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Abstract: This paper examined the combined effects of irresponsible infective immigrants and vertical transmission 

in a varying population. A mathematical model for the problem was proposed and transformed into proportions in 

order to define the prevalence of infection. Using the next-generation method, the basic reproduction number 𝑅0 was 

computed in terms of the parameters of the transformed model. The disease free equilibrium was obtained and found 

to be locally asymptotically stable when 𝑅0 < 1 and unstable for  𝑅0 > 1. By the method of the centre manifold 

theory, the existence of transcritical bifurcation was investigated. The study ascertained that forward bifurcation 

existed if certain conditions were met. Numerical simulation of the model was carried out to assess the effect of 

irresponsible HIV infective immigrants and vertical transmission in the spread of HIV/AIDS disease. The result 

showed that screening and counselling the irresponsible HIV infective immigrants will help to reduce the spread of 

HIV and prevent MTCT.  

Keywords: irresponsible infective immigrants; the basic reproduction number; backward bifurcation; vertical 

transmission; responsible infectives; HIV/AIDS. 
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1.0 Introduction 

Human Immunodeficiency Virus (HIV) is a single-stranded RNA virus which uses host DNA as 

an intermediary for its own replication. It is unable to replicate on its own and must first infect a 

living cell in order to replicate. HIV is a retroviral disease that was first discovered in 1981 in the 

United State of America [1]. The virus is the causative agent of Acquired Immunodeficiency 

Syndrome (AIDS).  
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AIDS is a chronic, potentially life threatening condition caused by HIV by destroying the 

immune system of the individual leading to opportunistic infections, neurological manifestations 

and rare CNS malignancies. It is the sixth leading cause of death among people aged 25-44 years 

in the United State of America. As at the end of 2012, the World Health Organization (WHO) 

estimates that around 35.2 million people in the world are living with HIV. More than 60% of 

this global estimate resides in Sub-Sahara Africa (SSA) which has been most severely affected 

by the HIV/AIDS pandemic with almost 9% of its adult population living with HIV [2, 3]. 

HIV/AIDS is a sexually transmitted infectious disease which can also be spread through contact 

with infected blood, blood products and body fluids. HIV/AIDS has had profound social, 

economic and public health consequences in SSA. It has cut down annual growth rates in Africa 

by 2 to 4% per year [4]. 

According to [5], sexual intercourse alone accounts for over 80% of reported cases of HIV 

infection. The prevalence of HIV infection among irresponsible infective (e.g. truck drivers and 

female sex workers e.t.c) was carried out by [6]. Most of the truck drivers have wives and other 

sexual partners who are always at risk of HIV infection. 

Vertical transmission of HIV/AIDS also called Mother-to-Child transmission (MTCT) occurs 

when the virus is spread from an HIV positive woman to her baby. The transmission from 

mother to child may occur in uterus, at the time of birth, or after birth. The risk of transmission 

can be as high as 90%, especially in developing countries with varying population. An estimated 

220,000 exposed children are born each year. Without prevention of mother-to-child 

transmission (PMTCT), about 88,000 of these are infected whereas with PMTCT only 2% (4,400) 

are infected. Nigeria has 30% of the global burden of MTCT [7]. It is therefore imperative to 

consider the dynamics of vertical transmission in the spread of HIV/AIDS disease. 

Several researchers have developed interest in HIV/AIDS in order to understand and explain the 

dynamics and spread of the disease. Thus, many mathematical models as well as methods of 

analysing them were proposed. The work in [8,9] studied the effect of careless susceptible, 

infective immigrants and irresponsible infectives in varying population, while some studied the 

spread of HIV/AIDS with vertical transmission [10,11,12]. 

In this paper, we propose a variate of the model by [8] who developed a non-linear mathematical 

model to study the impact of irresponsible infective immigrants on the spread of HIV/AIDS. 
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They established that screening and reduction in the number of immigrants into a given 

population could help control the spread of the disease. 

The model by [8] forms the motivation for this study in which we intend to investigate the effect 

of irresponsible infective and vertical transmission on the dynamics of HIV/AIDS. 

 

2.0 Model Formulation 

Let 𝑁(𝑡) be the total population of size at time  𝑡. The population 𝑁(𝑡) is divided into four 

classes namely; susceptible  𝑆(𝑡), irresponsible infectives, 𝐼1(𝑡), responsible infectives 𝐼2(𝑡) and 

full-blown AIDS patients 𝐴(𝑡) with natural mortality rate 𝜇 in all classes and 𝛼 as the disease 

induced death rate in the AIDS patients class. We assumed that susceptibles are recruited at the 

rate 𝑏𝑁 and become infected through sexual contacts with the infectives 𝐼1(𝑡)  and 𝐼2(𝑡) at rate  

λ𝑡, where  

λ𝑡 =
𝑐1𝛽1𝐼1 + 𝑐2𝛽2𝐼2

𝑁
                                                                               (1)  

𝑐1 represents the mean number of sexual partners of the individuals in 𝐼1(𝑡) and 𝑐2 for the class 

of individuals in 𝐼2(𝑡) while 𝛽1 and 𝛽2 are the respective sexual contact rates of the 𝐼1(𝑡) and 

𝐼1(𝑡) classes. Note in our proposed model  𝑐1 > 𝑐2  unlike the model in [8]. This is because 

irresponsible infectives are likely to have more sexual partners than responsible infectives as in 

the case of sex workers and truck drivers. It is assumed that the sexual contact between 

susceptible 𝑆(𝑡) and irresponsible infective 𝐼1(𝑡) may lead to the birth of infected children with a 

fraction  (1 − 𝜀) while the complementary fraction 𝜀 dies during birth due to the infection. The 

responsible infective is conscious of infected newborns because of the counselling and awareness 

of HIV/AIDS disease. We assumed also direct recruitment of irresponsible infectives 

(immigrants) with the rate 𝛾. Some irresponsible infectives progress to responsible infectives 

after going through counselling at the rate 𝜃 while some 𝐼1(𝑡) and 𝐼2(𝑡) progress to AIDS class 

with rates 𝛿1 and 𝛿2 respectively. The full-blown AIDS class is assumed to be sexually inactive 

due to their illness. Where 𝜀 is fraction of newborns that are HIV free and ϕ is the birth rate of 

newborns infected with HIV by irresponsible infectives. Irresponsible infectives are either those 

who may not be aware of their status or even if they are aware, they do not adhere to medication 

and counselling on risk reduction while responsible infectives are those who know their status 

and adhere to medication and counselling on risk reduction and MTCT.   
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Based on the above assumptions, the governing system of differential equations for the spread of 

the disease is given by  

 

𝑑𝑠

𝑑𝑡
= 𝑏𝑁 − λ𝑡𝑆 − 𝜇𝑆                                                                       (2)   

𝑑𝐼1

𝑑𝑡
= λ𝑡𝑆 + 𝛾𝐼1 − (𝜃 + 𝛿1 + 𝜇)𝐼1 + (1 − 𝜀)ϕ𝐼1                      (3)

𝑑𝐼2

𝑑𝑡
= 𝜃𝐼1 − (𝛿2 + 𝜇)𝐼2                                                                    (4)

𝑑𝐴

𝑑𝑡
= 𝛿1𝐼1 + 𝛿2𝐼2 − (𝛼 + 𝜇)𝐴                                                        (5)

 

with initial conditions  

 𝑆(0) = 𝑆0, 𝐼1(0) = 𝐼10,   𝐼2(0) = 𝐼20,   𝑎𝑛𝑑  𝐴(0) = 𝐴0 

The total population 𝑁(𝑡)is given as 

 𝑁(𝑡) = 𝑆(𝑡) + 𝐼1(𝑡) + 𝐼2(𝑡) + 𝐴(𝑡)                 

This implies that 

 
𝑑𝑁(𝑡)

𝑑𝑡
=

𝑑𝑆

𝑑𝑡
+

𝑑𝐼1

𝑑𝑡
+

𝑑𝐼2

𝑑𝑡
+

𝑑𝐴

𝑑𝑡
                             

or    

 
𝑑𝑁

𝑑𝑡
= (𝑏 − 𝜇)𝑁 + (𝛾 + (1 − 𝜀)ϕ)𝐼1 − 𝛼𝐴                                              (6) 

                                          

Now, in the above system (2) − (5), we use the following transformations: 

 𝑠 =
𝑆

𝑁
 ,    𝑖1 =

𝐼1

𝑁 
 , 𝑖2 = 

𝐼2

𝑁
 , 𝑎 =

𝐴

𝑁
  

to get the following normalised system: 

𝑑𝑠

𝑑𝑡
= 𝑏 − 𝑏𝑠 − 𝑐1𝛽1𝑠𝑖1 − 𝑐2𝛽2𝑠𝑖2 − 𝛾𝑠𝑖1 − (1 − 𝜀)ϕ𝑖1𝑠 + 𝛼𝑎𝑠                                          (7)

𝑑𝑖1
𝑑𝑡

= 𝑐1𝛽1𝑠𝑖1 + 𝑐2𝛽2𝑠𝑖2 − (𝜃 + 𝛿1 + 𝑏)𝑖1 + (1 − 𝜀)ϕ𝑖1(1 − 𝑖1) + (𝛼𝑎 + 𝛾 − 𝛾𝑖1)𝑖1   (8)

𝑑𝑖2
𝑑𝑡

= 𝜃𝑖1 − (𝛿2 + 𝑏)𝑖2 + (𝛼𝑎 − 𝛾𝑖1 − (1 − 𝜀)ϕ𝑖1)𝑖2                                                              (9)

𝑑𝑎

𝑑𝑡
= 𝛿1𝑖1 + 𝛿2𝑖2 − (𝛼 + 𝑏)𝑎 + (𝛼𝑎 − 𝛾𝑖1 − (1 − 𝜀)ϕ𝑖1)𝑎                                                  (10)

𝑎𝑛𝑑

𝑠(0) = 𝑠0, 𝑖1(0) = 𝑖10,   𝑖2(0) = 𝑖20  𝑎𝑛𝑑   𝑎(0) = 𝑎0
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3.0 Positivity of Solutions 

For the model to be epidemiological meaningful and well posed, we need to prove that all state 

variables are all non-negative. 

Theorem 1.0 

Let  𝛺 = {(𝑠, 𝑖1, 𝑖2, 𝑎) ∈ 𝑅4
+: 𝑠 + 𝑖1 + 𝑖2 + 𝑎 = 1 𝑎𝑛𝑑 𝑠(0) > 0, 𝑖1(0) ≥ 0, 𝑖2(0) ≥

0 𝑎𝑛𝑑 𝑎(0) ≥ 0)}, then the solution {𝑠(𝑡), 𝑖1(𝑡), 𝑖2(𝑡), 𝑎(𝑡)} of the equations (7)-(10) are all 

non-negative for all 𝑡 ≥ 0. 

Proof 

Using equation (7) for   
𝑑𝑠

𝑑𝑡
, we have 

 
𝑑𝑠

𝑑𝑡
≥ −(𝑏 + 𝑐1𝛽1𝑖1 + 𝑐2𝛽2𝑖2 + 𝛾𝑖1 + (1 − 𝜀)ϕ𝑖1)𝑠  or 

 
𝑑𝑠

𝑑𝑡
≥ −𝜑𝑠,   where 𝜑 = (𝑏 + 𝑐1𝛽1𝑖1 + 𝑐2𝛽2𝑖2 + 𝛾𝑖1 + (1 − 𝜀)ϕ𝑖1) 

Integrating both sides and applying the initial condition 𝑠(0) = 𝑠0, we have  

 𝑠(𝑡) ≥ 𝑠0𝑒
−𝜑𝑡 

It is clear that, as 𝑡 → ∞  

 𝑠(𝑡) ≥ 0  since   𝑠(0) > 0  

For   
𝑑𝑖1

𝑑𝑡
, we have  

𝑑𝑖1
𝑑𝑡

≥ −(𝜃 + 𝛿1 + 𝑏)𝑖1 

or 

𝑑𝑖1
𝑖1

≥ −(𝜃 + 𝛿1 + 𝑏)𝑑𝑡 

Integrating both sides, we have  

𝑖1(𝑡) ≥ 𝐴𝑒−(𝜃+𝛿1+𝑏)𝑡 

Applying the initial condition 𝑖1(0) = 𝑖10, we obtain 

𝑖1(𝑡) ≥ 𝑖10𝑒
−(𝜃+𝛿1+𝑏)𝑡 

and  𝑖1(𝑡) ≥ 0 as 𝑡 → ∞. 

Similarly,  

𝑑𝑖2
𝑑𝑡

≥ −(𝛿2 + 𝑏)𝑖2 

from which we obtain 
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𝑖2(𝑡) ≥ 𝑖2(0)𝑒−(𝛿2+𝑏)𝑡 

and  

 𝑖2(𝑡) ≥ 0 as 𝑡 approaches infinity. 

Furthermore, 

𝑑𝑎

𝑑𝑡
≥ −(𝛼 + 𝑏)𝑎 

or 

𝑎(𝑡) ≥ 𝑎0𝑒
−(𝛼+𝑏)𝑡, 

which gives 

 𝑎(𝑡) ≥ 0 as 𝑡 → ∞. 

Clearly, this proves the above result in theorem 1.0. 

 

3.1 Disease - Free Equilibrium (DFE) 

The disease – free equilibrium is the equilibrium where there is no disease in the population. 

At equilibrium point, 
𝑑𝑠

𝑑𝑡
=

𝑑𝑖1

𝑑𝑡
=

𝑑𝑖2

𝑑𝑡
=

𝑑𝑎

𝑑𝑡
= 0, we have the following systems of equations to be 

solved for equilibrium points. 

 

𝑏 − 𝑏𝑠 − 𝑐1𝛽1𝑠𝑖1 − 𝑐2𝛽2𝑠𝑖2 − 𝛾𝑠𝑖1 − (1 − 𝜀)ϕ𝑖1𝑠 + 𝛼𝑎𝑠 = 0                                                                    (11)

𝑐1𝛽1𝑠𝑖1 + 𝑐2𝛽2𝑠𝑖2 − (𝜃 + 𝛿1 + 𝜇)𝑖1 + (1 − 𝜀)ϕ𝑖1(1 − 𝑖1) + (𝛼𝑎 + 𝛾 − 𝛾𝑖1)𝑖1 = 0                             (12) 

𝜃𝑖1 − (𝛿2 + 𝑏)𝑖2 + (𝛼𝑎 − 𝛾𝑖1 − (1 − 𝜀)ϕ𝑖1)𝑖2 = 0                                                                                        (13)

𝛿1𝑖1 + 𝛿2𝑖2 − (𝛼 + 𝑏)𝑎 + (𝛼𝑎 − 𝛾𝑖1 − (1 − 𝜀)ϕ𝑖1)𝑎 = 0                                                                            (14)

 

For disease – free,  𝑖1 = 𝑖2 = 𝑎 = 0 

We have when substituted in above equations 

𝑏 − 𝑏𝑠 = 0 

implies 𝑠 = 1    provided  𝑏 ≠ 0 

Thus, the disease – free equilibrium 𝐸0 is  

𝐸0 = (1,0,0,0) 

 

3.2 Stability of DFE 

We shall compute the basic reproductive number 𝑅0 using the next– generation method. The 

basic reproductive number is a threshold quantity used to study the prevalence of an infectious 
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disease in epidemiological  model. According to [13], the basic reproduction number 𝑅0 is the 

spectral radius (i.e the dominant eigenvalue) of the next generation matrix. It is given as 

𝑅0 = 𝜌(𝐺𝑈−1)                               

where 𝜌(𝐺𝑈−1) is the spectral radius of the matrix 𝐺𝑈−1 given as 

𝐺𝑈−1 = [
𝜕𝐹𝑖(𝑥0)

𝜕𝑥𝑗
] [

𝜕𝑉𝑖(𝑥0)

𝜕𝑥𝑗
]

−1

 

𝐹𝑖 is rate of appearance of new infection in compartment  𝑖 

𝑉𝑖 is the transfer of individuals in and out of compartment 𝑖 by another means and 

𝑥0 is the disease free equilibrium. 

Using the next generation method, the system of differential equation  (7) − (10) are rearrange 

in the order of the infected compartments first, then the uninfected compartment. We have three 

infected compartments namely, 𝑖1 , 𝑖2  𝑎𝑛𝑑 𝑎 whereas  𝑠  as uninfected compartment. 

𝑑𝑖1
𝑑𝑡

= (𝑐1𝛽1𝑖1 + 𝑐2𝛽2𝑖2)𝑠 − (𝜃 + 𝛿1 + 𝑏)𝑖1 + (1 − 𝜀)ϕ𝑖1(1 − 𝑖1) + (𝛼𝑎 + 𝛾 − 𝛾𝑖1)𝑖1

𝑑𝑖2
𝑑𝑡

= 𝜃𝑖1 − (𝛿2 + 𝑏)𝑖2 + (𝛼𝑎 − 𝛾𝑖1 − (1 − 𝜀)ϕ𝑖1)𝑖2

𝑑𝑎

𝑑𝑡
= 𝛿1𝑖1 + 𝛿2𝑖2 − (𝛼 + 𝑏)𝑎 + (𝛼𝑎 − 𝛾𝑖1 − (1 − 𝜀)ϕ𝑖1)𝑎

𝑑𝑠

𝑑𝑡
= 𝑏 − 𝑏𝑠 − 𝑐1𝛽1𝑠𝑖1 − 𝑐2𝛽2𝑠𝑖2 − 𝛾𝑠𝑖1 − (1 − 𝜀)ϕ𝑖1𝑠 + 𝛼𝑎𝑠

 

from which 𝐹, 𝑉, 𝐺, 𝑈, and 𝐺𝑈−1 given as 

     𝐹 = [

𝑐1𝛽1𝑖1 + 𝑐2𝛽2𝑖2
0
0
0

] , 𝑉 =

[
 
 
 

(𝜃 + 𝛿1 + 𝑏)𝑖1 − (1 − 𝜀)ϕ𝑖1(1 − 𝑖1) − (𝛼𝑎 + 𝛾 − 𝛾𝑖)𝑖1
−𝜃𝑖1 + (𝛿2 + 𝑏)𝑖2 − (𝛼𝑎 − 𝛾𝑖1 − (1 − 𝜀)ϕ𝑖1)𝑖2

−𝛿1𝑖1 − 𝛿2𝑖2 + (𝛼 + 𝑏)𝑎 − (𝛼𝑎 − 𝛾𝑖1 − (1 − 𝜀)ϕ𝑖1)𝑎

−𝑏 + 𝑏𝑠 + 𝑐1𝛽1𝑠𝑖1 + 𝑐2𝛽2𝑠𝑖2 + 𝛾𝑠𝑖1 + (1 − 𝜀)ϕ𝑖1𝑠 − 𝛼𝑎𝑠]
 
 
 

  

        𝐺 =

[
 
 
 
 
𝜕𝑓1(𝑥0)

𝜕𝑖1

𝜕𝑓1(𝑥0)

𝜕𝑖2

𝜕𝑓1(𝑥0)

𝜕𝑎

𝜕𝑓2(𝑥0)

𝜕𝑖1

𝜕𝑓2(𝑥0)

𝜕𝑖2

𝜕𝑓2(𝑥0)

𝜕𝑎

𝜕𝑓3(𝑥0)

𝜕𝑖1

𝜕𝑓3(𝑥0)

𝜕𝑖2

𝜕𝑓3(𝑥0)

𝜕𝑎 ]
 
 
 
 

= [
𝑐1𝛽1 𝑐2𝛽2 0
0 0 0
0 0 0

]  

       𝑈 =

[
 
 
 
 
𝜕𝑣1(𝑥0)

𝜕𝑖1

𝜕𝑣1(𝑥0)

𝜕𝑖2

𝜕𝑣1(𝑥0)

𝜕𝑎

𝜕𝑣2(𝑥0)

𝜕𝑖1

𝜕𝑣2(𝑥0)

𝜕𝑖2

𝜕𝑣2(𝑥0)

𝜕𝑎

𝜕𝑣3(𝑥0)

𝜕𝑖1

𝜕𝑣3(𝑥0)

𝜕𝑖2

𝜕𝑣3(𝑥0)

𝜕𝑎 ]
 
 
 
 

= [

(𝜃 + 𝛿1 + 𝑏) − (1 − 𝜀)ϕ − γ 0 0
−𝜃 (𝛿2 + 𝑏) 0
−𝛿1 −𝛿2 (𝛼 + 𝑏)

] 

and 
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         𝐺𝑈−1 = [

𝑐1𝛽1(𝛿2+𝑏)𝑐2𝛽2𝜃

ℎ(𝛿2+𝑏)

𝑐2𝛽2

𝛿2+𝑏
0

0 0 0
0 0 0

]        

  

where        

 

ℎ =  (𝜃 + 𝛿1 + 𝑏) − (1 − 𝜀)ϕ − γ                                                          (∗) 

 

We find the eigenvalue of 𝐺𝑈−1 as 

|𝐺𝑈−1 − λI| = 0 

This gives 

λ1 = 𝜆2 = 0  𝑜𝑟 λ3 =
𝑐1𝛽1(𝛿2 + 𝑏)𝑐2𝛽2𝜃

ℎ(𝛿2 + 𝑏)
 

   

Thus, the spectral radius of 𝐺𝑈−1 is given by  

       𝑅0 = 𝑚𝑎𝑥[|λ1|, |λ2|, |𝜆3|] , this implies  

𝑅0 =
𝑐1𝛽1(𝛿2 + 𝑏) + 𝑐2𝛽2𝜃

ℎ(𝛿2 + 𝑏)
 

or 

𝑅0 =
𝑐1𝛽1(𝛿2 + 𝑏) + 𝑐2𝛽2𝜃

(𝜃 + 𝛿1 + 𝑏 − (1 − 𝜀)ϕ − γ)(𝛿2 + 𝑏)
                                              (15)  

        

If 𝑅0 < 1 , the infection dies out, otherwise the infection will be maintained in the population. 

From the equation (15), we have 𝑅0 increases as the number of sexual partners of 𝑖1(𝑡) and 𝑖2(𝑡) 

increase. This implies that 𝑅0 can be kept at minimum if there is a restriction on the number of 

sexual partners of 𝑖1(𝑡) and  𝑖2(𝑡).  

Theorem 2: The disease – free equilibrium of the system of ODE  (5) − (8)   is locally 

asymptotically stable if 𝑅0 < 1 and unstable if 𝑅0 > 1. 

The theorem 2 is prove using linearization method. The Jacobian matrix associated with the 

system (7)-(10) at the DFE 𝐸0 = (1,0,0,0) is  
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𝐽(𝐸0) = [

−𝑏 −𝑐1𝛽1 − 𝛾 − (1 − 𝜀)ϕ −𝑐2𝛽2 𝛼
0 𝑐1𝛽1 − ℎ 𝑐2𝛽2 0
0 𝜃 −(𝛿2 + 𝑏) 0
0 𝛿1 𝛿2 −(𝛼 + 𝑏)

] 

and the characteristics equation corresponding to 𝐽(𝐸0) is given by  

𝜌(λ) = (−𝑏 − λ)[(𝑐1𝛽1 − ℎ − λ)(𝛿2 + 𝑏 + λ)(𝛼 + 𝑏 + λ) + 𝑐2𝛽2𝜃(𝛼 + 𝑏 + λ)] = 0 

or 

𝜌(λ) = (−𝑏 − λ)[λ3 + 𝐴λ2 + 𝐵λ + C] = 0 

Where  ℎ is defined as in (∗) and 

𝐴 = −[𝑐1𝛽1 − ℎ − (𝛿2 + 𝑏) − (𝛼 + 𝑏)]

𝐵 = −[(𝑐1𝛽1 − ℎ)(𝛿2 + 𝑏) + 𝑐2𝛽2𝜃 + 𝑐1𝛽1 − ℎ − (𝛿2 + 𝑏)(𝛼 + 𝑏)]

𝐶 = −[(𝑐1𝛽1 − ℎ)(𝛿2 + 𝑏)(𝛼 + 𝑏) + 𝑐2𝛽2𝜃(𝛼 + 𝑏)]

 

Using Routh–Hurwitz criteria, 𝐸0  is locally asymptotically stable if 𝐴 > 0 , 𝐵 > 0 , 𝐶 >

0 , 𝑎𝑛𝑑 𝐴𝐵 > 𝐶. 

We have    

𝐶 = −[(𝑐1𝛽1 − ℎ)(𝛿2 + 𝑏)(𝛼 + 𝑏) + 𝑐2𝛽2𝜃(𝛼 + 𝑏)] > 0 

This implies that 

(𝑐1𝛽1 − ℎ)(𝛿2 + 𝑏)(𝛼 + 𝑏) + 𝑐2𝛽2𝜃(𝛼 + 𝑏) < 0 

 and get 

𝑐1𝛽1(𝛿2 + 𝑏) + 𝑐2𝛽2𝜃

ℎ(𝛿2 + 𝑏)
< 1 

Therefore 𝑅0 < 1.This proofs the theorem 2. 

 

3.3 Existence of Backward Bifurcation 

Some models can be bi-stable due to vaccination or immunity [14, 15] such that 𝑅0 < 1 is not a 

sufficient condition to eradicate the disease that is endemic in the population but sufficient for 

avoiding an epidemic caused by few infectives introduced initially in the population [16]. Some 

models [17, 18] being bi-stable is due to the change of stability that occurs at the bifurcation 

point, whereas bifurcation point (that is, a point where the leading eigenvalue of the Jacobian 

matrix at the DFE is zero) will occur whenever  𝑅0 = 1  . We have forward and backward 

bifurcation depending on the direction of the bifurcation. Bifurcation at 𝑅0 = 1 is forward when 

DFE is locally asymptotically stable for 𝑅0 < 1  and there is no disease while the endemic 



A MATHEMATICAL MODEL                                                              81 

equilibrium, is locally stable when  𝑅0 > 1. Backward bifurcation occurs when the endemic 

equilibrium exists for 𝑅0 < 1 and DFE may exist when 𝑅0 > 1. In backward bifurcation, we 

expect disease to invade at 𝑅0 = 1 but not in the case forward bifurcation [19]. We determine the 

direction of bifurcation (forward or backward)  for the model (7-10) by using centre manifold 

theorem by [20] around the bifurcation point 𝑅0 = 1 in a neighbourhood of the DFE  𝑥∗. 

Theorem 3: Centre manifold theory [20]. 

Consider a general system of ODEs with the parameter 𝛽: 

𝑑𝑥

𝑑𝑡
= 𝐹(𝑥, 𝛽)                                                                                                (16) 

      𝑓: 𝑅 → 𝑅𝑛 and 𝑓 ∈ 𝐶2(𝑅2 𝑥 𝑅) 

Where 0 is an equilibrium point for the system (7-10) for all values of the parameter 𝛽, that is 

𝑓(0, 𝛽) ≡ 0 for all 𝛽 and  

(1)   𝐴 = 𝐷∗𝑓(0,0) = [
𝑑𝑓𝑖

𝑑𝑥𝑗
(0,0)] 

is the linearization point 0 with 𝛽 evaluate at 0. Zero is a simple eigenvalue of 𝐴 and all other 

eigenvalues of 𝐴 have negative real parts.  

(2)   Matrix 𝐴 has a non negative right eigenvector 𝑤 and a left eigenvector 𝑣 corresponding to 

the zero eigenvalue. 

Let 𝑓𝑘 be the 𝑘𝑡ℎ component of 𝑓 and  

𝑎 = ∑ 𝑣𝑘𝑤𝑖𝑤𝑗

𝜕2𝑓𝑘
𝜕𝑥𝑖𝜕𝑥𝑗

(0,0)

𝑛

𝑘,𝑖,𝑗=1

 

𝑏 = ∑ 𝑣𝑘𝑤𝑖

𝜕2𝑓𝑘
𝜕𝑥𝑖𝜕𝛽

(0,0)

𝑛

𝑘,𝑖=1

 

Then the local dynamics of the system (16) around the equilibrium point 0 is totally determined 

by the signs of 𝑎 and 𝑏. 

i.  𝑎 > 0 , 𝑏 > 0  when 𝛽 < 0  with |𝛽| ≪ 1 , 0  is locally asymptotically stable and there 

exists a positive unstable equilibrium; when 0 < 𝛽 ≪ 1, 0 is unstable and there exists a 

negative and locally asymptotically stable equilibrium. 

ii.  𝑎 < 0 , 𝑏 < 0 , with |𝛽| ≪ 1 , 0  unstable; when 0 < 𝛽 ≪ 1,  asymptotically stable, and 

there exists a positive unstable equilibrium; 
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iii.  𝑎 > 0, 𝑏 < 0, with |𝛽| ≪ 1, 0 unstable; and there exists a locally asymptotically stable 

negative equilibrium; when 0 < 𝛽 ≪ 1, 0 is stable and a positive unstable equilibrium 

appears; 

iv.  𝑎 > 0 , 𝑏 < 0 , when 𝛽  changes from negative equilibrium to positive, 0  changes its 

stability from stable to unstable, corresponding to a negative equilibrium becomes 

positive and locally asymptotically stable. 

Particularly, if 𝑎 > 0 and 𝑏 > 0, then a subcritical (or backward) bifurcation occurs at 𝛽 = 0. 

Applying the theorem 3 involves the following changes of variables; Let 

𝑠 = 𝑥1,      𝑖1 = 𝑥2,      𝑖2 = 𝑥3,     𝑎 = 𝑥4  

with  

𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 = 1. 

Let 𝑋 = (𝑥1, 𝑥2, 𝑥3, 𝑥4)
𝑇 be the vector written so that the model can be re-written in the form   

𝑑𝑋

𝑑𝑡
= 𝐹(𝑥), where 𝐹 = (𝑓1, 𝑓2, 𝑓3, 𝑓4)

𝑇 as follows 

𝑑𝑥1

𝑑𝑡
= 𝑓1(𝑥) = 𝑏 − 𝑏𝑥1 − 𝑐1𝛽1𝑥1𝑥2 − 𝑐2𝛽2𝑥1𝑥3 − 𝛾𝑥1𝑥2 − (1 − 𝜀)𝛷𝑥1𝑥2  + 𝛼𝑥1𝑥4                   (17)

𝑑𝑥2

𝑑𝑡
= 𝑓2(𝑥) = (𝑐1𝛽1𝑥2 + 𝑐2𝛽2𝑥3)𝑥1 − (𝜃 + 𝛿1 + 𝑏)𝑥2 + (1 − 𝜀)𝛷𝑥2(1 − 𝑥2) + (𝛼𝑥4 + 𝛾 − 𝛾𝑥2)𝑥2 (18) 

𝑑𝑥3

𝑑𝑡
= 𝑓3(𝑥) = 𝜃𝑥2 − (𝛿2 + 𝑏)𝑥3 + (𝛼𝑥4 − 𝛾𝑥2 − (1 − 𝜀)𝛷𝑥2)𝑥3                                                    (19)    

𝑑𝑥4

𝑑𝑡
= 𝑓4(𝑥) = 𝛿1𝑥2 + 𝛿2𝑥3 − (𝛼 + 𝑏)𝑥4 + (𝛼𝑥4 − 𝛾𝑥2 − (1 − 𝜀)𝛷𝑥2)𝑥4                                       (20)

 

The Jacobian matrix of the equations  (7) − (10) at the disease-free equilibrium 𝐽(𝐸0) is defined 

in previous section. Taking 𝛽1 = 𝛽 and 𝛽2 = 𝑟𝛽, where 𝛽 is chose as the bifurcation parameter 

and the bifurcation occurs at 𝑅0 = 1, we consider the case 𝑅0 = 1 and solve for the bifurcation 

parameter 𝛽. 

We have 

𝑅0 =
𝑐1𝛽1(𝛿2 + 𝑏) + 𝑐2𝛽2𝜃

(𝜃 + 𝛿1 + 𝑏 − (1 − 𝜀)𝛷 − 𝛾)(𝛿2 + 𝑏)
= 1 

or 

𝑐1𝛽(𝛿2 + 𝑏) + 𝑐2𝑟𝛽𝜃

ℎ(𝛿2 + 𝑏)
= 1 

from which we obtain 
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𝛽 =
(𝛿2 + 𝑏)ℎ

𝑐1(𝛿2 + 𝑏) + 𝑟𝑐2𝜃
 

where ℎ is as defined in (*). 

The Linearized system of the transformed system  (7) − (10) with 𝛽1 = 𝛽 and 𝛽2 = 𝑟𝛽 has a 

simple zero eigenvalue. Hence, we analyze the dynamics of (7-10) at 𝛽1 = 𝛽 and 𝛽2 = 𝑟𝛽 using 

the Centre Manifold theory. The Jacobian matrix of  (7) − (10) has right eigenvector associated 

with the zero eigenvalue as 

[

−𝑏 −𝑐1𝛽1 − 𝛾 − (1 − 𝜀)ϕ −𝑐2𝛽2 𝛼
0 𝑐1𝛽1 − ℎ 𝑐2𝛽2 0
0 𝜃 −(𝛿2 + 𝑏) 0
0 𝛿1 𝛿2 −(𝛼 + 𝑏)

] [

𝑤1

𝑤2
𝑤3

𝑤4

] = [

0
0
0
0

]                          (21)  

where 𝑤 = (𝑤1, 𝑤2, 𝑤3, 𝑤4)
𝑇 is the right eigenvector. 

Evaluating the system in (21) gives  

𝑤3 =
𝜃

𝛿2 + 𝑏
𝑤2, 𝑤4 =

𝑚1

𝑚3
𝑤2, 𝑤1 =

𝑚1 − 𝑚2

𝑏𝑚3
𝑤2 

where 

𝑚1 = 𝛿1(𝛿2 + 𝑏) + 𝛿2𝜃,   𝑚3 = (𝛿2 + 𝑏)(𝛼 + 𝑏), 𝑚2 = (𝜃 + 𝛿1 + 𝑏)𝑚3 

The left eigenvector of the Jacobian 𝐽(𝐸0) associated with the zero eigenvalue is given by 𝑉 =

(𝑣1, 𝑣2, 𝑣3, 𝑣4)
𝑇. Transposing Jacobian  𝐽(𝐸0) first and multiply by 𝑉, we have 

[

−𝑏 0 0 0
−𝑐1𝛽1 − 𝛾 − (1 − 𝜀)ϕ 𝑐1𝛽1 − ℎ 𝜃 𝛿1

−𝑐2𝛽2 𝑐2𝛽2 −(𝛿2 + 𝑏) 𝛿2

𝛼 0 0 −(𝛼 + 𝑏)

] [

𝑣1

𝑣2
𝑣3

𝑣4

] = [

0
0
0
0

] 

 

from which we get  

𝑣1 = 𝑣4 = 0, 𝑣3 =
𝑐2𝛽2

𝛿2 + 𝑏
𝑣2 

Using the property  𝑤. 𝑣 = 1, we obtain 

 𝑤 = (𝑤1,
1

𝑐2𝛽2𝜃+(𝛿2+𝑏)2
,

𝜃

(𝛿2+𝑏)(𝑐2𝛽2𝜃+(𝛿2+𝑏)2)
, 𝑤4)  and 𝑣 = (0, (𝛿2 + 𝑏)2,

𝑐2𝛽2

(𝛿2+𝑏)
, 0) 

 

3.4 Computations of 𝒂 and 𝒃 

From the system (17-20), the associated non-zero partial derivative of 𝐹 at DFE for 𝑣2, 𝑣3 with 

the expression that 𝑥1 = 1 − 𝑥2 − 𝑥3 − 𝑥4 are given by 
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𝜕2𝑓2

𝜕𝑥2𝜕𝑥3
= −(𝑐1𝛽1 + 𝑐2𝛽2)  ,   

𝜕2𝑓2

𝜕𝑥2𝜕𝑥4
= −𝑐1𝛽1 + 𝛼   ,    

𝜕2𝑓2

𝜕𝑥2
2 = −2(𝑐1𝛽1 + (1 − 𝜀)𝛷 + 𝛾),

𝜕2𝑓2

𝜕𝑥3
2 =

 −2𝑐2𝛽2,
𝜕2𝑓2

𝜕𝑥3𝜕𝑥4
= −𝑐2𝛽2    ,

𝜕2𝑓3

𝜕𝑥2𝜕𝑥3
= −((1 − 𝜀)𝛷 + 𝛾) ,     

𝜕2𝑓3

𝜕𝑥3𝜕𝑥4
= 𝛼 

Since 𝑣1 = 0 and 𝑣4 = 0 

It follows that 

 𝑎 = 𝑣2 [𝑤2𝑤3
𝜕2𝑓2

𝜕𝑥2𝜕𝑥3
+ 𝑤2𝑤4

𝜕2𝑓2

𝜕𝑥2𝜕𝑥4
+ 𝑤2

2 𝜕2𝑓2

𝜕𝑥2
2 + 𝑤3

2 𝜕2𝑓2

𝜕𝑥3
2 + 𝑤3𝑤4

𝜕2𝑓2

𝜕𝑥3𝜕𝑥4
] + 𝑣3 [𝑤2𝑤3

𝜕2𝑓3

𝜕𝑥2𝜕𝑥3
+

𝑤3𝑤4
𝜕2𝑓3

𝜕𝑥3𝜕𝑥4
] 

 

𝑎 = −𝑣2[2𝑤3
2𝑐1𝛽1 + 𝑤2𝑤4(𝑐1𝛽1 − 𝛼) + 2𝑤2

2(𝑐1𝛽1 + (1 − 𝜀)𝛷 + 𝛾) + 𝑤3𝑤4𝑐2𝛽2

+ 𝑤2𝑤3(𝑐1𝛽1 + 𝑐2𝛽2)] − 𝑣3𝑤3[−𝑤4𝛼 + 𝑤2(𝛾 + (1 − 𝜀)𝛷)] 

 

For  𝑏, we have  

 𝑏 = 𝑣2 [𝑤1
𝜕2𝑓2

𝜕𝑥1𝜕𝛽
(0,0) + 𝑤2

𝜕2𝑓2

𝜕𝑥2𝜕𝛽
(0,0) + 𝑤3

𝜕2𝑓2

𝜕𝑥3𝜕𝛽
+ 𝑤4

𝜕2𝑓2

𝜕𝑥4𝜕𝛽
] 

Substituting  𝛽1 = 𝛽 and 𝛽2 = 𝑟𝛽  into 𝐹 and differentiating, we have 

 𝑏 = 𝑣2[𝑤1𝑐1 + 𝑤3𝑐2𝑟]. 

Theorem 4: The system (7-10) exhibits a forward bifurcation if 

 𝑐1𝛽1 > 𝛼  and ((1 − 𝜀)𝛷 + 𝛾)(𝑎 + 𝑏) > (𝛿1 +
𝛿2𝜃

𝛿2+𝑏
)𝛼 

Otherwise, the system may show a backward bifurcation. 

 

4.0 Numerical Result 

To examine the dynamics of the model numerically, the system is solved using the fourth-order 

Runge-Kutta method with the following values for the parameters 𝑏 = 0.04, 𝑐1 = 5, 𝑐2 = 3, 𝛽1 =

0.04,   𝛽2 = 0.05, 𝜃 = 0.30,  𝛿1 = 0.30, 𝛿2 = 0.02, 𝛼 = 0.9, 𝛾 = 0.90, 𝜀 = 0.20, 𝜙 = 0.03   and 

initial conditions 𝑠(0) = 0.65, 𝑖1 = 0.20, 𝑖2 = 0.10, 𝑎(0) = 0.05  for the period of 30 years. The 

results are displayed graphically in figures 2(𝑎) − 3(𝑑). Figures 2(𝑎) − 2(𝑐) show the effect of 

the birth rate of newborns infected by irresponsible HIV infectives in the population. The 

irresponsible HIV infectives decreases with increase in number of responsible HIV infectives, 

the birth rate of newborns infected by irresponsible infective decreases. This simply means that a 

proportion of irresponsible HIV infectives is becoming responsible through awareness and 
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counselling on risky reduction. This increase in the proportion of the responsible infectives will 

result in reduction of the MTCT. 

 Figures 3(𝑎) − 3(𝑑)  show the effect of irresponsible HIV infective immigrants into the 

population. As the rate of irresponsible HIV infectives immigrants decreases, the irresponsible 

HIV infective decreases likewise, this leads to an increase in the proportion of responsible HIV 

infectives. This reduction in the rate of irresponsible HIV infective immigrants will ultimately 

lead to a reduction in MTCT because more people will become responsible.  

Therefore, in order to reduce the spread of HIV and prevent MTCT, effective immigration 

policies such as screening and counselling for HIV should be prerequisites for issuance of visa so 

as to ensure that only responsible HIV infective immigrants are allowed entry into the population.  

 

5.0 CONCLUSION 

A variate of the model in [8] is proposed to incorprorate different mean numbers of sexual 

partners for irresponsible and responsible infectives with vertical transmission in a varying 

population. The model is investigated to exhibit local asympotic stabilty at DFE provided 𝑅0 < 1. 

The bifurcation analysis for the model is proved to be subcritical based on certain conditions. 

Results from numerical simulations indicate that a reduction in the number of irresponsible 

infective immigrants decreases the infection cases of MTCT. 
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