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Abstract. The category ¢ of Hausdorff spectra 2" = {Xj, T, hy, } is introduced by E.I.Smirnov into the discussion
by means of an appropriate factorization of the category of Hausdorff spectra Spect¥ over the category ¢ [4]. If
% is a semiabelian complete subcategory of the category TG, then J# is a semiabelian category in the sense of
V. P. Palamodov. The direct and inverse spectra of a family of objects are particular cases of Hausdorff spectra —

it suffices to put § = |§

, hyy = qp/p in the direct case and § = {|F

hohgg: Xg~ Xg (s —s5), gprp = i|F| = i3] in
the inverse case. In this case for each Hausdorff spectrum 2" = {X;,§,hy,} over ¢ there exists a unique (up to

-
isomorphism) object of the category ¢, the H-limit of the Hausdorff spectrum 2", which we denote by lim hyX; .
—

§
Thus the additive and covariant functor of the H-limit of a Hausdorff spectrum Haus : 27 — ¢ is defined and we

remark that it is natural in the categorical sense.
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1. Introduction

The study which was carried out in [1], [2] of the derivatives of the projective limit functor acting from
the category of countable inverse spectra with values in the category of locally convex spaces made it
possible to resolve universally homomorphism questions about a given mapping in terms of the exactness
of a certain complex in the abelian category of vector spaces. Later in [3] a broad generalization of the
concepts of direct and inverse spectra of objects of an additive semiabelian category ¢ was introduced:
the concept of a Hausdorff spectrum, analogous to the ds-operation in descriptive set theory. This idea is
characteristic even for algebraic topology, general algebra, category theory and the theory of generalized
functions. The construction of Hausdorff spectra 2" = {Xj,§, hys} is achieved by successive standard
extension of a small category of indices Q. The category .7¢ of Hausdorff spectra turns out to be additive
and semiabelian under a suitable definition of mapping of spectra. In particular, .5# contains V. P. Palam-
odov’s category of countable inverse spectra with values in the category 7 LC of locally convex spaces

[1].

2. Main Results

Let .7 be the category T'LC of locally convex spaces over R or C and let H : |§| — . be a functor of
the Hausdorff spectrum {Xj,§, hys}. We will construct an object of the category TLC, which is defined
by means of the Hausdorff spectrum {X;,,hy,}; this object will be unique up to isomorphism in the
category TLC.

Specifically, the spaces X, (s € |§|) are locally convex and the morphisms Ay : Xy — Xy are contin-
uous linear operators, therefore each morphism wpp : F' — F (F,F' € §) generates a continuous linear
operator gp/r : [[r Xy — [1r Xy, defined by the collection of morphisms (hy;)pp in such a way that if

a = (xy)seir| € [1r X, then gprp(a) = o, where &' = (hyoxs) e € [T Xy

Theorem 2.1. There exists a unique (up to isomorphism) object of the category TLC as a limit of Haus-

dorff spectrum {X;,§, hys}.

Proof. Let us consider the set § = Uz 17 X, and let us introduce on S the equivalence relation R in the
following manner. If & = (x;),e|r| € [1p Xs and &' = (x;)ye|pr| € [1p Xy, Where F,F’ € §, then we will

say that o ~ &’(mod R) if there exist F* € § and T* € F* such that

Opp :F* = F, opp-:F"—F and hgxy=hgexy (s°€T¥).
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Let us show that R is in fact an equivalence relation: reflexivity and symmetry of the relation R are
obvious; we will establish its transitivity. Suppose that o ~ ¢'(mod R) and &’ ~ o’ (mod R), where

a" = (xg)greipr) € [1pr Xor, F" € § and F*™* € §, T** € F** are such that

(0] 2l 22X F* — F/, Wpnps= . F* = F" and Pigerg Xgr = Rgex gn X
for s** € T**. Because of the admissibilty of the class § there exists Fec F such that
F — F™,

. * R
(DF*[;.F—)F s wF**F

and there also exists 7 € F such that
TcC (w;*lfT*) a (co;*l*fT**> :
Let § € T. Then because of the admissibility of the class § for a ~ o/(mod R) we obtain
hgse (hgesxs) = hgse (hgg Xy ) = hgg Xy,
while for o ~ a”(mod R) we obtain correspondingly
hgges (BgergeXgr ) = hgges (hs**s/lxs/l) = hfs/lxs’l .

However, because the class § is directed in the category .%°, we have hyy = hfsfl and, consequently,

xy = xy . Thus the following relationship holds for § € T:
hssxs = hgs (hs*sxs) = hgge (hs**s"-xs") = hggrxgr .

The last assertion means that @ ~ a”(mod R), which it was required to show.
Now let S =§ /R and let y : S — S be the canonical mapping. If £, 1 € S, then we define the sum

& +n as the class containing the element

(hslzslxsl +hS1232sz)slze|F12| € HX5127
Fiz

where
OrF, - Fio = F, Opgr,: Fi2—F,
and

qroR = (hSnSl)Flel y  4FpF = (h‘lesz)Flezv

o= (xfl)S|€\F1| €&, B= (xsz)sze\Fz\ en.
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Let us show that the class & + 1 is defined in a unique manner, independent of the choice of represen-
tatives & and f3 in the respective classes § and 1. Let &' = (xy, ),y € & and B’ = (xy)g,c|ry € M SO
that

(i, g )spelr) € T 1%,
12

where
(OFI/FI/Z : Fllz — Fll, sz/Fl/z : F]lz — F2, .
Since @ ~ o/(mod R) and 8 ~ f’(mod R), there exist F", F,", F* € § such that the following diagrams

are commutative (i = 1,2):

(1) F —>F

) Fr — ' F!

Thus there exist 77", T," € F* such that

hys.xs; = hs*S§XS§ (s"eTy) for (i=1,2).

1

Then for T* € F*,T* C T N T the last relationship is satisfied simultaneously for i = 1,2. Therefore

% k
hyes, X5, + hyrsyXgy = gy Xy +hogxg for s7 €T,

and, consequently,
a+p ~a +p'(modR).

Thus the class & + 1 is defined in a unique manner. Correctness of the definition of the class A& (A €
R or C, & € S) can be shown similarly. This means that the set S is a vector space over R or C. We

continue the construction. For each F € § and T € F we define the vector space
VFT ={ac HXS Xy = hgxs, 5,§€ T}
F

and we show that YV} = I/IVFT/, whenever T € F and T € F'. In fact, let £ € yV/! and @ € V} where

o = (xy)5e)r| € €. We choose an element o’ € V), such that o' = (x¢)yepjand xg =x, (s€ T, s=7+).
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By property (2) of admissibility of the class § and its directedness in the category .#° there exist F* € §

!
and T* € F* such that of;. = @f;., where
T* = 0pp T = 0pp. T, @pp+ :F*—=F, @pp: F* = F'.

Thus hgsx; = hggxy (s* € T*) and, consequently, o ~ ¢’ (mod R). The last assertion means that yo' = &

and £ € I/IVE . The reverse inclusion is shown similarly, therefore
wl =ywVl (T€F TcF).

Put X7 = yVI (F € §). We now show that the set

x=UNxr

FeyTeF
is a vector space. In fact, we will show that, if §,1 € X, then §{ + 1 € X. Suppose that § € X7, for all
T\ € Fy where F; € § and 1) € Xy, for all T, € F, where F; € §; moreover the class & € X7, and the class

1N € Xy, if and only if & contains elements
o, = (x5, (1)), e € I;IXSI (T €F)
1
such that x;, (T7) = ilmlxs. (Ty) for 51,81 € Ty, and 1 contains elements
o, = (%, (12)) e € I;Ist (I € F)
2

such that X5, (TQ) = ils‘gszxsz(TZ) for 55,8, € T,. Let Fi, € § and OF F, - Fi, — F, OFRF, - Fi,— F. We

will show that the class & + 7, which, according to the definition, contains the elements
(hslzslxsl (Tl) +h31232xS2(T2))s126\F12\ (Tl € Flv e FZ) )

satisfies the relationship

5 +ne ﬂ X1, -
Tin€Fp
In fact, suppose that 71, € Fj» and T\ € F, T, € F; are such that

—1 R | _
wFlFlle - wF2F12T2 =T

and
(hslzslxsl (Tl))slzemz\ € Hxslz ) (hslzszxsz (TZ))slze\Flﬂ € HXSn :
Fip Fip

Further, let 512,812 € T12 and y,,3,, : $12 — s12 be such that

Xsy (Tl) GXSI ) xfl(Tl) S X§
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and
hslzsl'xsl (Tl) € Xslz ) h§12§1x§1 (Tl) € Xflz )

where s1,§; € T;. Because the class Tj is directed in the category Q there exists an element s} € 77 such

that @y;5, : 51— s7, gy, : §1 — 57, and moreover, by assumption, the relations
Xs, (T] ) = hSlSTxST (T] ) and X3, (T] ) = hf1~YTxST (Tl)

hold. Now it follows from the specification of a Hausdorff spectrum that the following diagram is com-

mutative:
hxl‘T hs 135
3) Xs; X, 51
N \ ] hsyps1
hsl.r’l‘ hle“l
XSl > Agyp

Consequently, the relation
B8, %5, (Tl) = hgp5s1 (hslzslxsl (Tl))

is satisfied for 512,812 € Tj2. This shows that (%, ,s, X5, (Tl))me‘plz‘ € & € Xy, . It can be shown similarly
that (hy,,5,%s, (T2))sysc|Fio| € M € X1y, » from which it follows that & +1 € X7, . But Ty € Fi» was chosen

arbitrarily, therefore

§+TI€ m X155

TnEF

which it was required to establish.

It is clear that A € X (A € R or C) and the appropriate axioms are satisfied, so that X is a vector
space. Now we provide X with a locally convex topology 7y in the following manner.

Suppose that the locally convex spaces X; (s € |§|) have locally convex topologies 7, and let F} € F,
F,eFand T € Fi, T € F,. Then the vector space VFf (i =1,2) is provided with the upper bound Or.F;
of the preimages of the topologies of the spaces X, (s € T') under the projections 7/ : [Ir Xs — X; (the
weakest locally convex topology on [z Xy which is continuously embedded in each of the topologies
(nfi)~11; (s € T) respectively). We will show that the images yor r, and Wyorp, generate one and
the same locally convex topology o7 on the vector space Xr. In fact, if the W, are absolutely convex
neighbourhoods of zero in the spaces X, , where s; € T,i=1,2,...,m, then according to the constructions
of equivalence defined above we obtain

v (ﬁ(nﬁ)lws) _y (ﬁ(nﬁ?)lws,.) |

i=1 i=1
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which by the linearity of the restriction of y to V,g (i = 1,2) implies the identity

Yor,r = YOr,p, = Or.

However, F, F, € § were chosen arbitrarily for given 7, therefore the locally convex topology or on Xr
is defined in a unique manner.

Now let us denote by o7 the strongest translation invariant topology on S which induces on X7 the
topology or (T € F). Next we define on the space S for each F € § the topology 8( ) Which is the upper
bound of the topologies 67 (T € F). The space S with the topology &) (F € §) will be a topological
vector group [8].

Now for each F € § we denote by Xr) the space X with the topology o(r) induced by the topology
8( r)- Finally, we provide X with the locally convex topology 7y which is the strongest locally con-
vex topology on X for which all the embeddings of the spaces X(r) (F € §) in the space (X,7y) are

continuous. The theorem is proved.

Definition 2.2. We call the vector space X provided with the topology 7y the H-limit of the Hausdorff

spectrum { X, §, hys} over the category TLC and we write

o
X = limhy,X, .
—)

5

If {X;,3,iys} is a simple Hausdorff spectrum corresponding to a Suslin limit (¥, 7*) [10], so that

r=Un.

FegseF
then it is not difficult to show that (¥, 7*) is isomorphic to the H-limit of the simple Hausdorff spectrum

.
(X, 7y) = limiy,X; .
H

§
Along with the topology T we will consider on the space X the locally convex topology Ty which is
the strongest locally convex topology on X for which all the embeddings into the space (X,7y) of the
spaces Xp = (\rep Xr (F € §) provided with the projective topology are continuous. We will call the
vector space X provided with the topology Ty the strong H-limit of the Hausdorff spectrum {Xs, T, hy }
over the category TLC. It is clear that Ty < Ty . Conditions for the coincidence of the topologies Ty and
Ty will be established below.

Let 2" = {X;,3,hy,} be a Hausdorff spectrum over the category ¥.
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Definition 2.3. We will call an object Z of the category ¥ a categorical H-limit of the Hausdor{f spectrum

Z over ¢ if for any objects A, B € ¢ and mappings of spectra
A2 -L.B

there exists a unique sequence in ¢

A7 —ﬁ——> B
such that the diagram
a
“) A—> 2
<, b
p
Z —— B

is commutative in the category Spect¥.

The concepts of projective and inductive limits over the category ¢ are special cases of categorical H-
limits. For example, let 2" be an inverse spectrum of objects from ¢. Then (Lim) holds and moreover
any object Xy from 2 can be taken for B € ¢ with the identity morphism by : X; — X, forming the

mapping of spectra b* : 2" — X; (s € |F|). Thus the diagram

Yy

l i

Z

&)

|

is commutative, where b = (b°), B = (B*), B*: Z — X, (s € |F|) and b is the identity morphism of the

category Spect?. Therefore the diagram

(6)

N<~—»»™
IS}
lm/
Q

is commutative for any object A € ¢.

The categorical H-limit of a Hausdorff spectrum (the functor Haus) exists in any semiabelian category
¢ with direct sums and products (for example, the category of vector spaces L, the category TLG of
topological vector groups, the category T LC of locally convex spaces).

We provide an example where the categorical H-limit is defined in a unique manner (up to categorical

isomorphism).
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Example 2.4. Let A be some s-set contained in a separated topological space T so that

A=J N R

Fegse|F|

and the family {0 se|F| R} peg forms a fundamental system of nonempty compact subsets of A and more-
over H(A) : |§| — ¢ is a contravariant functor of the simple Hausdorff spectrum and ¢ = Ordg(T). If
P C T we will denote by # (P) the vector space of functions f whose supports are contained in P and
by L the family of vector spaces .# (P) (P C T) which is partially ordered by inclusion; let 2° = OrdL.

We put

A (A= N #(Ry)

Fegsel|F|

and show that .7 (Z) is the categorical H-limit of the Hausdorff spectrum
H =A{H(Rs), 8 iss}

over the category 2. Let A,B € % and
A LB,

The morphism A —— _#  signifies that there exists F € § such that A —=— #'(R;) (s € |F|), and
moreover a; is the identity embedding of A in J#"(R;). Therefore A C (;¢|p|-# (Ry) and, consequently,

there exists a unique identity embedding

o:A—H(A).

Similarly, if & L> B, then for each F' € § there exist morphisms bs:. : K (Rs;) — B (for individual
sy € F and for each F € §), where by; is the identity embedding of 7 (Ry: ) in B. Thus, Urc; # (Ry;) C

* o
F Sk

B and, consequently, the unique identity embedding
# (@A) =N U#R,) LB
(sp) FES
exists. Commutativity is obvious.

At the same time, if Z € & and satisfies (Lim), then A C Z: in particular, this holds for A =
Mser ¥ (Rs) and moreover for any F € §, therefore .# (A) C Z. Now if we set E = |J res A (Ry)
for some sequence (sr )z (recall that |F| is an at most countable set, therefore among the sg (F € ) the
set of distinct elements is at most countable), then E C J# (U; Ry, ). Thus, for B = J# (U; Ry, ), choos-

ing any sequence (sr)g, we obtain Z C () % (U Ry ). However () # (Uz Ry ) = K (A), since if
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¢ € H (UsRy,) for each (sp)z, then supp @ C (5, Uz Ry =A or ¢ € X (A). Therefore, Z = . (A),
which also implies the uniqueness of the categorical H-limit over Z.
On the other hand, an s-set is itself the unique categorical H-limit
A=JNR
FegseF

over the category & = Ord (7).

Example 2.5. In the category &'ns of sets the H-limit of a Hausdorff spectrum exists and is the unique

(up to categorical isomorphism) categorical H-limit.

Example 2.6. Let n = {x,,§, <}, N = |3| be a Hausdorff spectrum over the category 4 = OrdR (R is
the set of real numbers). We put x* = sup inf x,, and show that x* is the categorical H-limit. Let a,b € R

Feg neklF
and

a—n—b,

where the morphism a — 1 means that there exists F* € § such that a < x, (n € F*), while the morphism
N — b means that for each F' € § there exists x,,, (for individul nr € F and for each F' € §) such that
Xnp < b (F €F). Thus, a < nienﬁf*xn and a < x*; at the same time, for F € § we have r}ggxn < b and,
consequently, x* < b — this implies that x* is the categorical H-limit of the Hausdorff spectrum 1. We
now establish the uniqueness of the categorical H-limit. Let a <z < b (a,b € R). Since we can put
a= igfxn for any F € §, then x* < z; if in addition b = sgpan for all possible choices of (nr)z, then
z< inf) supx,, . However,

(nF) §

sup inf x, = inf s , j
pesner " ) g " 0

therefore x* = z. The identity (j) is established as follows: clearly,

sup inf x, < inf supxy, ;

Fegnel (nF) 3
let us suppose that equality does not hold, so that for some & > 0
inf x, < inf supx,, —6 VF€F.
neF (nr)
Thus, for each F' € § there exists ny € F such that
Xy < inf supx,, — &
KN

or

supx,: < inf supx,, —4;
3 (nr) 5
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the last inequality implies that 6 < 0, which is impossible.

Example 2.7. Let L be any complete lattice, 2° = Ord L and let & = {x, ¥, <} be a Hausdorff spectrum
over the category 2. The following proposition gives a sufficient condition for the uniqueness of the

categorical H-limit.

Proposition 2.8. Let L be a complete totally distributive lattice and let & = {x4,§, <} be a Hausdorff

spectrum over the category 2. Then there exists a unique categorical H-limit

x* = sup inf xq .
Feg acF
In particular, the categorical H-limit is unique in any complete chain or closed sublattice of a direct

product of complete chains [5].

—
Definition 2.9. Let X = limhy X; where {X,,3,hys} is a Hausdorff spectrum. We will say that the
—

H-limit X is regular if the Sfollowing conditions are satisfied: for each F' € § the space X is closed in
(S,0(r)) and convergence of the net a, € X (y € P) in the spaces (S,07) (T € F) implies its convergence
in (S,0(r)).

We also note that the constructions of the H-limit in the category 7LC which were introduced above
can be repeated with no substantial changes for the case of a Hausdorff spectrum over some semiabelian
subcategory of the category TG of topological groups.

The projective and inductive limits of separated spaces X; are special cases of the regular H-limit.
Moreover, if for X each projective topology o) (F € §) is complete, then the H-limit is regular. Some-

times we will speak of a regular Hausdorff spectrum 2" rather than a regular H-limit.
3. Applications

Let {7y, puv} be a presheaf of abelian groups over a topological space 2, Q a nonempty partially
ordered set and § an admissible class for Q (we may assume without loss of generality that Q = |F]). Let
us denote by H(.%) a covariant functor from Ord Q to Ord %, where % is a base of open sets in &, and
by H(.#) a contravariant functor from Ord % to the category of abelian groups so that an abelian group
S is defined for each U € % and a homomorphism pyy : Sy — -y is defined for each pair U C V.
Then H = H(.%) o H(.) is a contravariant functor of the Hausdorff spectrum 2" (%) = {.#y,,%, pu,u, }»

which we will call the Hausdorff spectrum associated with the presheaf { -y, puv }. Let X be the H-limit
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of the Hausdorff spectrum 2" (.¥) in the category of abelian groups and let

A= U Uus.

FegselF|

Proposition 3.1. Let .% be the sheaf of germs of holomorphic functions on an open set 2 C C", asso-
ciated with the presheaf {.#/, pyv }, and let 2" () = {.#1,, 5, pu, v, } be the associated true Hausdorff
spectrum. Then the H-limit of the Hausdorff spectrum 2" (.¥) is isomorphic to the vector space of
sections I'(A,.7) of the sheaf . over the set A.

Proof. By the conditions relating to {.%y, pyv }, we may put .y =T'(U,.¥) (U € % ). Further, let

(_
X::lhnpUﬂkr(UbJ?)7

— v

k3

so that

x=U N vve).

Fe3TeF

If x € X, there exists F' € § such that x € y(V,I') (T € F), that is to say, there exists a selection

E(T) = (f])serry

such that y(fI') = x foreach T € F. For any U € %, (z € 2) the homomorphism p,, : [(U,.%) — .,
generates for f € I'(U,.¥) the set of points
pu(f)=Upw(f) cs,
zeU

therefore let us put

ol =UJpu(f1);

seT

it is clear that p!” generates the section f7 on the open set Ur = |, Uy, since the correspondence
for
z€eUrr—p, NS CS
is single-valued and continuous. Moreover, if pyy : py(g) — pu(f), then py (f) C py(g), so let us put

ee=U U pu.ulon(f)),
F*~F s*c|F*|
seT

where necessarily

pu.u(Pu(f) = puu(pu () (T.T' €F).
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Let us put

Up, = ﬂprg, where Up§ - U Us;
g S€|F|

in this connection we have in particular,

pu,(f$) 0Py, (£) 2 puu, (Pu,(f))) -
It is also clear that for each & the correspondence
zZ€ Upg — pjcS N

is single-valued and continuous. Although, in general, it is not guaranteed that U, # 0, we will show
nevertheless that U, D A under the conditions of the proposition, specifically because the H-limit of the
Hausdorff spectrum 27 (.%) is true. Let the selection &(T) = (f])e/r) (T € F) generating the element
x € X be fixed. Then because the Hausdorff spectrum 2(.%) is true we may assume that fI' = fI

(s € i NT>) and, consequently, there exists & = (f;)se|r| € Nrer Vi such that
xey((f)r) and  fv=pyu(fs) (5,5 €|F]).

It is clear that pf = Use|r| Puyu, (fs)- Now let z € A. Then z € prg for any §(F) (F € §) and, moreover,
pi(@)=pi NS =pu,(fy) for z€Us (s€|F]).

Let us show that pf(z) = f/(z) for any §,&’. In fact, let & = (fs)|p), &' = (fy)| and x = (&),
x'=y(&"). Since § ~ &/, there exists F* € §, where F* = F' and F* - F’, such that for each T* € F*

we can find 7 € F and T’ € F' such that

orp:T* =T, opr-:T" =T and py.v,(fs) =pu.u, (fy)

where s* € T*. However, z € US*G‘ F| Us+, and so it remains to choose s;; € |F*|, such that

zeUy and  py,(fs) = pw, (fy) (5" —s,5"—=5).

Thus z € Up,. Furthermore, let us put x(z) = p;: (z)|a, so that x(z) is a section of . on A, x(z) €
['(A,.). In this way we have constructed a morphism 7 : X — I'(A,.%). Given fy = J(x), fa =
(), let us prove that x = y. In fact, at each point z € A there exists an open ball B(z, €) of the local
homeomorphism 7 : . — 2 at the point f4(z). Let us put U = (.4 B(z,€/2) and determine the section

f. € T(B(z,€/2),.7) passing through the point s = f4(z) € . such that

fzla = falBze/2)
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(we note that € = £(z)). Let
Bjj = B(z;,€/2)NB(zj,€;/2), BijNA#0, z0€B;;NA

for some z;,z; € A. Then f;,(z0) = f;(z0), and, consequently, there is an open ball By C B(zo, &/2) of the
local homeomorphism at the point so = f;,(z0) such that By C B;; and f,|g, = fzj| B,- However, because
of the isomorphism I'(B;;,.’) — -#3,; the holomorphic functions f;, and f;; coincide on the connected

open set B;; [9, Theorem A6]. The last observation means that f; |, = f;|s,;. Now suppose that
BijﬁA:@, but B;J-(S,‘,Sj)ﬂA#@, Z/EngﬂA.

Clearly, we will obtain by similar reasoning f | B, = fz’j ] 5, Butwe have f! |(;, ¢,/2) = f-; and fz/_,- Bz e52) =
fz;»sothat f | = f; |, (in the case where B;; # 0). Now there remains the third possibility for B;; # 0,
namely when B ;MA =0. In this case the sections f;,, fz; on Bj; do not necessarily coincide, therefore
let us put M = UTEU, where the bar denotes closure in C" and the union is taken over all B;; of this third
type. It is clear that M NA = @, since in the contrary case for z* € M N A there would exist ijj of the
third type such that z* € B;‘j’, which is impossible by construction. Let us put U(f4) = U\M, so that

U(fa) D A and U(f4) is an open subset of C". Then there exists f € I'(U(f4),.7) such that f|4 = fa
and, moreover,
Flugonseer) = flugnseen (2 €A);
also the section on U(fy) of f with the property f|4 = fa is uniquely determined (nevertheless, @4, the
corresponding holomorphic function on A, is extended holomorphically to U(f4) in a manner which, in
general, is not unique).
Now if y(§) = x, y(n) =y, it follows from the fact that the family of open sets {U,c|p| Us}pcg is

fundamental for A that there exists F* € § such that U(f4) D Up- Us+, and moreover by construction

PE1Up Uy = P U U -

The last assertion means that & ~ 7 and, consequently, x = y. Moreover, the fact that {Ur Us}p5 is
fundamental for A and the constructions carried out above allow us to conclude that 77 : X — I'(A,.¥)

is an isomorphism. The proposition is proved.
4. Conclusions

Numerical spectra are widely used in the solution of the actual problems concerning sheaves, their

variations - vector bundles and the moduli spaces of this objects [7]. On the other hand, in the previous
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section we established connection between Hausdorff spectra and sheaves, which play a key role in
modern algebraic geometry and related areas. Thus, a new activity for development of the theory of
sheaves (vector bundles) on algebraic varieties by means of ideology of the Hausdorff spectra (the spectra

of the non-numerical nature) is of serious interest.
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