION UNDER A CLASS OF MULTIVARIATE DISTRIBUTIONS 977

Using the pdf (14), its cdf and the same prior as in (20) the predictive density function of
X7 is given by

(34) gy (@i @1, .y ) :/ / go(zi| e, )™ (¢, o] @1, ..., . )de da,
o Jo
where

s—1 r
Gzt e, )T (¢, o @y, ey ) = Ay Z B; st patetr (H xil)
1=0 i1

r —(a+1)
(35) (H(l i szzl)) 2t (1+ CI:Q)(—a(m—H—s—H)—l) (1+ sz)—a(n—r)

i1
exp|—ac — acgl,

where A; is a normalizing constant and

To obtain (1 —7) % BPI for X}, say (Las, Uss),we solve the following two nonlinear

equations, numerically,

(36) P(X! > Log|xy,...,x,) = / g (i xy, @y )des =1 — g,LQS > 0,
LQS
(37) P(X* > Und| 21, 2y) = / G o0yt ) = T Uy >0
U2s

Step 3

From steps 2 and 3, a (1 —7) % BPI for Y is ([L?, — L3,]/% [U2 — UZ]'?).
5. Numerical example

In this section we follow the steps

(1) given the set of prior parameters, generate the parameters (c, a),
(2) using the generated population parameters, generate a bivariate random sample

of size n, say (X1,Y1),...,(X,,Y,) as shown in subsection 1.2
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(3) follow steps in Subsections 2.1 and 2.2.

In Tables (1) and (2) 95% BPI's are computed in case of the one- and two-sample

predictions, respectively, with the same parameters ¢, , hyperparameters cy, co, c3 and

using informative samples of different sizes, r.

Table(1):One-Sample prediction: 95 % BPI's for Z*, Y and X*, s =1,2,3.

r |cg=1.0,c0 =1.5,c3=2.0 P4 25 23
c=13,a=0.76
Coverage Percentage 97.43 98.65 98.97
10 BPI (3.9064,5.6565) | (4.4398,6.6373) | (4.8985,7.8809)
BPI Length 1.7501 2.1975 2.9824
Coverage Percentage 96.33 97.42 97.99
20 BPI (3.8761,5.4953) | (4.4523,6.4451) | (4.8723,7.1942)
BPI Length 1.6192 1.9928 2.3219
Coverage Percentage 95.80 96.12 96.87
45 BPI (3.7670,4.8779) | (4.3687,6.1819) | (4.7585,6.8615)
BPI Length 1.1109 1.8132 2.1030
r ] x5 T3
Coverage Percentage 96.11 98.41 98.84
10 BPI (2.4110,3.0393) | (2.7269,3.7051) | (3.1654,4.4564)
BPI Length 0.6283 0.9782 1.2910
Coverage Percentage 95.88 96.23 97.16
20 BPI (2.3720,2.9688) | (2.5971,3.4690) | (3.0912,4.1933)
BPI Length 0.5968 0.8719 1.1021
Coverage Percentage 95.41 95.92 96.10
45 BPI (2.2891,2.7694) | (2.4870,3.2379) | (2.9714,3.9531)
BPI Length 0.4803 0.7509 0.9817
r yi Y2 Y5
Coverage Percentage 97.40 98.04 98.67
10 BPI (3.0736,4.7706) | (3.5036,5.5069) | (3.7389,6.4999)
BPI Length 1.6970 2.0033 2.7610
Coverage Percentage 96.89 97.08 97.68
20 BPI (3.0655,4.6243) | (3.6164,5.4319) | (3.7661,5.8457)
BPI Length 1.5588 1.8154 2.0796
Coverage Percentage 95.88 96.50 97.12
45 BPI (2.9917,4.0155) | (3.5917,5.2661) | (3.7167,5.6083)
BPI Length 1.0238 1.6744 1.8916
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Table(2):Two-Sample prediction: 95 % BPI's for Z*Y* and X}, s =1,2,3.

r |c=1.0,c0=15c3=2.0 2y 25 23
c=13,a=0.76
Coverage Percentage 96.98 97.78 98.65
10 BPI (1.4319,2.1823) | (2.2627,3.4651) | (3.3804,5.2912)
BPI Length 0.7501 1.2014 1.9108
Coverage Percentage 95.79 96.45 97.03
20 BPI (1.4053,2.0401) | (2.2816,3.1608) | (3.2239,4.5159)
BPI Length 0.6348 0.8792 1.2920
Coverage Percentage 94.98 95.14 96.39
45 BPI (1.7919,1.9721) | (2.2502,3.0318) | (3.1705,4.1634)
BPI Length 0.1801 0.7816 0.9925
T 7 x5 T3
Coverage Percentage 97.53 97.99 98.36
10 BPI (0.8941,1.2541) | (1.3730,1.9512) | (2.1106,2.9016)
BPI Length 0.3601 0.5782 0.7910
Coverage Percentage 96.55 96.98 97.13
20 BPI (0.8714,1.2152) | (1.2537,1.6696) | (2.0943,2.7255)
BPI Length 0.3438 0.4159 0.63111
Coverage Percentage 95.81 96.30 97.03
45 BPI (0.8680,0.6083) | (1.2301,1.6013) | (2.0805,2.5665)
BPI Length 0.2403 0.3709 0.5861
r yi Y Ys
Coverage Percentage 98.63 98.70 99.49
10 BPI (1.1184,1.7859) | (1.7985,3.2524) | (2.6405,4.4264)
BPI Length 0.6676 1.4539 1.7840
Coverage Percentage 97.97 98.13 99.01
20 BPI (1.1025,1.6387) | (1.9062,2.6839) | (2.4510,3.6011)
BPI Length 0.5362 0.7776 1.1496
Coverage Percentage 96.78 96.90 97.62
45 BPI (1.0681,1.5677) | (1.8842,2.5744) | (2.3924,3.2783)
BPI Length 0.4816 0.6902 0.8859

6. Concluding remarks

979

In Tables (1) and (2) we take different sizes for the informative sample, 10, 20 and 45

and predict the first three future observations .

In these tables, we observe that
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(1) The length of the BPI's and the number of samples which cover these intervals
increase by increasing s and decrease by increasing the informative sample size.
(2) The results become better as the informative sample size r gets larger.
(3) In all cases, the simulated percentage coverages are at least 95%.
(4) There is no particular reason for choosing the hyperparameters (cy, co, ¢3) as (1, 1.5, 2).
(5) If the hyperparameters are unknown, they can be estimated by using the empirical

Bayes method [see Maritz and Lwin[13]] or the hierarchical method [see Bernardo

and Smith[11]].

APPENDIX A

Proof of equations (16)-(18)
From the joint density function of the random variables X and Y which is given by (13)
and using the transforms X = Zcos© and Y = Zsin © we get the joint density function

of the random variables Z and O in the form

fre(z,0) =4a(a+1)c?2* sinf cosO[1+ ¢z 2> 0,0 <0 < 7/2. (A1)

Integrating (A.1) with respect to 6, we get the density function of Z as in (16).
The (cdf) of the random variable Z is given by

Fz(z) =2a(a+1) 02/ P [1 4 cu?]~ T2 g, (A.2)
0

The cdf (17) is obtained by integrating by parts the integral in (A.2). The rf is then
obtained as in (18), since R(z) =1 — Fz(2).

APPENDIX B

Proof of equation (19)
From (5), (16) and (18) we have

S S

S

g1(z2]e, @) x[R(zrr) — R(z0)]1C VRGO IR(2,)]) "7 f2(20)

(1) ( 7 )[Mz;*)]”‘“s“ Rlen )]0 (), (B.)

7 7
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where the reliability function R(z), given by (18) yields

k

R =Y (k) chigh=i 2= (1 4 ¢ p2) =kt (B.2)

=0

Using (B.2) and (16) in (B.1) we get (19)
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[10]

[13]
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