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Abstract:  Consider the system of second order differential equations 

Lݕሺݔሻ ൅	 ଶܴሺݔሻݕሺݔሻ ൌ 	0 

where ݔ	ሺܽ, ܾሻ, ܽ, ܾ finite or infinite; , ܽ complex parameter and ݕሺݔሻ ൌ 	 ሺݕଵሺݔሻ, ሻሻݔଶሺݕ
்,  

ܮ                  ൌ ൬
ଶܦ ൅ ሻݔሺ݌ ሻݔሺݎ

ሻݔሺݎ ଶܦ ൅ ሻݔሺݍ
൰, ܦଶ ൌ

ௗమ

ௗ௫మ
, ܴሺݔሻ ൌ 	 ൬

ሻݔሺݏ 0
0 ሻݔሺݐ

൰, 

,ሻݔሺ݌ ,ሻݔሺݍ ,ሻݔሺݎ ,ሻݔሺݏ ,ሻ are all assumed to be real-valued functions summable on ሺܽݔሺݐ ܾሻ. 

In this paper we determine the resolution of the identity of the operator ܮ஺ generated by the matrix differential 

operator ܮ  under the general boundary conditions where ݏሺݔሻ, ሻݔሺݐ  are assumed to be greater than zero for 

,ሺܽ	ݔ ܾሻ, ܽ, ܾ being finite or infinite. 

Keywords: Parseval theorem; Bessel's inequality, mean convergence theorem; functions of bounded variations. 
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1. INTRODUCTION 

Consider the system of second order differential equations  

ሻݔሺݕܮ ൅	ଶܴሺݔሻݕሺݔሻ ൌ 	0       (1) 

where 

		ܮ	 ൬
ଶܦ ൅ ሻݔሺ݌ ሻݔሺݎ

ሻݔሺݎ ଶܦ ൅ ሻݔሺݍ
൰, ܦଶ ≡

ௗమ

ௗ௫మ
ሻݔሺݕ  ,  ൌ 	 ሺݕଵሺݔሻ, ሻሻݔଶሺݕ

், ܴሺݔሻ ൌ 	 ൬
ሻݔሺݏ 0
0 ሻݔሺݐ

൰,(2) 

,ሻݔሺ݌ ,ሻݔሺݍ ,ሻݔሺݎ ,ሻݔሺݏ ,ሻ are all assumed to be real-valued functions summable on ሺܽݔሺݐ ܾሻ, ܽ, ܾ 

finite or infinite and  is a complex parameter. 

The boundary conditions at ܽ, ܾ  satisfied by a solution ܷሺݔ, ሻ ൌ ሺ ଵܷሺݔ, ሻ, ܷଶሺݔ, ሻሻ்  of the 

equation (1) are  
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ൣܷሺݔ, ሻ, 
௜
൧ሺܽሻ ൌ 	0, ܷሺݔ, ሻ, 

௝
ሺܾሻ ൌ 	0      (3) 

݅= 1, 2; ݆= 3,4, where 
௟
ൌ 	

௟
ሺݔ, ሻ, ݈ ൌ 1, 2, 3, 4, called boundary condition vectors, are the 

solutions of (1) which together with their first derivatives take some prescribed values at ݔ ൌ

ܽ, ݔ ൌ ܾ and [. , .]() is the value at ݔ ൌ 	 of the bilinear-concomitant [., .]. (See Sengupta [10]). 

The boundary condition vectors 
ଵ
, 

ଶ
 at ݔ ൌ ܽ and 

ଷ
,

ସ
 at ݔ ൌ ܾ are linearly independent of 

each other and moreover if  

             [
ଵ
, 

ଶ
](	ܽ) = [

ଷ
, 

ସ
](ܾ) = 0.       (4) 

then the boundary value problem (1)—(3) leads to a self-adjoint eigenvalue problem over the 

interval (ܽ, ܾ) (see Chakravarty[3]). 

For the system (1) with s(ݔሻ ൌ ሻݔሺݐ ൌ 1 the resolution of the identity of the operator L was 

investigated by Chakravarty and Roy Paladhi [5]. 

 In this paper we consider the boundary-value problem (1)-(3) with 

s(ݔ)> 0, t(ݔ)>0 for ܽ ൏ ݔ ൏ ܾ       (5) 

and following Naimark([9], Pp - 13), Levitan and Sargsjan ([8], Pp. 128-129) we determine the 

resolution of the identity of the operator ܮ஺ generated by the matrix differential  operator ܮ as 

given in (2). 

In what follows the notations ݕ௡ሺݔሻ, ሺݔ, ሻ, (	ݔ, ሻ, .ሺܩ	,ܣ ሻ,ሺ. ሻ,ሺ. ሻ, ሺ. ሻ, ሺ. ሻ, .ሺܧ ሻ, .ሺܨ ሻ, 

.෨ሺܧ	 ሻ, .෨ሺܨ ሻ etc. are those introduced in Sengupta [11]. 

 

2. SOME AUXILIARY RESULTS 

Let  ݂ሺݔሻ ൌ ሺ ଵ݂ሺݔሻ, ଶ݂ሺݔሻሻ
் be a function such that ்݂ሺݔሻܴሺݔሻ݂ሺݔሻ	ܮሺܽ, ܾሻ. Then following 

Bhagat  [1,2] the resolvent of ݂ሺݔሻ, defined in (22) of Sengupta ([11] Pp. – 1570]), is given by 

(	ܽ, ܾ, ,ݔ ;ݖ ݂ሻ ൌ ׬ ,ሺܽܩ ܾ, ,ݔ , ሻܴሺሻ݂ሺሻ݀௕ݖ

௔
 

 = ∑ ሻݔ௡ሺݕ
ஶ
௡ୀିஶ ׬ ௡ݕ

்ሺሻܴሺሻ݂ሺሻ݀௕

௔
ݖሺܣ/ െ ௡ሻ           (6) 

Let us put ݂ሺሻ ൌ ௠ܻሺሻ ൌ ൫ ଵܻ௠ሺሻ, ଶܻ௠ሺሻ൯
்
, ሺ݉	fixed) the eigenvector corresponding to the 

eigenvalue ௠. 

Then by the orthogonality of the eigenvectors, we have from (6) for the Green's matrix G(.), 

׬ ,ሺܽܩ ܾ, ,ݔ , ሻܴሺሻݖ ௠ܻሺሻ݀
௕

௔
ൌ ௠ܻሺݔሻ/ሺݖ െ	௠ሻ.    (7) 

Therefore 

ൣ ൧
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׬ ௥ܩ
்ሺܽ, ܾ, ,ݔ , ሻܴሺሻ௕ݖ

௔ ௠ܻሺሻ݀ ൌ
௒ೝ೘ሺ௫ሻ

௭ି	೘
, ݎ ൌ 1, 2     (8) 

i.e.; ௥ܻ௠ሺݔሻ are the Fourier Coefficient of ܩ௥ሺܽ, ܾ, ,ݔ , ,ሻݖ ݎ ൌ 1, 2,		 considered as a vector 

function of  for fixed    ݔ,  .ݖ

Applying the Parseval equality (39) of Sengupta [11] to the vectors ܩ௥ሺܽ, ܾ, ,ݔ ,  ሻ and using (8)ݖ

we obtain 

׬              ௥ܩ
்ሺܽ, ܾ, ,ݔ , ,௥ሺܽܩሻܴሺሻݖ ܾ, ,ݔ , ሻ݀̅ݖ

௕

௔
 

             = ∑
௒ೝ೘
మ ሺ௫ሻ

஺|௭ି೘|మ
ஶ
௠ୀିஶ , ݎ ൌ 1, 2              (9) 

By using (21) of Sengupta [11] we have 

∑
௒ೝ೘
మ

஺|௭ି೘|మ
ஶ
௠ୀିஶ ൏ ∞, ݎ ൌ 1, 2,       (10) 

Applying the inequality ሺ∑ܽ௡ܾ௡ሻ
ଶ∑ܽ௡ଶ. ∑ ܾ௡ଶ                   (11) 

We obtain from (10) that 

∑
௒భ೘ሺ௫ሻ௒మ೘ሺ௫ሻ

஺|௭ି೘|మ
ஶ
௠ୀିஶ ൏ ∞        (12) 

Also for arbitrary but fixed , (-, ) (	ܽ, ܾ), 

 ∑
௒೘ሺ௫,௫ሻ

஺|௭ି೘|మ
൏ ∞ି೘          (13) 

where ௠ܻሺݔ, ሻݕ ൌ ൬ ଵܻ௠ሺݔሻ ଵܻ௠ሺݕሻ ଵܻ௠ሺݔሻ ଶܻ௠ሺݕሻ

ଶܻ௠ሺݔሻ ଵܻ௠ሺݕሻ ଶܻ௠ሺݔሻ ଶܻ௠ሺݕሻ
൰           (14) 

and ௠ܻ
்ሺݔ, ሻݕ ൌ ௠ܻሺݕ,  .ሻݔ

Using the explicit representation for ݕ௠ሺݔሻ, as given in (37) of Sengupta [11] it follows from (10) 

after some manipulation that 

නሾ்ሺݔ, ሻ݀ሺܽ, ܾ, ሻሺݔ, ሻ ൅ ்ሺݔ, ሻ݀ሺܽ, ܾ, ሻሺݔ, ሻ



ି

൅ ்ሺݔ, ሻ݀ሺܽ, ܾ, ሻሺݔ, ሻ 

        +்ሺݔ, ሻ݀ሺܽ, ܾ, ሻሺݔ, ሻሿ. ݖ| െ |ିଶ ൏ ∞            (15) 

Where ( 	ܽ, ܾ, ሻ, ሺܽ, ܾ, ሻ, ሺܽ, ܾ, ሻ  tend to (),(),() respectively as ܽ → െ∞, ܾ → ∞ 

(For detail ref. Sengupta [11]).  

Hence by making ܽ → െ∞, ܾ → ∞  first and then → ∞  we obtain from (15) the following 

theorem. 

Theorem 1: For real ് 0, 

׬ ሾ்ሺݔ, ሻ݀ሺሻሺݔ, ሻ ൅ ்ሺݔ, ሻ݀ሺሻሺݔ, ሻ ൅ ்ሺݔ, ሻ݀ሺሻሺݔ, ሻஶ

ିஶ
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൅்ሺݔ, ሻ݀ሺሻሺݔ,ሻሿ. ݖ| െ |ିଶ ൏ ∞                       (16) 

A consequence of Theorem-1 is the following. It is assumed that (),(),() are continued to 

the negative  axis as odd functions. 

Theorem 2:   For real ് 0,m ൐ 0 the integrals  

(i)׬ ିଶ݀ሺሻ,ஶ

௠
 (ii) ׬ ିଶஶ

௠
݀ሺሻ and  

(iii)׬ ିଶ݀ሺሻஶ

௠
	 are all convergent. 

Proof: Putting ݔ ൌ 0 in (16) and making use of the initial conditions (5) and (6) of Sengupta [11], 

the theorem for () follows easily. 

Differentiating both sides of the relation (8) with reference to ݔ we obtain 

׬

௫
ሾܩ௥

்ሺܽ, ܾ, ,ݔ ,ሻܴሺሻݕ௠ሺሻሿ݀
௕

௔
 = 

௬ೝ೘
ᇲ ሺ௫ሻ

௭ି೘
, ݎ ൌ 1,2. 

Applying the Parseval equality (39) of Sengupta [11] to the functions 

௫
௥ܩ
்ሺܽ, ܾ, ,ݔ ,ሻ and 

arguing in exactly the same way as before for (), the theorem for () follows. 

Since ቚ݀
௜௝
ሺሻቚ

ଶ
		|݀௜௜ሺሻ| ቚ݀௝௝ሺሻቚ , ,݅	ݎ݋݂ ݆ ൌ 1,2 the theorem for () also follows. 

Let us now put ܪ∆ሺݔ, ,ݕ ܽ, ܾሻ ൌ ቀܪ௜௝∆ሺݔ, ,ݕ ܽ, ܾሻቁ , ݅, ݆ ൌ 1,2 

׬=
ሾ்ሺݔ, ሻ݀ሺܽ, ܾ, ሻሺݕ, ሻ ൅ ்ሺݔ, ሻ݀ሺܽ, ܾ, ሻሺݕ,ሻ ൅ ்ሺݔ, ሻ݀ሺܽ, ܾ, ሻሺݕ, ሻ

൅்ሺݔ, ሻ݀ሺܽ, ܾ, ሻሺݕ,ሻ	ሿ	
ା∆
  

                          (17) 

where (.), (.), (.) are continuous at the end points  and +∆ . 

Let ܪ∆ሺݔ, ,ݕ ܽ, ܾሻ tend to ܪ∆ሺݔ, ,ሻ and as before ሺܽݕ ܾ, ሻ, ሺܽ, ܾ, ሻ, ሺܽ, ܾ, ሻ tend to (), (), 

() as ܽ → െ∞, ܾ → ∞. Then by making ܽ → െ∞, ܾ → ∞ it follows from (17) that 

,ݔሺ∆ܪ  ሻݕ ൌ ቀܪ௜௝∆ሺݔ, ሻቁݕ , ݅, ݆ ൌ 1,2 

׬= ሾ்ሺݔ, ሻ݀ሺሻሺݕ, ሻ ൅ ்ሺݔ, ሻ݀ሺሻሺݕ, ሻା∆
  

+்ሺݔ, ሻ݀ሺሻሺݕ, ሻ ൅ ்ሺݔ, ሻ݀ሺሻሺݕ, ሻሿ                  (18) 

We prove the following theorem. 

Theorem 3:    For every fixed y, ܪ∆
்ሺݔ, ,ݔሺ∆ܪሻݕሻܴሺݕ  ሺെ∞,∞ሻ        (19)ܮሻݕ

Proof: From the explicit representation of the normalized eigenvector ݕ௡ሺݔሻ/√ܣ (Ref. equation 

(38) of Sengupta [11]) we obtain by using (14) that 



RESOLUTION OF THE IDENTITY                                                               60 

∑
௬೙ሺ௫,௬ሻ

஺
ൌ ,ݔሺ∆ܪ ,ݕ ܽ, ܾሻ೙ା∆       (20) 

Using (20) and the orthogonality conditions for ݕ௡ሺݔሻ it follows that 

׬ ∆ܪ
்ሺݔ, ,ݕ ܽ, ܾሻܴሺݔሻܪ∆ሺݔ, ,ݕ ܽ, ܾሻ݀ݔ ൏ ∑ ,ݕ௡ሺݕ ∆೙ାܣ/ሻݕ

௕

௔
     (21) 

which is finite. 

For arbitrary but fixed ܽଵ, ܾଵ, ሺܽଵ, ܾଵሻ		ሺܽ, ܾሻ it follows from (21) that 

׬ ∆ܪ
்ሺݔ, ,ݕ ܽ, ܾሻܴሺݔሻܪ∆ሺݔ, ,ݕ ܽ, ܾሻ݀ݔ

௕భ
௔భ

൏ ∑ ,ݕ௡ሺݕ ∆೙ାܣ/ሻݕ      (22) 

Passing to the limit as ܽ → െ∞, ܾ → ∞ we obtain from (22) that 

׬ ∆ܪ
்ሺݔ, ,ݔሺ∆ܪሻݔሻܴሺݕ ݔሻ݀ݕ

௕భ
௔భ

൏ ∑ ,ݕ௡ሺݕ ∆೙ାܣ/ሻݕ       (23) 

As ܽଵ, ܾଵ are arbitrary, the theorem therefore follows.  

Let us now put ܪ∆ሺݔ, ݂ሻ ൌ ሺܪଵ∆ሺݔ, ݂ሻ, ,ݔଶ∆ሺܪ ݂ሻሻ
் 

׬ = ,ݔሺ∆ܪ ݕሻ݀ݕሻ݂ሺݕሻܴሺݕ
ஶ

ିஶ
         (24) 

where ݂ሺݔሻ ൌ ሺ ଵ݂ሺݔሻ, ଶ݂ሺݔሻሻ
் is a vector such that ்݂ሺݔሻܴሺݔሻ݂ሺݔሻܮሺെ∞,∞ሻ 

The existence of ܪ∆ሺݔ, ݂ሻ  is ensured by the Schwarz inequality, the Theorem-3 and the 

conditions on ݂ሺݔሻ. 

In what follows we say that ݂ሺݔሻଶሺെ∞,∞ሻ or ݂ܮଶ if ்݂ሺݔሻܴሺݔሻ݂ሺݔሻܮଶሺെ∞,∞ሻ. 

Theorem 4:    If fሺxሻLଶሺെ∞,∞ሻ and (, +∆) is any finite interval, then 

,ݔሺ∆ܪ ݂ሻ ൌ ׬ ሾ்ሺݔ, ሻሺሻܧሺሻ ൅ ்ሺݔ,ሻሺሻܨሺሻା∆
 ൅ ்ሺݔ, ሻ݀ሺሻܨሺሻ ൅

்ሺݔ, ሻ݀ሺሻܧሺሻሿ          (25) 

Proof: Let ݂ሺݔሻ ൌ ௡݂ሺݔሻ ≡ ሺ ଵ݂௡ሺݔሻ, ଶ݂௡ሺݔሻሻ
் be a vector with compact support i.e.; ݂ሺݔሻ 

defined on (െ݊, ݊ሻ vanish outside the interval, where n<min{|ܽ|, |ܾ|}a<0, b>0. 

Then  

׬ ,ݔሺ∆ܪ ,ݕ ܽ, ܾሻܴሺݕሻ ௡݂ሺݕሻ݀ݕ
௡

ି௡
  

ൌ ׬ ሾ்ሺݔ, ሻ݀ሺܽ, ܾ, ሻܧ௡ሺሻ ൅ ்ሺݔ, ሻ݀ሺܽ, ܾ, ሻܨ௡ሺሻ
ା∆
 ൅ ்ሺݔ, ሻ݀ሺܽ, ܾ, ሻܨ௡ሺሻ ൅

்ሺݔ, ሻ݀ሺܽ, ܾ, ሻܧ௡ሺሻሿ               (26) 

Where ܧ௡ሺሻ, ܨ௡ሺሻ are explicitly given in (82) of Sengupta [11]. 

Making ܽ → െ∞, ܾ → ∞ from (26) we obtain 

,ݔሺ∆ܪ ௡݂ሻ׬ ,ݔሺ∆ܪ ሻݕሻܴሺݕ ௡݂ሺݕሻ݀ݕ
௡

ି௡
ൌ ׬ ሾ்ሺݔ, ሻ݀ሺሻܧ௡ሺሻ

ା∆
   

                 + ்ሺݔ, ሻ݀ሺሻܨ௡ሺሻ ൅ ்ሺݔ, ሻ݀ሺሻܨ௡ሺሻ ൅ ்ሺݔ, ሻ݀ሺሻܧ௡ሺሻሿ        (27)   
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Now let ݂ሺݔሻ ൌ ሺ ଵ݂ሺݔሻ, ଶ݂ሺݔሻሻ
்  be an arbitrary vector such that ݂ሺݔሻܮଶሺെ∞,∞ሻ . We 

approximate in mean to ݂ሺݔሻ by the sequence { ௡݂ሺݔሻ}. 

From (25) it follows that for ݎ ൌ 1, 2 

,ݔ௥∆ሺܪ ௡݂ሻ ൌ ׬ ∆௥ܪ
் ሺݔ, ሻሺݕሻܴሺݕ ௡݂ሺݕሻ െ ݂ሺݕሻሻ݀ݕ ൅ ׬ ∆௥ܪ

் ሺݔ, ݕሻ݀ݕሻ݂ሺݕሻܴሺݕ ൌ ଵܬ ൅ ଶܬ
௡

ି௡

௡

ି௡
 , say. 

                           (28) 

Now  |ܬଵ| ൑ ൫׬ หܪ௥∆
் ሺݔ, ,ݔ௥∆ሺܪሻݕሻܴሺݕ ሻݕ ⁄ݕ݀ ห

௡

ି௡
൯
ଵ ଶ⁄

. ሺ׬ |ሺ ௡݂ሺݕሻ െ ݂ሺݕሻሻ்ܴሺݕሻሺ ௡݂ሺݕሻ െ
௡

ି௡

݂ሺݕሻሻ|݀ݕሻଵ/ଶ  

                           (29) 

As ݊ → ∞, ଵܬ → 0 and similarly ܬଶ → ,ݔሺ∆ܪ ݂ሻ. 

Therefore we obtain 

,ݔ௥∆ሺܪ ௡݂ሻ → ,ݔ௥∆ሺܪ ݂ሻ ≡ ׬ ∆௥ܪ
் ሺݔ, ݎ			,ݕሻ݀ݕሻ݂ሺݕሻܴሺݕ ൌ 1, 2

ஶ

ିஶ
         (30) 

Thus ܪ∆ሺݔ, ௡݂ሻ → ,ݔሺ∆ܪ ݂ሻ as ݊ → ∞. 

Also in the right side of (27), ܧ௡ሺሻ, ,ሺሻܧ ௡ሺሻ converges in mean toܨ ݊ ሺሻ asܨ → ∞. 

(See Theorem-2 of Sengupta [11] ). 

Hence the theorem follows from (27). 

Theorem 5: If ݂ሺݔሻܮଶሺെ∞,∞ሻ  then for any finite interval (,+ ∆ ) as a function of 

,ݔ ∆ܪ
்ሺݔ, ݂ሻܴሺݔሻܪ∆ሺݔ, ݂ሻ	ܮሺെ∞,∞ሻ           (31) 

Proof  With ௡݂ሺݔሻ defined in Theorem-4 we obtain by making use of (20), (21) that 

׬ ห൫׬ ௡݂
்ሺݕሻܴሺݕሻܪ∆

்ሺݔ, ,ݕ ܽ, ܾሻ݀ݕ
௡

ି௡
൯ܴሺݔሻሺ׬ ,ݔሺ∆ܪ ,ݕ ܽ, ܾሻܴሺݕሻ ௡݂ሺݕሻ݀ݕ

௡

ି௡
ሻ݀ݔห

௕భ
௔భ

൏

׬ ห൫׬ ௡݂
்ሺݕሻܴሺݕሻܪ∆

்ሺݔ, ,ݕ ܽ, ܾሻ݀ݕሻܴሺݔ
௡

ି௡
൯ሺ׬ ,ݔሺ∆ܪ ,ݕ ܽ, ܾሻܴሺݕሻ ௡݂ሺݕሻ݀ݕሻ݀ݔ

௡

ି௡
ห

௕

௔
ൌ

∑
ଵ

஺
ሺ׬ ௞ݕ

்ሺݕሻܴሺݕሻ ௡݂ሺݕሻ݀ݕ
௡

ି௡
ሻଶೖା∆  (by (20) and the orthogonality of the eigenvectors) 

׬ ௡݂
்ሺݕሻܴሺݕሻ ௡݂ሺݕሻ݀ݕ

௡

ି௡
 (by Bessel's inequality)                     (32) 

where ܽଵ,ܾଵ are arbitrary but fixed and (ܽଵ, ܾଵ)(	ܽ, ܾ). 

Making ܽ → െ∞, ܾ → ∞ first and then ܽଵ → െ∞, 	ܾଵ → ∞ the theorem is established for the 

function ௡݂ሺݔሻ. 

The general result for arbitrary ݂ሺݔሻ ൌ ሺ ଵ݂ሺݔሻ, ଶ݂ሺݔሻሻ
்  such that ݂ሺݔሻܮଶሺെ∞,∞ሻ follows by 

approximating in mean to ݂ሺݔሻ by the sequence { ௡݂ሺݔሻ} for which we take note of the fact that 
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ห׬ ௡݂
்ሺݔሻܴሺݔሻ ௡݂ሺݔሻ݀ݔ

௡

ି௡
ห ൑ ቚ׬ ൫ ௡݂ሺݔሻ െ ݂ሺݔሻ൯

்
ܴሺݔሻሺ ௡݂ሺݔሻ െ ݂ሺݔሻሻ݀ݔ

௡

ି௡
ቚ ൅ ቚ׬ ൫ ௡݂ሺݔሻ െ

௡

ି௡

݂ሺݔሻ൯
்
ܴሺݔሻ݂ሺݔሻ݀ݔቚ ൅ ห׬ ௡݂

்ሺݔሻܴሺݔሻሺ ௡݂ሺݔሻ െ ݂ሺݔሻሻ݀ݔ
௡

ି௡
ห ൅ ห׬ ்݂ሺݔሻܴሺݔሻ݂ሺݔሻ݀ݔ

௡

ି௡
ห) 

                             (33) 

Theorem 6:  

If ݂ሺݔሻܮଶሺെ∞,∞ሻ, then for any non-real z, (ݔ, ;ݖ ,ݔሺ∆ܪ ݂ሻ)≡ ׬ ,ݔሺܩ ,ݕ ,ݕሺ∆ܪሻݕሻܴሺݖ ݂ሻ݀ݕ
ஶ

ିஶ
 

׬= ሾ்ሺݔ, ሻ݀ሺሻܧሺሻ ൅ ்ሺݔ, ሻ݀ሺሻܨሺሻ ൅ ்ሺݔ, ሻ݀ሺሻܨା∆
 ሺሻ 

+்ሺݔ, ሻ݀ሺሻܧሺሻሿሺݖ െ ሻିଵ              (34) 

  

Proof.  With ௡݂ሺݔሻ defined in Theorem-4, we have for any non-real z 

ሺܽ, ܾ, ,ݔ ;ݖ ,ݔሺ∆ܪ	 ௡݂ሻሻ 

= ׬ ,ሺܽܩ ܾ, ,ݔ ;ݕ ,ݕሺ∆ܪሻݕሻܴሺݖ ௡݂ሻ݀ݕ ൌ ∑ ௡ܻሺݔሻ ׬ ௡ܻ
்ሺሻܴሺሻܪ∆ሺ, ௡݂ሻ݀

௕

௔
ஶ
௡ୀିஶ

௕

௔
 / ݖሺܣ െ 

௡
ሻ     

(35) 

Using (20) and (24) it now follows from (35) that 

׬ ,ሺܽܩ ܾ, ,ݔ ;ݕ ,ݕሺ∆ܪሻݕሻܴሺݖ ௡݂ሻ݀ݕ ൌ ∑ ௡ܻሺݔሻሺ׬ ௡ܻ
்ሺሻܴሺሻ ௡݂ሺሻ݀

௡

ି௡
ሻ೙ା∆

௕

௔
ݖሺܣ/  െ 

௡
ሻ    

                             (36) 

Replacing ݕ௡ሺݔሻ by that given in (37) of Sengupta [11] we obtain from (36) that 

׬ ,ሺܽܩ ܾ, ,ݔ ;ݕ ,ݕሺ∆ܪሻݕሻܴሺݖ ௡݂ሻ݀ݕ
௕

௔
  

׬= ሾ்ሺݔ, ሻ݀ሺܽ, ܾ, ሻܧ௡ሺሻ ൅ ்ሺݔ, ሻ݀ሺܽ, ܾ, ሻܨ௡ሺሻ ൅ ்ሺݔ, ሻ݀ሺܽ, ܾ, ሻܨ௡ሺሻ
ା∆
  

+்ሺݔ, ሻ݀ሺܽ, ܾ, ሻܧ௡ሺሻሿሺݖ െ ሻିଵ              (37) 

where ܧ௡ሺሻ,  .௡ሺሻ are given in (82) of Sengupta [11]ܨ

The convergence to the limit of the right side of the equality (37) as ܽ → െ∞, ܾ → ∞ is obvious. 

By using (27) of Sengupta [11] and (31) and closely following Chakravarty ([4] Pp-410) we 

obtain that as ܽ → െ∞, ܾ → ∞ , ሺܽ, ܾ, ,ݔ ;ݖ ,ݔሺ∆ܪ ௡݂ሻሻ  and ܩሺܽ, ܾ, ,ݔ ;ݕ ሻݖ  tend to 

ሺݔ, ;ݖ ,ݔሺ∆ܪ ௡݂ሻሻ and ܩሺݔ, ;ݕ ,ሻ respectively. Since ሺܽݖ ܾ, ሻ, ሺܽ, ܾ, ሻ, ሺܽ, ܾ, ሻ tend to ሺሻ, 

ሺሻ, ሺሻ respectively as ܽ → െ∞, ܾ → ∞ it follows from (37) by making ܽ → െ∞, ܾ → ∞ that  

ሺݔ, ;ݖ ,ݔሺ∆ܪ ௡݂ሻሻ ൌ ׬ ,ݔሺܩ ;ݕ ,ݔሺ∆ܪሻݕሻܴሺݖ ௡݂ሻ݀ݕ
ஶ

ିஶ
  

׬= ሾ்ሺݔ, ሻ݀ା∆
 ሺሻܧ௡ሺሻ ൅ ்ሺݔ, ሻ݀ሺሻܨ௡ሺሻ ൅ ்ሺݔ, ሻ݀ሺሻܨ௡ሺሻ 

+்ሺݔ, ሻ݀()ܧ௡ሺሻሿሺݖ െ ሻିଵ           (38) 
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Let ݂ሺݔሻ ൌ ሺ ଵ݂ሺݔሻ, ଶ݂ሺݔሻሻ
் be such that ݂ሺݔሻܮଶሺെ∞,∞ሻ. We approximate in mean to ݂ሺݔሻ by 

means of the sequence { ௡݂ሺݔሻ}. 

By Theorem-5 and inequality (28) of Sengupta [11] as before it follows that ሺݔ, ;ݖ ,ݔሺ∆ܪ ௡݂ሻሻ 

tend to ሺݔ, ;ݖ ,ݔሺ∆ܪ ௡݂ሻሻ  as ݊ → ∞. Also the sequences ሼܧ௡ሺሻሽ,ሼܨ௡ሺሻሽ converge in mean to  

,ሺሻܧ ሺሻܨ  respectively as ݊ → ∞  (See Theorem-2 of Sengupta [11]). Hence by the mean 

convergence theorems (Stated explicitly in Sengupta [11]) the theorem follows completely. 

Let ݂ሺݔሻ, ݃ሺݔሻܮଶሺെ∞,∞ሻ. Then from (34) we have  

׬ ்൫ݔ, ;ݖ ,ݔሺ∆ܪ ݂ሻ൯ܴሺݔሻ݃ሺݔሻ݀ሺݔሻ
ஶ

ିஶ
  

ൌ ׬ ሾ்ܧሺሻ݀ሺሻܧሺሻ ൅ ∆ሺሻାܨሺሻ݀ሺሻ்ܨ
 ൅   ሺሻܨሺሻ݀ሺሻ்ܧ

ݖሺሻሿሺܧሺሻ݀ሺሻ்ܨ+ െ ሻିଵ                      (39) 

  (The convergence problem being settled by (29) of Sengupta [11] and (31)). 

 

3. INTEGRAL REPRESENTATION OF THE RESOLVENT 

 

In what follows let us put 

,ݔሺܪ ݕ ൌ ׬ ሾ்ሺݔ, ሻ݀ሺሻሺݕ,ሻ ൅ ்ሺݔ, ሻ݀ሺሻሺݕ, ሻ ൅ ்ሺݔ, ሻ݀ሺሻሺ, ሻ ൅
଴

்ሺݔ, ሻ݀ ሺሻሺݕ, ሻሿ, for >0 

=െ׬ ሾ்ሺݔ,ሻ݀ሺሻሺݕ, ሻ ൅ ்ሺݔ, ሻ݀ሺሻሺݕ, ሻ ൅ ்ሺݔ, ሻ݀ሺሻሺݕ, ሻ ൅଴



்ሺݔ, ሻ݀ሺሻሺݕ, ሻሿ , for <0 

ൌ 0, for  = 0                       (40) 

and ܪሺݔ, ݂ሻ ൌ ׬ ,ݔሺܪ ݕሻ݀ݕሻ݂ሺݕሻܴሺݕ
ஶ

ିஶ
                   (41) 

where ݂ሺݔሻ ൌ ሺ ଵ݂ሺݔሻ, ଶ݂ሺݔሻሻ
் be such that ݂ሺݔሻܮଶሺെ∞,∞ሻ. 

Then ܪሺݔ, ݂ሻ ൌ ׬ ,ݔሺܪ ݕሻ݀ݕሻ݂ሺݕሻܴሺݕ
ஶ

ିஶ
 

׬= ሾ்ሺݔ, ሻ݀ሺሻܧሺሻ ൅ ்ሺݔ, ሻ݀ሺሻܨሺሻ ൅ ்ሺݔ, ሻ݀ሺሻܨሺሻ ൅ ்ሺݔ, ሻ݀ሺሻܧሺሻሿ
଴

 

                        (42) 

 [Compare Theorem-4 and Theorem-5]. 

We prove the following theorems. 
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Theorem-7 : Let ݂ሺݔሻܮଶሺെ∞,∞ሻ. Then as a function of , ܪሺݔ, ݂ሻ is of bounded variation in 

every finite -interval. 

 

Proof : For ് ௡, write the system (1) in the form  

ܮ) ൅ ଶܴሺݔሻሻݕ௡ሺݔሻ ൌ ൫ଶ െ ௡
ଶ൯ܴሺݔሻݕ௡ሺݔሻ                  (43) 

where ݕ௡ሺݔሻ is the eigenvector corresponding to the eigenvalue ௡. 

Hence ݕ௡ሺݔሻ ൌ ሺଶ െ ௡
ଶሻ ׬ ,ሺܽܩ ܾ, ,ݔ ;ሻܴሺሻݕ௡ሺሻ݀

௕

௔
                       (44) 

satisfies the differential system (43). 

For definiteness let >0 and we prove the result for the vector ௡݂ሺݔሻ as defined in Theorem-4. By 

making use of (20) and (24) it follows that as ܽ → െ∞, ܾ → ,ݔሺܪ,∞ ௡݂ሻ is the limit of the 

function  

ݏ  ൌ ሺݏଵ, ଶሻݏ
் ൌ ∑

ଵ

஺
׬ ,ݔ௞ሺݕ ሻܴሺሻܨ௡ሺሻ݀
௕

௔଴ஸ೙ஸ   

=∑
ଵ

஺
ሻݔ௞ሺݕ ׬ ௞ݕ

்ሺሻܴሺሻ ௡݂ሺሻ݀
௕

௔଴ஸೖஸ                          (45) 

where ௞ is any point on the finite -interval. 

By (44) it follows from (45) that 

ݏ ൌ ∑
ଵ

஺
൫ଶ െ ௞

ଶ൯ ቀ׬ ,ሺܽܩ ܾ, ,ݔ ;ሻܴሺሻݕ௞ሺሻ݀
௕

௔
ቁ . ሺ׬ ௞ݕ

்ሺሻܴሺሻ ௡݂ሺሻ݀
௕

௔
ሻ଴ஸೖஸ         (46) 

Now, ቚ׬ ௥ܩ
்ሺܽ, ܾ, ,ݔ ;ሻܴሺሻݕ௞ሺሻ݀

௕

௔
ቚ 

ሺ׬ ௥ܩ|
்ሺܽ, ܾ, ,ݔ ; ሻܴሺሻܩ௥ሺܽ, ܾ, ,ݔ ;ሻ|

௕

௔
݀ሻଵ/ଶ. ሺ׬ ௞ݕ|

்ሺሻܴሺሻݕ௞ሺሻ|݀
௕

௔
ሻଵ/ଶ .        (47) 

Thus from (46) by using (21) of Sengupta [11] we obtain that ݏଵ, ଶݏ  and consequently S is 

bounded uniformly in any finite -interval. 

Hence, the limit function is of bounded variation. This completes the proof of the Theorem. 

Theorem 8: Let ݂ሺݔሻܮଶሺെ∞,∞ሻ. Then for any non-real ܼ ൌ ଵ ൅ ݅
ଵ
, 
ଵ
൐ 0 and 

(	ݔ, ;ݖ ׬=(݂ ݀ሺܪሺݔ, ݂ሻሻ/ሺݖ െ ሻሻஶ

ିஶ
             (48) 

where ܪሺݔ, ݂ሻ is given by (42). The integral in the right side of (48) converge absolutely. 

Proof:   Writing ௡ܻሺݔሻ explicitly as given in (37) of Sengupta [11] we obtain from (6) that 

ሺܽ, ܾ, ,ݔ ;ݖ ௡݂ሻ ൌ නሾ்ሺݔ, ሻ݀ሺܽ, ܾ, ሻܧ௡

ஶ

ିஶ

ሺሻ ൅ ்ሺݔ, ሻ݀ሺܽ, ܾ, ሻܨ௡ሺሻ 

                     +்ሺݔ, ሻ݀ሺܽ, ܾ, ሻܨ௡ሺሻ ൅ ்ሺݔ, ሻ݀ሺܽ, ܾ, ሻܧ௡ሺሻሿሺݖ െ ሻିଵ     (49) 
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where the vector ௡݂ሺݔሻ ൌ ሺ ଵ݂௡ሺݔሻ ଶ݂௡ሺݔሻሻ
் is the same as that defined in Theorem-4. 

Passing to the limit as ܽ → െ∞, ܾ → ∞ we obtain from (42) and (49) that  

(	ݔ, ;ݖ ௡݂)=׬ ݀ሺܪሺݔ, ௡݂ሻሻ/ሺݖ െ ሻஶ

ିஶ
 

׬= ሾ்ሺݔ, ሻ݀ሺሻܧ௡ሺሻ
ஶ

ିஶ
൅ ்ሺݔ, ሻ݀ሺሻܨ௡ሺሻ ൅ ்ሺݔ, ሻ݀ሺሻܨ௡ሺሻ 

+்ሺݔ, ሻ݀ሺሻܧ௡ሺሻሿሺݖ െ ሻିଵ                        (50) 

We now approximate in mean to the vector ݂ሺݔሻ ൌ ሺ ଵ݂ሺݔሻ, ଶ݂ሺݔሻሻ
்  which satisfy that 

݂ሺݔሻܮଶሺെ∞,∞ሻ by means of the sequence { ௡݂ሺݔሻ}. 

By using (24) of Sengupta [11], (	ݔ, ;ݖ ௡݂)→ ሺݔ, ;ݖ ݂ሻ. Let us now consider the right side of 

the equality (50). Let us put 

(	ݔ, ;ݖ ௡݂)= ׬
ௗሺுሺ௫,௙೙ሻሻ

ሺ௭ିሻ
ି௠

ିஶ
൅ ׬

ௗሺுሺ௫,௙೙ሻሻ

ሺ௭ିሻ
௠

ି௠
൅ ׬

ௗሺுሺ௫,௙೙ሻሻ

ሺ௭ିሻ
ஶ

௠
 

ଵܭ= ൅ ଶܭ ൅  ଷ, say                           (51)ܭ

where m is an arbitrary positive number. 

From the Parseval relation as given in (72) of Sengupta [11] it follows that as m→ ∞, 

׬ ሾܧ௡
்ሺሻ݀ሺሻܧ௡ሺሻ ൅ ௡ܨ

்ሺሻ݀ሺሻܨ௡ሺሻ ൅ ௡ܧ
்ሺሻ݀ሺሻܨ௡ሺሻ ൅ ௡ܨ

்ሺሻ݀ሺሻܧ௡ሺሻሿ ൌ
ஶ

௠
0ሺ1ሻ  

                            (52) 

and from (16) we obtain as m→ ∞ 

׬ ሾ்ሺݔ, ሻ݀ሺሻሺݔ, ሻ ൅ ்ሺݔ, ሻ݀ሺሻሺݔ, ሻ ൅ ்ሺݔ, ሻ݀ሺሻሺݔ, ሻஶ

௠
  

+்ሺݔ, ሻ݀ሺሻሺݔ, ሻሿ|ݖ െ |ିଶ ൌ 0ሺ1ሻ                        (53) 

To each of the integrals ܭ௜, ݅ ൌ 1,2,3 ,we apply the inequality Hardy et al. ([7], Section 29, Pp – 

33). 

∑ܽݔݕ ൑ ሺ∑ܽݔݔሻ
ଵ/ଶ. ሺ∑ ܽݕݕሻ

ଵ/ଶ . 

where ܽ ൌ ܽ, ∑ ܽݔݔ is a positive quadratic form (with real but not necessarily positive 

coefficients). Then using (52), (53) we obtain as in Chakravarty and Roy Paladhi ([6], Pp-150) 

that ܭଷ → 0 as ݉ → ∞. 

Similarly, ܭଵ → 0 as ݉ → ∞. 

 

 

Integrating by parts we get 

ଶܭ ൌ
ு೘ሺ௫,௙೙ሻ

ሺ௭ି௠ሻ
െ

ுష೘ሺ௫,௙೙ሻ

௭ା௠
െ ׬ ,ݔሺܪ ௡݂ሻ. ሺݖ െ ሻିଶ݀௠

ି௠
                       (54) 
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By Theorem-7 we have 

lim
௡→ஶ

׬
ௗ൫ுሺ௫,௙೙ሻ൯

௭ି
ൌ ׬

ௗሺுሺ௫,௙ሻሻ

௭ି
௠

ି௠

௠

ି௠
                        (55) 

Since ݉ is arbitrary, the theorem follows from (55). 

Now from (50) we obtain that for any non-real z and vectors݂ሺݔሻ, ݃ሺݔሻܮଶሺെ∞,∞ሻ 

׬ ்ሺݔ, ;ݖ ݂ሻܴሺݔሻ݃ሺݔሻ݀ݔ
ஶ

ିஶ
ൌ ׬ ሾ்ܧሺሻ݀ሺሻܧ෨ሺሻ ൅ ෨ሺሻܨሺሻ݀ሺሻ்ܨ ൅ஶ

ିஶ

෨ሺሻܨሺሻ݀ሺሻ்ܧ ൅ ݖ෨ሺሻሿ/ሺܧሺሻ݀ሺሻ்ܨ െ ሻ                        (56) 

 

4. RESOLUTION OF THE IDENTITY 

Let ݂ሺݔ ൌ ሺ ଵ݂ሺݔሻ, ଶ݂ሺݔሻሻ
் , ݃ሺݔሻ ൌ ሺ ଵ݃ሺݔሻ, ݃ଶሺݔሻሻ

்  be two vectors such that 

݂ሺݔሻ, ݃ሺݔሻܮଶሺെ∞,∞ሻ. For >0. put 

,ሺ݂ܬ  ݃, ሻ ൌ ׬ ܪ
்ሺݔ, ݂ሻܴሺݔሻ݃ሺݔሻ݀ݔ

ஶ

ିஶ
             (57) 

and ܬሺ݂, ሻ ൌ ,ሺ݂ܬ ݂,ሻ; where >0                         (58) 

(For notation compare Titchmarsh ([12]Pp-50))  

where ܪሺݔ, ݂ሻ is given by (41). 

Using the expressions for  ܪሺݔ, ݂ሻ given in (42) in the usual manner we obtain 

,ሺ݂ܬ ݃, ሻ ൌ ׬ ሾ்ܧሺሻ݀ሺሻܧሺሻ ൅ ሺሻܨሺሻ݀ሺሻ்ܨ ൅ ሺሻܨሺሻ݀ሺሻ்ܧ ൅ ሺሻሿܧሺሻ݀ሺሻ்ܨ
଴

  

                             (59) 

Now the equation (39) can be expressed as 

׬ ்൫ݔ, ;ݖ ,ݔሺ∆ܪ ݂ሻ൯ܴሺݔሻ݃ሺݔሻ݀ݔ ൌ ׬ ݀ሺܬሺ݂, ݃, ሻሻ/ሺݖ െ ሻା∆


ஶ

ିஶ
	          (60) 

Putting ܪ∆ሺݔ, ݂ሻ for ݂ሺݔሻ in (56) and using (59) we also obtain 

׬ ்൫ݔ, ;ݖ ,ݔሺ∆ܪ ݂ሻ൯ܴሺݔሻ݃ሺݔሻ݀ݔ
ஶ

ିஶ
ൌ ׬ ݀ሺܬሺܪ∆݂, ݃, ሻሻ/ሺݖ െ ሻஶ

ିஶ
          (61) 

From (57), (60), (61) and the uniqueness theorem for the Stieltjes transforms it follows that 

.ܪ ∆ܪ ൌ  ∩∆                 (62)ܪ

where  ∩ ∆ = (-∞, )∩ ሺ, ൅ ∆ሻ 

(See Levitan and Sargsjan ([8], Pp-129 and Pp-503)) 

Let ∆	ܽ݊݀	∆ᇱ denote the intervals (, +∆) and (ᇱ, ᇱ ൅ ∆ᇱ) respectively. Then 

∆ܪ.ᇱ∆ܪ ൌ ሼܪ൫ିஶ,ᇲା∆ᇲ൯ െ  ∆ܪሺିஶ,ᇲሻሽܪ

∆ܪሺିஶ,ᇲା∆ᇲሻܪ =               െ  ∆ܪሺିஶ,ᇲሻܪ
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∆∩ሺିஶ,ᇲା∆ᇲሻܪ =               െ  ∆∩ሺିஶ,ᇲሻܪ

 ᇲ∩∆           (63)∆ܪ=∆ሾ൫ିஶ,ᇲା∆ᇲ൯ି൫ିஶ,ᇲ൯ሿܪ =              

We obtain the following theorem. 

Theorem 9: Let ∆≡ ሺ, ൅ ∆ሻ, ∆ᇱ≡ ሺᇱ, ᇱ ൅ ∆ᇱሻ, then  

׬ ,ݔሺ∆ܪ ሻܴሺሻܪ∆ᇲሺ, ሻ݀ݕ
ஶ

ିஶ
ൌ ,ݔᇲሺ∆∩∆ܪ                        ሻݕ

(64) 

Proof    From the representation of ܪ∆ሺݔ,  ሻ given by (20) and by the orthogonality conditionsݕ

for the eigenvectors it follows that 

׬ ,ݔሺ∆ܪ ሻܴሺሻܪ∆ᇲሺ, ሻ݀ݕ
ஶ

ିஶ
  

ൌ ׬ ∑
௬೙ሺ௫,ሻ

஺ஸ೙ஸା∆ . ܴሺሻ. ∑ ௬೙ሺ,௬ሻ
஺ᇲஸ೙ஸ

ᇲା∆ᇲ . ݀ஶ

ିஶ
  

ൌ ∑ ,ݔ௡ሺݕ ሻ
ܣ
ൗ೙∆∩∆ᇲ 						ൌ ,ݔᇲሺ∆∩∆ܪ  . ሻݕ

Hence the theorem is proved. 

Let  ܬሺ݂, ݃,∞ሻ ൌ lim
→ஶ

,ሺ݂ܬ ݃,ሻ                          (65) 

The generalized Parseval formula (90) of Sengupta[11] now takes the form 

׬ ்݂ሺݔሻܴሺݔሻ݃ሺݔሻ݀ݔ ൌ ,ሺ݂ܬ ݃,∞ሻ െ ,ሺ݂ܬ ݃, െ∞ሻ
ஶ

ିஶ
            (66) 

By  (59) we also obtain 

,ሺ்݂ܬ ݃, ሻ ൌ ,ሺ݃ܬ ݂, ሻ                (67) 

Now  we apply the Stieltjes inversion formula (See Levitan and Sargsjan [8] Pp-502) to each of 

the elements of ( ݔ, ;ݖ ݂) (Z being non-real) given by (48) and obtain 

,ݔሺܪ ݂ሻ ൌ lim
→଴

׬ ൅,ݔሺ݉ܫ ݅, ݂ሻ݀
଴

,  ൌ ൅ ݅,  ൐ 0                      (68) 

By making use of the definition of ܪሺݔ, ݂ሻ given by (41) and that of ( ݔ, , ݂) by 

( ݔ,, ݂ሻ ൌ ׬ ,ݔሺܩ ,ݕ ሻܴሺݕሻ݂ሺݕሻ݀ݕஶ

ିஶ
                        (69) 

ሺܩሺݔ, ,ݕ ሻ being the Green's matrix) which follows by making ܽ → െ∞, ܾ → ∞ in (22) of 

Sengupta [11], we obtain by proceeding as in Chakravarty and Roy Paladhi ([6], Pp-141) that 

,ݔሺܪ ሻݕ ൌ െ lim
→଴

׬ ,ݔሺܩ݉ܫ ൅,ݕ ݅ሻ݀
଴

                        (70) 

From (6) 

׬ ்ሺܽ, ܾ, ,ݔ ;ݖ ݂ሻܴሺݔሻ݃ሺݔሻ݀ݔ
௕

௔
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ൌ ׬ ׬ ்݂ሺሻܴሺሻ்ܩሺܽ, ܾ,, , ሻ௕ݖ

௔
ܴሺሻ݂ሺሻ݀݀௕

௔
  

ൌ ∑
஼೙ௗ೙

ሺ௓ି೙ሻ
ஶ
௡ୀିஶ                        (71) 

Where  ܥ௡ ൌ
ଵ

√஺
׬ ௡ݕ

்ሺሻܴሺሻ݂ሺሻ݀௕

௔
 

              ݀௡ ൌ
ଵ

√஺
׬ ௡ݕ

்ሺሻܴሺሻ݃ሺሻ݀௕

௔
        (72) 

the Fourier coefficients of݂ሺݔሻ and ݃ሺݔሻ respectively. 

Therefore,  

െlim
భ→଴

׬ ׬ ׬ ൫ܴሺሻ݂ሺሻ൯
்
ቀ்ܩ݉ܫ൫ܽ, ܾ,, ;ଵ ൅ ݅

ଵ
൯ቁܴሺሻ݃ሺሻ݀݀

 ݀ଵ
௕

௔

௕

௔
  

=∑ ௡݀௡ܥ ׬
భௗభ

ሺ೙ି೙ሻమାభ
మ
,				ሺݖ ൌ ଵ ൅ ݅

ଵ
ሻ




ஶ
௡ୀିஶ            (73) 

Where the integral ׬
భௗభ

ሺ೙ିభሻమାభ
మ


  does not exceed . 

On taking ݃ሺݔሻ ൌ ݂ሺݔሻ, ݀௡ ൌ  ௡ we have from (73)ܥ

׬ ׬ ൫ܴሺሻ݂ሺሻ൯
்
ቀܪ

்ሺܽ, ܾ,, ሻ െ ܪ
்ሺܽ, ܾ,, ሻቁܴሺሻ݂ሺሻ݀݀ ൒ 0

௕

௔

௕

௔
        (74) 

Hence if ݂ሺݔሻ ൌ ௡݂ሺݔሻ vanish outside (ܽଵ, ܾଵሻ		ሺܽ, ܾሻ we have 

׬ ׬ ൫ܴሺሻ ௡݂ሺሻ൯
்
ቀܪ

்ሺܽ, ܾ,, ሻ െ ܪ
்ሺܽ, ܾ,, ሻቁ ܴሺሻ ௡݂ሺሻ݀݀ ൒ 0

௕భ
௔భ

௕భ
௔భ

  

By making ܽ → െ∞, ܾ → ∞ we obtain 

׬ ቀܪሺ, ௡݂ሻ െ ,ሺܪ ௡݂ሻቁ
்
ܴሺሻ ௡݂ሺሻ݀ ൒ 0

௕భ
௔భ

           (75) 

From this it follows that in the usual way by a mean square approximation that for any 

݂ሺݔሻܮଶሺെ∞,∞ሻ 

,ሺ݂ܬ ሻ ൒ ሺ݂,ሻ for ൒ܬ                          (76) 

(Compare Titchmarsh [12] Pp- 51-53). 

From the relations (63), (66), (67) and (76) it follows that the family of operators ܪሺݔ,  ሻݕ

defined by (40) satisfy the properties of (i) orthogonality (ii) completeness (iii) self-adjointness 

and (iv) monotonicity. ܪሺݔ,  ሻ  thus plays on essential role in deriving the resolution of theݕ

identity of the operator ܮ஺ (See Levitan and Sargsjan [8] Pp - 129). Also compare Chakravarty 

and Roy Paladhi ([5]). 

We can define ܪሺݔ,  ሻ by (68) as in Chakravarty and Roy Paladhi [[5]] and obtain results of theݕ

forgoing section. 
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5. INTERPRETATION IN TERMS OF THE THEORY OF LINEAR OPERATORS 

Our analysis now closely follows Titchmarsh [12]. We simply outline the procedure giving 

details only when we considerably differ. 

From (68) it follows that 

,ݔሺܪ݀ ݂ሻ ൌ െ lim
→଴

൅,ݔሺ݉ܫ ݅, ݂ሻ݀                        (77) 

Let the vectors ݂ሺݔሻ ൌ ሺ ଵ݂ሺݔሻ, ଶ݂ሺݔሻሻ; and ሚ݂ሺݔሻ ൌ  which satisfy the equation (given by (2) ܮ)݂ܮ

(30) of Sengupta[11] and ሚ݂ሺݔሻܮଶሺെ∞,∞ሻ. Then  

,ݔ൫݉ܫ , ሚ݂൯ ൌ ,ݔሼሺ݉ܫ , ݂ሻሽ                          (78) 

and ܪ൫ݔ, ሚ݂൯ ൌ lim
→଴

׬ ൅,ݔሺ݉ܫ ݅, ݂ሻ݀
଴

 

        = െlim
→଴

׬ ݉ܫሺݔ,൅ ݅; ݂ሻ݀൅ lim
→଴

׬ ܴ݁ሺݔ, ൅ ݅, ݂ሻ݀
଴


଴

  

ଵܪ =         ൅  ଶ , say                            (79)ܪ

By (70), ܪଵ ൌ ׬ ݀ܪሺݔ, ݂ሻ

଴

. 

By Theorem-8, ׬ ܴ݁ሺݔ,൅ ݅, ݂ሻ݀
଴

 is finite. 

Hence ܪଶ → 0 as → 0. 

Thus ܪ൫ݔ, ሚ݂൯ ൌ ׬ ݀ܪሺݔ, ݂ሻ

଴

                          (80) 

Therefore ,  ܬ൫ ሚ݂, ݃,൯ ൌ ׬ ܪ
்൫, ሚ݂൯ܴሺሻ݃ሺሻ݀ஶ

ିஶ
  

׬ =                      ൫׬ ݀ܪሺ, ݂ሻ

଴

൯
்
ܴሺሻ݃ሺሻ݀ஶ

ିஶ
 

׬ =                      ݀൫׬ ܪ
்ሺ, ݂ሻஶ

ିஶ
൯ܴሺሻ݃ሺሻ݀

଴
 

׬ =                      ݀ܬሺ݂, ݃,ሻ
଴

              (81) 

In view of the relation (41) the expansion formula as given in (91) of Sengupta [11] for the 

function ሚ݂ሺݔሻ takes the form 

ሚ݂ሺݔሻ ൌ lim
→ஶ

׬ ቀܪሺݔ, ሻ െ ,ݔሺିܪ ሻቁ
்
ܴሺሻ ሚ݂ሺሻ݀,ஶ

ିஶ
 ( real) 

					ൌ 	 lim
→ஶ

ሺܪ൫ݔ, ሚ݂൯ െ ,ݔሺିܪ ሚ݂ሻሻ                          (82) 

Therefore, ׬ ሚ்݂ሺݔሻܴሺݔሻ݃ሺݔሻ݀ݔ
ஶ

ିஶ
 

                  = lim
→ஶ

׬ ቀܪ൫ݔ, ሚ݂൯ െ ,ݔሺିܪ ݂ሻቁ
்
ܴሺݔሻ݃ሺݔሻ݀ݔ

ஶ

ିஶ
 

                  = lim
→ஶ

ሾܬ൫ ሚ݂, ݃,൯ െ ሺܬ ሚ݂, ݃, െሻሿ 
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                  = lim
→ஶ

׬ ݀ܬሺ݂. ݃,ሻ
ି                           (83) 

For real , from (75) it follows that  

൫ܬ ሚ݂, ൯ ൌ ׬ ݀ܬሺ ሚ݂, ݂,ሻ
଴

ൌ ׬ ݀ሼ׬ ܬሺ݂,ሻ
଴

ሽ

଴

  

															ൌ 	 ׬ ଶ݀ܬሺ݂,ሻ
଴

                           (84) 

Hence, ׬ ሚ்݂ሺݔሻܴሺݔሻ
ஶ

ିஶ
ሚ݂ሺݔሻ݀ݔ  

൫ܬ =             ሚ݂, ∞൯ െ ሺܬ ሚ݂, െ∞ሻ      by (66) 

׬ =            ݀ܬሺ ሚ݂,ሻஶ

ିஶ
,                by (83) 

׬ =            ଶ݀ܬሺ݂,ሻஶ

ିஶ
                              (85) 

As ݌ሺݔሻ, ,ሻݔሺݍ  over (-∞,∞), the ݔ ሻ are real-valued twice differentiable functions ofݔሺݎ

differential operator ܮ஺ generated by (2) is a symmetric operator on ܮଶ(-∞,∞). 

Put ܭሺݔ, ,ݕ ሻ ൌ ,ݔି଴ሺܪ ሻݕ െ ,ݔஶሺିܪ  ሻ, ( real)                       (86)ݕ

(For  notation See Chakravarty and Roy Paladhi [5]) 

Then the operator 

:ሺሻܩ ݂ሺݔሻ → ׬ ,ݔሺ்ܭ ,ሻܴሺሻ݂ሺሻ݀ஶ

ିஶ
                          (87) 

(i.e; ܩሺሻ݂ሺݔሻ ൌ ׬ ,ݔሺ்ܭ ,ሻܴሺሻ݂ሺሻ݀ሻஶ

ିஶ
  

is a linear symmetric operator on ܮଶሺെ∞,∞ሻ 

(See Chakravarty and Roy Paladhi [5]), ܭሺݔ, ,ݕ ሻ being a Carleman type kernel. 

We now argue as in Titchmarsh ([12], Pp-55). (Also Ref Chakravarty and Roy Paladhi [5], Pp- 

160-161) so as to obtain ultimately 

஺ܮ ൌ ׬ ݀ܩሺሻஶ

ିஶ
                            (88) 

where ܩሺሻ is the resolution of the identity of the self-adjoint differential operator ܮ஺ generated 

by the given differential equation (1). 

Thus we obtain the follow theorem. 

Theorem 10: The matrix ܪሺݔ,  ሺሻ given byܩ ሻ (-real) defined by (40) generates an operatorݕ

(87) which is associated with the differential operator ܮ  given by (2). ܮ஺  generated by the 

differential expression (1) is associated in the same way as the resolution of the identity of a 

given operator ܶ is associated with ܶ. ܩሺሻ is the resolution of the identity of the operator ܮ஺. 
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The matrix ܪሺݔ,  ሺሻ may be called the resolution matrix of theܩ ሻ generating the operatorݕ

operatorܮ஺. 
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