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Abstract: Consider the system of second order differential equations
Ly(x) + AR(x)y(x) = 0
where x € (a, b), a, b finite or infinite; A, a complex parameter and y(x) = (y;(x), y,(x)7,

_ (D*+p(x) r(x) _ a2 _(s(x) O
L‘( ) D2+q(x))’ D? =5 R() = ( 0 t(x))’

p(x), q(x), r(x), s(x), t(x) are all assumed to be real-valued functions summable on (a, b).

In this paper we determine the resolution of the identity of the operator L, generated by the matrix differential
operator L under the general boundary conditions where s(x),t(x) are assumed to be greater than zero for
x € (a,b), a, b being finite or infinite.
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1. INTRODUCTION
Consider the system of second order differential equations

Ly(x) + ZR(x)y(x) = 0 (1)

where

(D +p(x) r(x)
L= ( r(x) D? + q(x))’ b?

= £ 50 = @Wnen R = ()

p(x),q(x),r(x),s(x),t(x) are all assumed to be real-valued functions summable on (a, b), a, b
finite or infinite and A is a complex parameter.
The boundary conditions at a, b satisfied by a solution U(x, 2) = (U;(x, 1), Uy(x, )T of the

equation (1) are
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(UG, ¢](@) = 0.[uCx, 1), ¢,](b) = 0 (3)
i=1, 2; j= 3,4, where ¢, = ¢, (x, 1,1l =1,2,3,4, called boundary condition vectors, are the
solutions of (1) which together with their first derivatives take some prescribed values at x =
a,x = b and[., .]J(a) is the value at x = « of the bilinear-concomitant [., .]. (See Sengupta [10]).
The boundary condition vectors ¢,, ¢, at x = a and ¢,, §, at x = b are linearly independent of
each other and moreover if

[,, ¢,](a) =45, 4,1(b) = 0. “4)
then the boundary value problem (1)—(3) leads to a self-adjoint eigenvalue problem over the
interval (a, b) (see Chakravarty[3]).

For the system (1) with s(x) = t(x) = 1 the resolution of the identity of the operator L was
investigated by Chakravarty and Roy Paladhi [5].
In this paper we consider the boundary-value problem (1)-(3) with

s(x)>0,t(x)>0fora<x <b %)
and following Naimark([9], Pp - 13), Levitan and Sargsjan ([8], Pp. 128-129) we determine the
resolution of the identity of the operator L, generated by the matrix differential operator L as
given in (2).

In what follows the notations y,,(x), #(x, 1), 0( x, 1), A, G(.), @(.), a(.), p(.), A{.),E(), F(.),
E(),F(.) etc. are those introduced in Sengupta [11].

2. SOME AUXILIARY RESULTS
Let f(x) = (fi(x), f,(x)T be a function such that fT(x)R(x)f(x) € L(a,b). Then following
Bhagat [1,2] the resolvent of f(x), defined in (22) of Sengupta ([11] Pp. — 1570]), is given by

©(a,b,xz f) = [, G(a,b,x, £ 2)ROF(HdE
= T () [} W ORDF(DAE[A(z = ) (©)
Let us put f(&) =Y, (& = (Ylm(f), YZm(é‘))T, (m fixed) the eigenvector corresponding to the

eigenvalue A,,.
Then by the orthogonality of the eigenvectors, we have from (6) for the Green's matrix G(.),

12 6(a,b,x, & DR(OY(OAE = V() /(2 = Aop). (7)

Therefore
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J; 67 (a,b,x, EDR(D V(A = 222 1 = 1,2 (8)

a
i.e.; Ypm(x)are the Fourier Coefficient of G.(a,b,x, & z),r = 1,2, considered as a vector
function of ¢ for fixed x,z.
Applying the Parseval equality (39) of Sengupta [11] to the vectors G,.(a, b, x, & z) and using (8)

we obtain

[2 6T (a,b,x, £ DR(DG,(a, b, x, & D)dE

_ \'oo Yién () _
_Zm=—°°A|z—/1m|2'r =1,2 9)
By using (21) of Sengupta [11] we have
o Yin _
Zmz_wAlz—Mlz <oo,r=1,2, (10)
Applying the inequality (¥ a, b,)?><Y. a2.Y b2 (11)
We obtain from (10) that
o Yim(X)Yom
S < o (12)

Also for arbitrary but fixed p, (-u, p) <( a, b),
D ROICEIN < o0 (13)

THSAM A| 2= Jo |2

Ylm (X) Ylm (y) Ylm (x)YZm(y))
Y2m (x) Ylm (y) YZm (x) YZm (y)

and Y (x,y) = Y (3, %).
Using the explicit representation for y,, (x), as given in (37) of Sengupta [11] it follows from (10)

where Y, (x,y) = ( (14)

after some manipulation that

U
f (4" (x, Ddala, b, D) (x, A) + & (x, A)dS(a, b, ) O(x, X) + ¢ (x, Nda,b, 1) Xx, 1)
—H

+6 (x, Dda, b, D) P(x, A)]. 1z — 4|72 < 0 (15)

Where o( a,b, 4), f(a, b, 1), {a,b, ) tend to a(r),p(A),y(A) respectively as a - —oo0, b —
(For detail ref. Sengupta [11]).

Hence by making a = —o0, b — oo first and then p— oo we obtain from (15) the following
theorem.

Theorem 1: For real A+ 0,
I 14" G Dda(D) ¢lx, A) + 6 (x, DA x, ) + ¢ (x, DAAD) Ox, 2)
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+6 (x, DAL D) P(x, D). |z — A2 < (16)
A consequence of Theorem-1 is the following. It is assumed that au(A),B(A),y(A) are continued to
the negative A axis as odd functions.
Theorem 2: For real A# 0, m > 0 the integrals
[ A de(A), (i) [ A7 df(A) and
(ii1) f:: A72d1(A) are all convergent.
Proof: Putting x = 0 in (16) and making use of the initial conditions (5) and (6) of Sengupta [11],
the theorem for au(A) follows easily.

Differentiating both sides of the relation (8) with reference to x we obtain

[2 L6 (a,b,x, & DR(Eym(D]dE =222 3 = 12

z=Am
Applying the Parseval equality (39) of Sengupta [11] to the functions 5—iGTT (a,b,x,& A) and

arguing in exactly the same way as before for a(A), the theorem for B(A) follows.

2
Since |dy,;(A)|" < Ida (D)1 |[dB;;(A)|, for i,j = 1,2 the theorem for y(2) also follows.
Let us now put Hy(x,y,a,b) = (HijA(x, y,a, b)) L, =12

_ e [¢" (x, Ddala, b, Dy, 1) + & (x, DdBa,b, )Xy, 1) + § (x, dKa,b, )&y, 1)
A +6 (x, )dy(a, b, Ny, 2) ]
(17)
where o), B(.), y(.) are continuous at the end points A and A+A .
Let Hy(x,y, a, b) tend to Hy(x, y) and as before a(a, b, 1), S(a, b, 1), {a, b, 1) tend to a(A), (L),

y(A) as a = —00, b — oo, Then by making a - —oo0, b — oo it follows from (17) that
Hy(6y) = (HijaCo)) i) = 1,2

=[P4 (e, Dda(D ¢y, A) + & (x, HABA) &, 2)

+¢' (x, DA O, D) + & (¢, DdHD Py, D] (18)
We prove the following theorem.
Theorem 3:  For every fixed y, HX (x, y)R(y)Ha(x,y) €L(—0, ) (19)

Proof: From the explicit representation of the normalized eigenvector y, (x)/vVA (Ref. equation
(38) of Sengupta [11]) we obtain by using (14) that
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L iin A4 yn(j:'y) = Hy(x,y,a,b) (20)

Using (20) and the orthogonality conditions for y,, (x) it follows that

b
fa HK(X, Y, a, b)R(X)HA(X, Y, a, b)dx < Zﬂsﬂns/HA yn(y' y)/A (21)

which is finite.

For arbitrary but fixed a4, by, (a1, b;) < (a, b) it follows from (21) that

b
Jol Hi(x,y, 0, D)R()HA(x, y, 0, 0)dx < Ej g 100 Yn (v, Y) /A (22)
Passing to the limit as a = —o00, b — oo we obtain from (22) that
b
Jo Hy G Y)RCOHA (6, Y)dx < X a n (0, ¥) /A (23)

As a4, b; are arbitrary, the theorem therefore follows.
Let us now put Hy(x, f) = (Hia(x, f), Hya(x, )T

= |7 Hax, »)ROf ()dy (24)
where f(x) = (f1(x), f,(x))T is a vector such that fT(x)R (x) f (x) €L(—, )
The existence of Hp(x,f) is ensured by the Schwarz inequality, the Theorem-3 and the
conditions on f(x).
In what follows we say that f(x) ea?(—0, ) or f eL? if fT(x)R(x)f (x) €L?(—o0, o).

Theorem 4: If f(x) €L?(—00,0) and (A, A+A) is any finite interval, then
Ha(x ) = [ (0, D aa(DE) + & (¢, DapDF () + § (x, DAHADF(2) +

& (x, DdADE D] (25)
Proof: Let f(x) = f,(x) = (fin (%), fon(x))7 be a vector with compact support i.e.; f (x)

defined on (—n, n) vanish outside the interval, where n<min{|a|, |b|}a<0, b>0.

Then
/" HaCx,y,a, D)RO) f(3)dy
= [0 (e Ddala, b, DE, () + & (x, Ddfa, b, DFa(A) + ¢ (x, Ddia, b, D, (A) +
& (x, Hda, b, NE,(D)] (26)
Where E, (1), E,(4) are explicitly given in (82) of Sengupta [11].
Making a — —oo, b = oo from (26) we obtain
Hy(x, f)=]" HaGe, RO f()dy = [ f+A[¢T (x, Hda(A)En (1)
+ & (x, DAFDF, () + ¢ (x, DAADE(A) + 6 (x, DA En(D)] (27)



61 DEBASISH SENGUPTA

Now let f(x) = (fi(x), ,(x))T be an arbitrary vector such that f(x)eL?(—o0, ). We
approximate in mean to f(x) by the sequence {f,,(x)}.

From (25) it follows that forr = 1,2

Hea (6, ) = [7 HIA RO ) = FOdy + [7 Hia(e, VRO )y = ]y + 2 , say.
(28)

Now |11 < (J7 |Hfa(x, Y)R()Hpa(x, )/ dy|)"”*. SN = FONTRO (f(y) —
f)ldy)*/?

(29)
Asn — o,]; = 0 and similarly J, = H,(x, f).
Therefore we obtain
Hry (2, f2) > Hya (o f) = [ B y)ROIf ()dy, 7= 1,2 (30)
Thus Hy(x, f,,) = Ha(x, f) asn — oo,
Also in the right side of (27), E,, (1), F,,(1) converges in mean to E(4), F(4) asn — oo.
(See Theorem-2 of Sengupta [11] ).
Hence the theorem follows from (27).
Theorem 5: If f(x)el?(—o,) then for any finite interval (AL,A+A) as a function of
x, HY (x, FYRGH, (x, f) € L(—e0, 00) 31
Proof With f,,(x) defined in Theorem-4 we obtain by making use of (20), (21) that

I AT OIRGHE (x,y, @, b)dy)RC([7, HaCx,y, @, RGN fn () dy) x| <
LU AT OORGHE (., 0, b)AY)R () (7, Halx,y, @, YR fou () dy)dx| =
Y aca it A% ( f_nn yEWRO) f(¥)dy)? (by (20) and the orthogonality of the eigenvectors)

<J° KT RO f(y)dy (by Bessel's inequality) (32)

where a,,b, are arbitrary but fixed and (a,, b;)( a, b).

Making a — —o0,b — oo first and then a; = —oo, b; = oo the theorem is established for the
function f,, (x).

The general result for arbitrary f(x) = (f1(x), f2(x))7 such that f(x) eL?(—0, ) follows by
approximating in mean to f (x) by the sequence {f,,(x)} for which we take note of the fact that
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" AT @R fu@dx] < | " (fa) = F@)) R (F () — F@)dx| + |17 () —

FGO) REFG)dx| + |7 AT CORGI () = FG)dx]| + |[7 FTCORCOf (x)dlx])

(33)
Theorem 6:
If £ (x) €L?(—, ), then for any non-real z, ®(x, z; Hy(x, f))= f_oo G(x,y,zZ)R(y)HA(y, f)dy

A+A
=J;

[6" (x, Dda(DEL) + & (x, DABF (D) + ¢ (x, HAAAF (1)
+6 (6, DAADED](z — AT (34)

Proof. With f,,(x) defined in Theorem-4, we have for any non-real z

D(a,b,x,z; Hy(x, fn))

= [, 6(ab,x,y; DROHAY, f)dy = Biiemoo Vo) [ VT (OROHA(E f)AE | Az = 2,)
(35)

Using (20) and (24) it now follows from (35) that

12 G(a,b,%,y; DROIHAD, f)dy = B i cann a1 VT (OR(O fo(DAD 1Az ~ 1)

(36)
Replacing ¥, (x) by that given in (37) of Sengupta [11] we obtain from (36) that
[26(a,b,x,y; DRGHy O, fi)dy
=[71F (x, Ddaa, b, DE, (D) + & (x, Ddfa, b, VE,(A) + ¢ (x, DdAa, b, )Fy(2)
+6 (x, )dAa, b, YE,(D](z — A)! (37)

where E,, (1), E,(A) are given in (82) of Sengupta [11].
The convergence to the limit of the right side of the equality (37) as a - —oo,b — o0 is obvious.
By using (27) of Sengupta [11] and (31) and closely following Chakravarty ([4] Pp-410) we
obtain that as a — —oo,b - o0 |, @(a,b,x,z;Hy\(x, f,)) and G(a,b,x,y;z) tend to
@D(x,z; Hy(x, f,)) and G (x, y; z) respectively. Since a(a, b, 4), f(a, b, 1), Aa, b, A) tend to a(4),
P(A), {A) respectively as a = —o0, b = oo it follows from (37) by making a = —o0, b — oo that
P, z; Ha(x, £) = [, G(x, y; )R(DHa(x, fr)dy

f“A[(Iﬁ (x, Dda(DE,(A) + 6 (x, DABAF(A) + ¢ (x, DAL Fn(2)
+6" (x, VAAME (D] (z — 7! (38)
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Let f(x) = (f1 (%), f2(x))T be such that f(x) €L?(—o0, ). We approximate in mean to f(x) by
means of the sequence {f,,(x)}.

By Theorem-5 and inequality (28) of Sengupta [11] as before it follows that @(x, z; Hp(x, f;,))
tend to @(x, z; Hy(x, f,,)) asn — . Also the sequences {E, (1)},{F,(4)} converge in mean to
E(A),F(A) respectively as n — oo (See Theorem-2 of Sengupta [11]). Hence by the mean
convergence theorems (Stated explicitly in Sengupta [11]) the theorem follows completely.

Let f(x), g(x) €L?(—, ). Then from (34) we have
J2, @ (%2 Ha(x, £))R(0) g (0)d (x)
= ij[ET(/Dda(ﬂ)E(@ + FT(DABDF (A) + ET(ADAADF (A)

FT(DAADED](z — D7 (39)
(The convergence problem being settled by (29) of Sengupta [11] and (31)).

3. INTEGRAL REPRESENTATION OF THE RESOLVENT

In what follows let us put

Hy(x,y = [11F (6, Dda(D) v, 2) + 6 (e, A 6, 2) + § (o, D) Ay, 2) +

& (x, )dy (D) ¢(y, 2], for x>0

—— [J14" G, Dda(D ¢y, D) + 6 (¢, DABAD Ky, 2) + ¢ (x, DAAD O, 2) +

& (x, DAAA) ¢(y, A)] , for A<0

=0,forA=0 (40)

and Hy(x, f) = [ H;(x, )RS (y)dy (41)

where f(x) = (f1(x), f2(x))T be such that f (x) €L?(—0, ).

Then H,(x, f) = [~ Hy(x, Y)RO)f (v)dy

~[716" (¢, DAa(DED) + & (x, DABDF () + ¢ (x, DAUADF (D) + & (x, DAADE ()]
(42)

[Compare Theorem-4 and Theorem-5].

We prove the following theorems.
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Theorem-7 : Let f (x) €L?(—, ). Then as a function of A, H,(x, f) is of bounded variation in

every finite A-interval.

Proof : For A# A,, write the system (1) in the form

(L + 2Ry () = (4* = 2" )Ry (x) (43)
where y, (x) is the eigenvector corresponding to the eigenvalue A,,.
Hence ¥, (x) = (A* = 23) [ G(a, b, x, & DR(Dyn(HdE (44)

satisfies the differential system (43).
For definiteness let A>0 and we prove the result for the vector f,, (x) as defined in Theorem-4. By

making use of (20) and (24) it follows that as a - —oo,b — oo, H,(x, f;,) is the limit of the

function
5= (51,527 = Sosspzrs f, Yol OR(DF(HdE
=Yosiesig Ve (@) [, VEORDf(HdE (45)

where A is any point on the finite A-interval.

By (44) it follows from (45) that

s = Sosyers (22— 22) (J7 6(a,b,x, & DRyi(HE) . (J yE(OR(Df(HAO (46)
Now, |[; 67 (a,b,x, & DR(y(Hd4
(7167 (a,b,x, & DR(EG, (@, b,x, & D dDY2. ([} YL (OR(Dyi(HIdE Y . (47)

Thus from (46) by using (21) of Sengupta [11] we obtain that s;,s, and consequently S is
bounded uniformly in any finite A-interval.
Hence, the limit function is of bounded variation. This completes the proof of the Theorem.

Theorem 8: Let f(x) €L?(—, ). Then for any non-real Z = oy + i 7% > 0and

O(x, 23 f)=[ ., dp(H,(x, )/ (2 = ) (48)
where H;(x, f) is given by (42). The integral in the right side of (48) converge absolutely.
Proof: Writing Y, (x) explicitly as given in (37) of Sengupta [11] we obtain from (6) that

o]

Aa,b,x,z;f,) = f [4" (x, Dda(a, b, DE, (1) + & (x, DdS(a, b, DF,(A)

— 00

+¢" (x, Dda, b, DE,(A) + & (x, )dy(a, b, DE,(D)](z — )~* (49)



65 DEBASISH SENGUPTA

where the vector f;,(x) = (fin(x)f2r (x))T is the same as that defined in Theorem-4.

Passing to the limit as a = —oo, b = oo we obtain from (42) and (49) that

O(x, 23 fo)=J 0, da (L fu))/ (2 = 2)

=1 14" (6, Dda(DE (D) + & (x, DABAF(D) + § (x, HAADFE,(2)

+6 (x, VAAE,(D)](z — A)7? (50)
We now approximate in mean to the vector f(x) = (fi(x),f>(x))T which satisfy that
f(x) eL?(—0, ) by means of the sequence {f,,(x)}.

By using (24) of Sengupta [11], ®( x, z; f,,)— D(x,z; ). Let us now consider the right side of
the equality (50). Let us put

CFe [TMUHAR) | m R | dHAGR)
(D( X, Z, fn) f—oo (z-12) + f—m (z—=4) + fm (z-4H

=K; + K; + K3, say 51

where m is an arbitrary positive number.

From the Parseval relation as given in (72) of Sengupta [11] it follows that as m— oo,

S IER (DA a(DEL(A) + L (DABDF(A) + EF(DAADF (D) + FT (DdAADER (D] = 0(1)
(52)

and from (16) we obtain as m— oo

L8 (x, Dda() glx, ) + 6 (x, DB 6(x, 2) + ¢ (x, AAA) &x, 2)

+6" (x, DA p(x, D]lz — 272 = 0(1) (53)

To each of the integrals K;,i = 1,2,3 ,we apply the inequality Hardy et al. ([7], Section 29, Pp —

33).

Ly, < Rax,x)? (Eayy)? .

where a,,, = a,,, Y. a,,x,x,is a positive quadratic form (with real but not necessarily positive

coefficients). Then using (52), (53) we obtain as in Chakravarty and Roy Paladhi ([6], Pp-150)

that K; » 0 as m — oo.

Similarly, K; — 0 as m — oo.

Integrating by parts we get

Kz _ Hpn (X, fn) _ H_m (X,fn) f_r:ln H,l(x, fn) (Z _ j’)—Zdl (54)

(z—m) z+m N



RESOLUTION OF THE IDENTITY 66

By Theorem-7 we have

lim [™ da(Ha(ofn)) _ ™ Ll (55)

nowd-m  z-2 -m  z-2

Since m is arbitrary, the theorem follows from (55).

Now from (50) we obtain that for any non-real z and vectorsf (x), g(x) €L?(—o0, ©)

[5 @z ARG dx = [7 [ET(Dda(DEW) + FT(DdHDF () +

ET(DAADF (D) + FT(DAADED]/(z = A) (56)

4. RESOLUTION OF THE IDENTITY

Let f(x= (i), L0NT , g =(g:(x),9,(x))T be two vectors such that
f(x), g(x) eL?(—o0, o). For A>0. put

J(f,9.2) = [, H] (x, HIR()g(x)dx (57)
and J(f, 1) = J(f, f, A); where A>0 (58)
(For notation compare Titchmarsh ([12]Pp-50))

where H;(x, f) is given by (41).

Using the expressions for H;(x, f) given in (42) in the usual manner we obtain

J(f.9,0) = [JIET(Dda(DEQ) + FT(DAADF(A) + ET(DANDF(A) + FT(DdUDE )]

(59)
Now the equation (39) can be expressed as
5,8 (2,2 Halxe, PR@g()dx = [ d,((f, 9. 2)/(z = 2) (60)
Putting H,(x, f) for f(x) in (56) and using (59) we also obtain
[5, @ (%2 Hy (e, )R g () dx = [ 7, d,( (Haf, 9. 2)/ (2 = 2) (61)
From (57), (60), (61) and the uniqueness theorem for the Stieltjes transforms it follows that
H;.Hy = Hjna (62)

where AN A= (-0, )N (4, A+ A)

(See Levitan and Sargsjan ([8], Pp-129 and Pp-503))

Let A and A’ denote the intervals (A, A+A) and (1, ' + A") respectively. Then
Hyy-Hy = (H(_ao a7y = Hioo s} H

= H(—oo,ﬂ,’+A')HA - H(—oo,/l’)HA
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= H(—oo,/1’+A’)nA - H(—w,/l')nA
~Hi(coo 1 +a)~ (-0, ya"H a0 (63)
We obtain the following theorem.
Theorem 9: Let A= (1, A+ A),A’= (1, A + A"), then
J2o Ha(x YR(OHy (£,9)dE = Hpqy (x,9)
(64)
Proof From the representation of Hy(x,y) given by (20) and by the orthogonality conditions

for the eigenvectors it follows that

JZ HyCx, OR(OHy (& y)déE

LS (x4 yn(&y)
= f_oo Z/ls/ins/HAnT-R(@-Zg’sgnsﬂ’.m' nA .d§

Yn (%, @/A

= Z,Ln eAnA’ = Hpnn' (%, Y) -

Hence the theorem is proved.

Let J(f,g,0) = lim J(f, g, ) (65)
The generalized Parseval formula (90) of Sengupta[11] now takes the form

I TR g(x)dx = ] (f, g, ) — J(f, g, =) (66)
By (59) we also obtain

JT(f, 9.0 =J(g.f, ) (67)

Now we apply the Stieltjes inversion formula (See Levitan and Sargsjan [8] Pp-502) to each of

the elements of ®( x, z; f) (Z being non-real) given by (48) and obtain

H,(x,f) = lirr(}f:lm@(x,0'+ iy,fddo,A=oc+iny>0 (68)
>

By making use of the definition of H,(x, f) given by (41) and that of ®( x, 4, f) by
O(x, 4 f) = [, Gy, DROHf ¢)dy (69)

(G(x,y, A) being the Green's matrix) which follows by making a - —oo, b — o0 in (22) of
Sengupta [11], we obtain by proceeding as in Chakravarty and Roy Paladhi ([6], Pp-141) that
H;(x,y) = —lyi_}rr(} fO”ImG(x,y, o+ iydo (70)
From (6)

f; @ (a,b,x,z; f)R(x)g(x)dx
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= [2 [ FT(OR(OGC (a,b, 1, £2) RUpS ()dédn

= S s (71)
Where C, = = [ W (HR(Df(Hd&
dn == J; VE(OR(Dg(HdE (72)

the Fourier coefficients off (x) and g(x) respectively.

Therefore,
“lim [} [} [(RQf (D) (1mG"(a,b,7.& 01 + i7,) ) R g (md&dndoy

0 s d :
o Can [ oS (F= o+ i) (73)

Where the integral [ {f ﬁ does not exceed I1.
—o1)2+7

On taking g(x) = f(x),d,, = C, we have from (73)
122 (RF(©) (HE (@b, 1,8 — HL(a, b, 1, &) RUDf (n)dédn = 0 (74)

Hence if f(x) = f,,(x) vanish outside (a,, b;) < (a, b) we have

[ [ (RO£(D) (HE (@ b, 1, &) — HE(a, b, 1, ) RUDfu(m)dédn = 0

By making a - —o0, b — o0 we obtain

12 (Hon £ = Holn £)) RODFu(mddn = 0 (75)
From this it follows that in the usual way by a mean square approximation that for any

f(x) €L? (=00, )

J&. P 2](f, @) for = a (76)
(Compare Titchmarsh [12] Pp- 51-53).

From the relations (63), (66), (67) and (76) it follows that the family of operators H,(x,y)
defined by (40) satisfy the properties of (i) orthogonality (ii) completeness (iii) self-adjointness
and (iv) monotonicity. H;(x,y) thus plays on essential role in deriving the resolution of the
identity of the operator L, (See Levitan and Sargsjan [8] Pp - 129). Also compare Chakravarty
and Roy Paladhi ([5]).

We can define H;(x, y) by (68) as in Chakravarty and Roy Paladhi [[5]] and obtain results of the

forgoing section.
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5. INTERPRETATION IN TERMS OF THE THEORY OF LINEAR OPERATORS
Our analysis now closely follows Titchmarsh [12]. We simply outline the procedure giving
details only when we considerably differ.

From (68) it follows that
dH,(x, f) = —lim Im®(x, u + iy, f)du (77)
-

Let the vectors f(x) = (f;(x), f>(x)); and f(x) = Lf(L given by (2)) which satisfy the equation
(30) of Sengupta[11] and f(x) €L?(—o0, ). Then
Imd(x, A, f) = Im{Ad(x, 2, )} (78)
and H,(x, ) = I}/LII(} Jy Im®(x, o+ iy, fdo

= —lim f: omd(x, c+ iy, f)do+ lim [ yRed(x, o+ iy, f)do

-0 00

=H, + H, , say (79)
By (70), Hy = [ odH,(x, f).
By Theorem-8, fo Re®(x, o+ iy, f)dois finite.

Hence H, — 0 as y— 0.

Thus H,(x, f) = [} odH,(x, f) (80)
Therefore , J(f, g, 1) = J-, Hi (& FIR(Dg(HAE

= 7 (¥ odH (& ) R(Og(HAE

= [y od(J° HL(E F)R(Hg(HAE

= Jy ol (f,g,0) (81)

In view of the relation (41) the expansion formula as given in (91) of Sengupta [11] for the

function f (x) takes the form
F = lim 1%, (.00 9 — H_u(x.9) ROF(&4E (- real
= lim (H,(x. ) = H_(6 /) (82)
Therefore, [ fT(x)R(x)g(x)dx
= tim %, (Hu(x.f) = Hou( 1)) RG@g()dx
=liml/(f,9.4) =) (.9, ~1)]
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=lim [* odJ(f.g,0) (83)
p—o0 " TH
For real A, from (75) it follows that
J(F.2) = J; cd)(Fof, o) = [y oddfy W (f )}
= [, Pd(f, o) (84)
Hence, ffooo FT()RX) f(x)dx
=](f,oo)—](f,—oo) bY(66)
=2, ol (. o). by (83)
=5, Pd(f,0) (85)
As p(x),q(x), r(x) are real-valued twice differentiable functions of x over (-0, 0), the
differential operator L, generated by (2) is a symmetric operator on L?(-c0, 00).
Put K(x;y, /1) = Hﬂ—O(x'y) - H—oo(x'y)a (}\’ real) (86)

(For notation See Chakravarty and Roy Paladhi [5])
Then the operator

GO f(x) » [ KT(x, & DR(DS(HAE (87)
(ie; GDF () = [ KT(x, & DR(OF(HAY

is a linear symmetric operator on L?(—o0, 00)

(See Chakravarty and Roy Paladhi [5]), K(x, y, 4) being a Carleman type kernel.

We now argue as in Titchmarsh ([12], Pp-55). (Also Ref Chakravarty and Roy Paladhi [5], Pp-
160-161) so as to obtain ultimately

Ly=[" 2dG(%) (88)
where G (1) is the resolution of the identity of the self-adjoint differential operator L, generated
by the given differential equation (1).

Thus we obtain the follow theorem.

Theorem 10: The matrix H;(x,y) (A-real) defined by (40) generates an operator G (A) given by
(87) which is associated with the differential operator L given by (2). L, generated by the
differential expression (1) is associated in the same way as the resolution of the identity of a

given operator T is associated with T. G (A) is the resolution of the identity of the operator Ly.



71

DEBASISH SENGUPTA

The matrix H;(x, y) generating the operator G (1) may be called the resolution matrix of the

operatorLy,.
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