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Abstract: In this paper, we investigated the effect of magnetic field on the peristaltic transport of a Jeffrey fluid 

through a porous medium in an annulus.  The analysis has been carried out in the wave frame of reference with long 

wavelength and zero Reynolds number assumptions. The expressions for the velocity field and the heat transfer 

coefficient are obtained analytically. The effects of various emerging parameters on the axial pressure gradient and 

pumping characteristics are discussed in detail with the aid of graphs. 
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1. Introduction 

In recent years, the flow of non-Newtonian fluids has been an important topic in the field 

of biomedical and environmental engineering and science. Certainly the mechanics of non-

Newtonian fluids presents special challenges to engineers, physicists, and mathematicians. This 

is due to the fact that nonlinearity evident itself in a variety of ways. The flow of non-Newtonian 

fluids is not only important because of their technological significance but also in the interesting 

mathematical features presented by the equations that governing the flow. Extensive literature on 

the subject is now available. Peristaltic transport of blood in small vessels was investigated using 

the viscoelastic, power-law, Casson, micropolar fluid models by [2,11,12,13]. Hayat et al. [4] 

have studied the the peristaltic flow of a Jeffrey fluid assuming chyme as a non-Newtonian fluid 
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in an annulus. The effect of an endoscope on the peristaltic flow of a micropolar fluid was 

studied by Hayat and Ali [6].  

The study of MHD flow problems has gained considerable interest in recent years 

because of its extensive engineering and medical applications. The effect of moving magnetic 

field on blood flow was first investigated by Stud et al. [14].  They observed that the effect of 

suitable moving magnetic field accelerates the speed of blood. Agrawal and Anwaruddin [1] 

have studied the effect of magnetic field on blood flow by taking a simple mathematical model 

for blood through an equally branched channel with flexible outer walls executing peristaltic 

waves. The influence of an endoscope on the peristaltic flow of a Jeffrey fluid under the effective 

of magnetic filed in a tube was studied by Hayat et al. [7]. Peristaltic flow of a Jeffrey fluid 

under the effect of a magnetic field in a tube was discussed by Hayat and Ali [8].  Furthermore, 

flow through a porous medium has practical applications especially in geophysical fluid 

dynamics. Examples of natural porous medium are beach sand, sandstone, lime stone, rye bread, 

wood, the human lung, bile duct, gall bladder with stones and in small blood vessels. In view of 

this, El Shehawey et al. [3] investigated the peristaltic flow of a Newtonian fluid through a 

porous medium. Mekheimer and Al-Arabi [10] have discussed the peristaltic flow of a 

Newtonian fluid through a porous medium in a channel under the effect of magnetic field.  The 

peristaltic flow of electrically conducting fluid through a porous medium in a planar channel was 

investigated by Hayat et al. [5]. Sudhakar Reddy et al. [16] have studied peristaltic motion of a 

Carreau fluid through a porous medium in a channel under the effect of a magnetic field.  Subba 

Reddy and Prasanth Reddy [15] have investigated the peristaltic pumping of a Jeffrey fluid with 

variable viscosity through a porous medium in a planar channel. Recently Jyothi and 

Koteswararao [9] have studied the slip effects on MHD peristaltic transport of a Williamson fluid 

through a porous medium in a symmetric channel.  

 In view of these, we studied the effect of magnetic field on the peristaltic transport of a 

Jeffrey fluid through a porous medium in an annulus.  The analysis has been carried out in the 

wave frame of reference with long wavelength and zero Reynolds number assumptions. The 

expressions for the velocity field and the heat transfer coefficient are obtained analytically. The 

effects of various emerging parameters on the axial pressure gradient and pumping 

characteristics are discussed in detail with the aid of graphs.  
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2. Mathematical Formulation  

We consider the peristaltic transport of an incompressible conducting Jeffrey fluid 

through a porous annular region between two coaxial vertical tubes. The flow is generated by 

sinusoidal wave trains propagating with constant speed c  along the wall of the outer tube. The 

fluid subjected to a constant transverse magnetic field. Induced magnetic field, external electric 

field, electric field due to polarization of charges, heat due to viscous and joule dissipation are 

neglected. The axisymmetric cylindrical polar coordinate system  ,Z R  is chosen such that the 

Z - coordinate is along the center line of the inner and outer tubes and R - coordinate along the 

radial coordinate. Fig. 1 depicts the physical model of the problem.  

The geometry of the inner and outer walls are defined by 

1 0R R a          (2.1) 

   2

2
, sinR R Z t a b Z ct





 
    

 
    (2.2) 

where 
0,a a  are the radii of the inner and outer tubes, b  is the amplitude of the wave,   is the 

wavelength and t  is the time.  

The flow is unsteady in the fixed frame ,Z R . However, in a co-ordinate system moving 

with the propagation velocity c  (wave frame ,z r ), the boundary shape is stationary. The 

transformation from fixed frame to wave frame is given by 

 , , ,z Z ct r R w W c u U           (2.3) 

where ,w u  and ,W U  are the velocity components in the wave and fixed frames respectively.  
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Fig. 1. The physical model 

 

The constitute equation of S  for Jeffrey fluid is  

 2

11
S


  


 


       (2.4) 

where  is the dynamic viscosity, 
1  is the ratio of relaxation to  retardation times, 

2 is the 

retardation time,   is the shear rate and dots over the quantities denotes differentiation with time.  

The equations governing the flow in the wave frame of reference are  

0
u u w

r r z

 
  

 
        (2.5) 

 
1 rz

rr

u u p S
u w rS u

r z r r r z k




     
      

     
   (2.6) 

 2

0

1
( ) zz

rz

w w p S
u w rS B w c

r z z r r z k


 

       
          

       
 (2.7) 

where p  is the pressure, k is the permeability of the porous medium and   is the density of the 

fluid.  

The dimensional boundary conditions are 

         w c          at             
1 2, ( )r R R z      (2.8) 

 Introducing the non-dimensional variables defined by  
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where M  is the Hartmann number, Da  is the Darcy number, Re  is the Reynolds number,   is 

the wave number,   is the amplitude ratio, into the Equations (4.2.5) – (4.2.7), we obtain (after 

dropping the bars) 

 0
u u w

r r z

 
  

 
        (2.10) 

 3 2Re rz
rr

u u p S
u w rS u

r z r r r z Da

 
 

     
      

     
  (2.11) 

 21 1
Re ( ) 1zz

rz

w w p S
u w rS M w

r z z r r z Da
 

       
          

       
(2.12) 

where  

2
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1
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rz

c u
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
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



    
         

       
               

 

and 2

1

2
1

1
zz

c w
S u w

a r z z

  



    
         

. 

Under lubrication approach (i.e., 1  and Re 0 ), the Equations (2.11) and (2.12) become 

0
p

r





        (2.13) 

 2

1

1 1
1

(1 )

p w
r M w

z r r r Da

     
      

      
              (2.14) 

From Eq. (2.13) and (2.14), we write Eq. (2.14) as 

 2

1

1
(1 ) 1

dp w
r N w

dz r r r


  
    

  
    (2.15) 

here 
2 2

1

1
(1 )N M

Da


 
   

 
. 
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The corresponding non-dimensional boundary conditions are 

1w    at  
1 2,r r r      (2.16) 

The dimensionless volume flow rate in the wave frame is given by 

2

1

2
r

r
q wrdr          (2.17) 

The dimensionless instantaneous volume flow rate in the fixed frame of reference is 

given by 

 
2 2

1 1

2 2

2 1( , ) 2 2 1
r r

r r
Q z t WRdR w rdr q r r         (2.18) 

The dimensionless time mean flow over a period  /T c  of the peristaltic wave, is 

defined as 

2
2

1

0

1
( , ) 1

2

T

Q Q z t dt q r
T


          (2.19) 

 

3. Solution  

Solving Eq. (4.2.15) together with the boundary conditions (4.2.16), we get 

 
   1

1 0 2 02

1
1 1

dp
w A I r A K r

dz


        

         (4.3.1) 

where  

   0 2 0 1

1

K r K r
A

A

  
 , 

   0 1 0 2

2

I r I r
A

A

  
  and  

       0 1 0 2 0 2 0 1A I r K r I r K r      . 

 The volume flow rate q  is given by 

 
 

2

1

2 21

3 2 12

1
2 2

r

r

dp
q wrdr A r r

dz


   

    (3.2) 

in which  

       
 2 2

2 11 2
3 2 1 2 1 1 1 1 1 1 2 1 2

2

r rA A
A r I r r I r r K r r K r


                

. 

From Eq. (4.3.3), we have  
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  
 

2 2 2

2 1

3 12 1

q r rdp

dz A 

  



      (3.3) 

The pressure rise p per one wave length is given by 

1

0

dp
p dz

dz
          (3.4) 

 Note that, as 0M   and Da  our results coincide with the results of Hayat et al. 

(2006).  

 

4. Results and Discussions  

Fig. 2 shows the variation of axial pressure gradient 
dp

dx
 with material parameter 

1   for 

0.5,   0.2,   1M  , 0.1Da   and 1Q   . It is observed that, the axial pressure gradient 

dp

dx
 decreases with increasing 

1 .  

The variation of axial pressure gradient 
dp

dx
 with Hartmann number M   for 

0.5,  0.2,    
1 0.4   and 1Q    is shown in Fig. 3. It is found that, the axial pressure 

gradient 
dp

dx
 increases with increasing M .  

Fig. 4 depicts the variation of axial pressure gradient 
dp

dx
 with Darcy number Da   for 

0.5,   1M  , 0.2,    
1 0.4   and 1Q   . It is found that, the axial pressure gradient 

dp

dx
 decreases with an increase in Da .  

The variation of axial pressure gradient 
dp

dx
 with    for 0.5,   

1 0.4  , 1M  , 

0.1Da   and 1Q    is shown in Fig. 5.  It is noted that, the axial pressure gradient 
dp

dx
 

increases with increasing  .  
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Fig. 6 illustrates the variation of axial pressure gradient 
dp

dx
 with    for 

1 0.4  , 1M  , 

0.2,   0.1Da  and 1Q   . It is found that, the axial pressure gradient 
dp

dx
 increases with 

increasing  .  

The variation of pressure rise p with time-averaged flux Q  for different values of 
1  

with 0.5,   1M  , 0.2   and 0.1Da   is shown in Fig. 7. It is observed that, the time-

averaged flux Q  decreases with increasing 
1  in the pumping region  0p  , while it 

increases with increasing 
1  in both the free-pumping  0p  and co-pumping  0p   

regions. Further it is found that, the Q  is more for Newtonian fluid  1 0   than that of 

Newtonian fluid.  

Fig. 8 shows the variation of pressure rise p with time-averaged flux Q  for different 

values of M  with 0.5,   1M  , 0.2   and 0.1Da  . It is observed that, the time-

averaged flux Q  increases with increasing M  in both the pumping and free-pumping regions, 

while it decreases with increasing M  in the co-pumping regions.  

The variation of pressure rise p with time-averaged flux Q  for different values of Da  

with 0.5,   1M  , 0.2   and 
1 0.3   is shown in Fig. 9. It is noted that, the time-

averaged flux Q  decreases with increasing Da  in both the pumping and free-pumping regions, 

while it increases with increasing Da  in co-pumping region.  

Fig. 10 depicts the variation of pressure rise p with time-averaged flux Q   for different 

values of   with 0.5,   1M  ,
1 0.4   and 0.1Da  . It is found that, the time-averaged 

flux Q  increases with increasing   in the pumping region, while it decreases with increasing   

in both the free-pumping and co-pumping regions.  

The variation of pressure rise p with time-averaged flux Q   for different values of   

with 
1 0.4  , 1M  , 0.2   and 0.1Da   is depicted in Fig. 11. It is observed that, the time-
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averaged flux Q  increases with increasing   in the pumping region, while it decreases with 

increasing   in both the free-pumping and co-pumping regions. 

 

5. Conclusions 

 In this paper, we modeled the peristaltic flow of a Jeffrey fluid through a porous in an 

annular region between two concentric tubes under the assumptions of low Reynolds number and 

long wavelength. The expressions for the velocity field and the pressure gradient are obtained 

analytically.  It is found that, the axial pressure gradient and pumping decrease with increasing 

1  and Da , whereas they increase with increasing M ,   and .  

 

 

Fig. 2    The variation of axial pressure gradient 
dp

dx
 with 

1   for 0.5,   

                0.2,   0.1Da  , 1M  and 1Q   .  
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Fig. 3    The variation of axial pressure gradient 
dp

dx
 with M   for 0.5,   

               0.2,   
1 0.4  , 0.1Da  and 1Q   .  

 

Fig. 4    The variation of axial pressure gradient 
dp

dx
 with Da   for 0.5,   

                0.2,   
1 0.4  , 1M  and 1Q   .  
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Fig. 5    The variation of axial pressure gradient 
dp

dx
 with    for 0.5,   

                
1 0.4  , 0.1Da  , 1M  and 1Q   .  

 

Fig. 6    The variation of axial pressure gradient 
dp

dx
 with   for 

1 0.4  ,  

               0.2,   0.1Da  , 1M  and 1Q   .  
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Fig. 7    The variation of pressure rise p with time averaged flux Q  for  

              different values of 
1  with 0.5,   0.2  , 1M   and 0.1Da  .  

 

 

Fig. 8    The variation of pressure rise p with time averaged flux Q  for  

             different values of M  with 0.5,   0.2  , 
1 0.4   and 0.1Da  .  
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Fig. 9    The variation of pressure rise p with time averaged flux Q  for 

             different values of Da  with 0.5,   0.2  , 1M  and 
1 0.4  .  

 

 

Fig. 10    The variation of pressure rise p with time averaged flux Q  for  

               different values of   with 0.5,   
1 0.4   , 1M  and 0.1Da  .   
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Fig. 11    The variation of pressure rise p with time averaged flux Q  for 

                different values of   with 
1 0.4  , 0.2  , 1M   and 0.1Da  .  
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