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Abstract. After finite element discretization of incompressible Navier-Stokes equation, a sparse linear system is 

obtained in every iteration, and GMRES provides an efficient approach to solve this system. However, if the size of 

the original PDE model is large, the solution speed of the incompressible Navier-Stokes equation is still slow. Since 

the linear system from the incompressible Navier-Stokes equation is saddle point problem, we find that large portion 

of computational efforts for solving the linear system is occupied by the vector projection in GMRES. In this paper, 

by our parallel Gram-Schmidt process based GMRES and newly developed preconditioner Hermitian/Skew-

Hermitian Separation (HSS), we develop a fast solver HSS-pGMRES for the saddle point problem from 

incompressible Navier-Stokes Equation. Theoretical analysis shows that, HSS-pGMRES decreases the 

computational complexity of finite element solver for incompressible Navier-Stokes equation from O(m2n) to O(mn), 

where m is the grid size. Computational experiments show that, the fast solver HSS-pGMRES significantly increases 

the solution speed for the saddle point problem of incompressible Navier-Stokes equation than the conventional 

solvers. 

Keywords: fast solver; vector projection; parallel GMRES; Hermitian/Skew-Hermitian Separation; finite element 

method; incompressible Navier-Stokes equation. 
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1.  INTRODUCTION 

 

The incompressible Navier-Stokes equation is a mass conservation and momentum conservation 

based mathematical equation. Besides the fluid density ρ is fixed, the incompressible Navier-

Stokes decides two fundamental properties of a flow: the velocity u and the pressure p in a flow 
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field along with the time t, and the boundary condition of the flow field and the initial condition 

for the time t provide the uniqueness of the two variables. 

Incompressible Navier-Stokes equation is usually solved by numerical methods such as finite 

difference method or finite element method: Anderson studied the numerical solution of Navier-

Stokes equation by finite difference method in [1], and Elman et al. studied finite element 

solution of incompressible Navier-Stokes equation in [2]. 

Numerically solving incompressible Navier-Stokes equation is slow when the grid size is large, 

acceleration methods for Navier-Stokes equation are developed to accelerate the solution speed, 

and these approaches include high-order discretization [3-5], preconditioning, parallel computing 

[6-13], GPU computing, etc. 

The linear system from the discretization of incompressible Navier-Stokes equation is often 

solved by sparse solvers such as GMRES, and GMRES stands for Generalized Minimal Residual 

Method [14]. Performance improvement of GMRES is studied in [15, 16], and parallel GMRES 

is one of possible approaches to accelerate the solution speed of incompressible Navier-Stokes 

equation. 

Preconditioner is another approach to accelerate the solution speed of incompressible Navier-

Stokes equation. Elman et al. developed kinds of preconditioners in [17-21], and Benzi et al. 

developed preconditioners for the system [22, 23].  

If the size of the original PDE model is large, the solution speed of the incompressible Navier-

Stokes equation is still slow. Since the linear system from the incompressible Navier-Stokes 

equation is the saddle point problem, we find that large portion of computational efforts of 

solving the linear system is invested on the vector projection in GMRES. In this paper, by our 

parallel Gram-Schmidt process based GMRES and newly developed preconditioner 

Hermitian/Skew-Hermitian Separation (HSS) for the saddle point problem, we develop a fast 

solver HSS-pGMRES for incompressible Navier-Stokes equation. 

 

2.  METHODS 

 

In this section, we firstly discuss the preconditioner Hermitian/Skew-Hermitian Separation, then 

we develop parallel GMRES, and we develop the fast solver HSS-pGMRES for the saddle point 



282                                                                                    DI ZHAO 

problem. Finally, HSS-pGMRES is applied to incompressible Navier-Stokes equation for a fast 

solution. 

 

2.1 The Hermitian/Skew-Hermitian Separation 

Saddle point matrix is a matrix with the form: 

[𝐹 𝐷𝑇

𝐷 −𝐸
] [
𝑑𝑢
𝑑𝑝

] = [
𝑅𝑑
𝑟𝑑
],                                                      (1) 

where F and E are usually symmetric matrices [24], du and dp are unknown variables, and Rd 

and rd are right-hand-side. Saddle point problems appear in high-frequency in scientific and 

engineering applications. Golub reviewed solution methods for saddle point problem in [24], and 

the solution methods for saddle point problem include Schur complement reduction, null space 

methods, coupled direct solvers, stationary iterations, Krylov subspace methods, preconditioner 

and multilevel methods [24]. 

Newly developed matrix splitting based methods such as HSS provide an efficient way to solve 

saddle point problems [25-27]. Golub et al. developed HSS in [28], parameter optimization for 

HSS is proposed in [29], and preconditioned HSS is studied in [30-35]. 

To efficiently solve a linear system with the structure of saddle point problem of equation (1) 

with the symmetric part H and the skew-symmetric part S, we firstly solve an uncoupled linear 

system: 

(𝐻 + 𝛼𝐼𝑛) ∙ 𝑑𝑢
𝑘+

1

2 = 𝑓𝑢𝑐
𝑘 ,                                                   (2.1) 

(𝐸 + 𝛼𝐼𝑚) ∙ 𝑑𝑝
𝑘+

1

2 = 𝑔𝑢𝑐
𝑘 .                                                  (2.2) 

where  fuc
k and guc

k are right-hand-side. Then we solve a coupled linear system: 

(𝛼𝐼𝑛 + 𝑆) ∙ 𝑑𝑢𝑘+1 + 𝐷𝑇 ∙ 𝑑𝑝𝑘+1 = 𝑓𝑐
𝑘,                                        (3.1) 

−𝐷 ∙ 𝑑𝑢𝑘+1 + 𝛼𝑝𝑘+1 = 𝑔𝑐
𝑘.                                                   (3.2) 

where  fk and gk are right-hand-side. By Schur complement reduction, we obtain: 

[𝐷(𝐼𝑛 + 𝛼−1𝑆)−1𝐷𝑇 + 𝛼2𝐼𝑚] ∙ 𝑑𝑝
𝑘+1 = 𝐷(𝐼𝑛 + 𝛼−1𝑆)−1𝑓𝑘 + 𝛼𝑔𝑘.                (4) 

Since the coefficient matrix [D(In + α−1S)−1DT + α2Im] of equations (4) is large and sparse matrix, 

GMRES is applied to solve 𝑑𝑝𝑘+1, then we obtain 𝑑𝑢𝑘+1. The details of HSS are described in 

Algorithm 1: 

 

Algorithm 1: The Hermitian/Skew-Hermitian Separation 
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 Initialization of HSS 

 while R < tolHSS 

  Solve the couple system equations (2) 

  Solve the uncoupled system equations (3) 

 end while 

 

Convergence analysis of HSS (Algorithm 1) can be found in [30], and the convergence speed of 

HSS (Algorithm 1) is decided by tolHSS. However, the linear systems are unnecessary to be 

solved exactly, and the tolerance of the iterative solver for the linear systems can be loosened to 

increase the solution speed, which leads to inexact HSS. 

 

2.2 Parallel GMRES 

As we discussed, the uncoupled system equations (4) in HSS (Algorithm 1) can be solved by 

sparse solvers such as GMRES, and the details of GMRES are described in Algorithm 2: 

 

Algorithm 2: GMRES 

 Initialization of GMRES 

 while Rk < tolGMRES 

  𝑤0
𝑘+1 = 𝐴 ∙ 𝑣𝑘 

  𝑣𝑖+1
𝑘+1 = 𝑣𝑖

𝑘+1 − ∑ 𝑃(𝑤𝑖
𝑘+1, 𝑣𝑖)

𝑘−1
𝑖=1  

  Calculate yk such that 𝑅𝑘 = 𝑚𝑖𝑛‖𝑅0𝑒1 − 𝐻𝑘𝑦𝑘‖ 

 end while 

 𝑢𝑘 = 𝑢0 + 𝑉𝑘𝑦𝑘 

 

In GMRES (Algorithm 2), Gram-Schmidt process is chosen to build the orthogonal set u. In 

details of Gram-Schmidt process, the vector projection is defined as: 

𝑃(𝑢, 𝑣) =
〈𝑢,𝑣〉

〈𝑢,𝑢〉
𝑢.                                                              (5) 

Gram-Schmidt process works as: 

𝑢1 = 𝑣1, 

𝑢𝑘 = 𝑣𝑘 − ∑ 𝑃(𝑢𝑖, 𝑣𝑖)
𝑘−1
𝑖=1 .                                                      (6) 
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In GMRES (Algorithm 2), large portion of computational efforts is spent on building the 

orthogonalization basis in Gram-Schmidt process, and statistics from computational experiments 

show that the ratio of computational cost of Gram-Schmidt process to GMRES (Algorithm 2) is 

about 1/4. To further increase the solution speed of GMRES (Algorithm 2), the process of 

building the orthogonalization basis can be parallelized for higher efficiency, and the parallel 

strategy for Gram-Schmidt process based GMRES (pGMRES) is illustrated in Figure 1. 

 

 

Figure 1.  Parallel Strategy for Gram-Schmidt Process based GMRES 

 

pGMRES is designed to simultaneously calculate the vector projection P(u, v) of equation (5). 

From Figure 1 we can see, every thread is responsible for calculating a the vector projection P(u, 

v) of equation (5), and a reduction is followed to calculate the summation in equation (6). The 

number of the vector projection P(u, v) of equation (5) increases in the summation of equation (6) 

along with pGMRES iterations. However, the number of threads for pGMRES must keep the 

same in Figure 1. To settle this conflict, the redundant threads calculate vectors with all zero 

elements to keep the load balance of threads. 

 

Algorithm 3: Parallel Gram-Schmidt Process based GMRES 

 Initialization of GMRES 

 while Rk < tolGMRES 

  𝑤0
𝑘+1 = 𝐴 ∙ 𝑣𝑘 

W1
k+1, v1 

W2
k+1, v2 

Wk
k+1, vk 

WK
k+1, vK 

vectorProjection 1 at thread 1 

vectorProjection 2 at thread 2 

vectorProjection k at thread k 

vectorProjection K at thread K 

P1 

P2 

Pk 

PK 

reduction 
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  Calculate 𝑣𝑖+1
𝑘+1 by parallel Gram-Schmidt Process 

  Calculate yk 

 end while 

 𝑢𝑘 = 𝑢0 + 𝑉𝑘𝑦𝑘 

 

In the conventional Gram-Schmidt Process, we need k times computation of the vector projection 

P(u, v) of equation (5) in k iteration of GMRES. Therefore, we need total 
𝑚(𝑚+1)

2
 computation of 

the vector projection P(u, v) of equation (5) with time complexity O(m²) to build the orthogonal 

set u. In parallel Gram-Schmidt Process of Figure 1 and Algorithm 3, we calculate the vector 

projection P(u, v) of equation (5) simultaneously in k iteration of GMRES, and we only need m 

computation of the vector projection P(u, v) of equation (5) with time complexity O(m) to build 

the orthogonal set u. 

 

2.3 Hermitian/Skew–Hermitian Separation–parallel GMRES 

pGMRES (Algorithm 3) developed in the subsection 2.2 can be applied to HSS (Algorithm 1) in 

the subsection 2.1 to construct a fast solver HSS-pGMRES for the saddle point problem. HSS-

pGMRES consists of two loops: the outer loop for HSS and the inner loop for pGMRES, and the 

details of HSS-pGMRES are described in Algorithm 4: 

 

Algorithm 4: HSS-pGMRES 

 Initialization of HSS 

 while R < tolHSS 

  Solve the couple system equation (1) 

  Solve the uncouple system equation (2) 

   Initialization of pGMRES 

   while Rk < tolGMRES 

    𝑤0
𝑘+1 = 𝐴 ∙ 𝑣𝑘 

    Calculate 𝑣𝑖+1
𝑘+1 by parallel Gram-Schmidt Process 

    Calculate yk 

   end while 

   𝑢𝑘 = 𝑢0 + 𝑉𝑘𝑦𝑘 
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 end while 

 

In the conventional GMRES (Algorithm 2), we need k times computation of the vector 

projection P(u, v) of equation (5) in k iteration of GMRES and n iteration of HSS (Algorithm 1). 

Therefore, we need total 
𝑚(𝑚+1)𝑛

2
 computation of the vector projection P(u, v) of equation (5) 

with time complexity O(m²n) to build all orthogonal sets. In HSS-pGMRES (Algorithm 4), we 

calculate the vector projection P(u, v) of equation (5) simultaneously in k iteration of GMRES 

and n iteration of HSS (Algorithm 1), and we only need mn computation of the vector projection 

P(u, v) of equation (5) with time complexity O(mn) to build the orthogonal set u. 

 

2.4 HSS-pGMRES for Incompressible Navier-Stokes equation 

In this subsection, we apply HSS-pGMRES (Algorithm 4) to fast solve the saddle point problem 

from incompressible Navier-Stokes equation, which is discretized by finite element method. The 

time-independent incompressible Navier-Stokes equation is: 

−𝑘∆𝑢 + 𝑢 ∙ ∇𝑢 + ∇𝑝 = 𝑓,                                                     (6.1) 

∇ ∙ 𝑢 = 0,                                                                (6.2) 

where k is kinematic viscosity, u is velocity, p is pressure and f is the force term.  

Firstly we approximate u by velocity basis function φi and p by pressure basis function ψj, and 

we obtain: 

𝑘 ∫∇𝜑𝑖 ∙ ∇𝜑𝑗 + ∫(𝑢∗ ∙ ∇𝜑𝑗)𝜑𝑗 + ∫(𝜑𝑗 ∙ ∇𝑢
∗)𝜑𝑗 − 𝑘 ∫∇𝜑𝑖 ∙ ∇𝜑𝑗 = 𝑅𝑑, 

∫𝜑𝑘 ∙ ∇𝜑𝑗 = 𝑟𝑑, 

where Rd and rd is the right-hand-side. Setting 

𝐴 = ∫∇𝜑𝑖 ∙ ∇𝜑𝑗, 

𝐵 = ∫∇𝜑𝑖 ∙ ∇𝜑𝑗, 

𝐶 = ∫∇𝜑𝑖 ∙ ∇𝜑𝑗, 

𝐷 = ∫∇𝜑𝑖 ∙ ∇𝜑𝑗, 

we obtain the linear system of the saddle point problem of equation (1). A posteriori error 

estimate is used for error analysis, and the estimated error is plotted based on grid used in the 

specific problem [2]. 
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In the conventional GMRES (Algorithm 2) for incompressible Navier-Stokes equation, we need 

k times computation of the vector projection P(u, v) of equation (5) in k iteration of GMRES and 

n iteration of HSS (Algorithm 1). Therefore, we need total 
𝑚(𝑚+1)𝑛

2
 computation of the vector 

projection P(u, v) of equation (5) with time complexity O(m²n) to solve incompressible Navier-

Stokes equation. In HSS-pGMRES (Algorithm 4) for incompressible Navier-Stokes equation, we 

calculate the vector projection P(u, v) of equation (5) simultaneously in k iteration of GMRES 

and n iteration of HSS (Algorithm 1), and we only need mn computation of the vector projection 

P(u, v) of equation (5) with time complexity O(mn) for solving incompressible Naiver-Stokes 

equation. Meanwhile, m usually means the grid size for discretization of incompressible Navier-

Stokes equation, either by finite element method or finite difference method. 

 

3.  COMPUTATIONAL RESULTS 

 

3.1 The Problem 

To test the performance of HSS-pGMRES (Algorithm 4) for incompressible Navier-Stokes 

equation, we set f = 0 in equation (6.1) in the square −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1. The inflow 

boundary is set as the Dirichlet condition x = −1, and the outflow boundary is set as the 

Neumann condition: 

𝜕𝑢𝑥

𝜕𝑥
− 𝑝 = 0, 

𝜕𝑢𝑦

𝜕𝑦
= 0. 

We coded HSS-pGMRES (Algorithm 4), and the discretization of incompressible Navier-Stokes 

equation is based on IFISS [36]. The server is Intel Core 2 2.66 GHz CPU and 4G ECC 800MHz 

memory (DELL XPS 410). We test the performance of HSS-pGMRES (Algorithm 4), and all 

numerical experiments are repeated for three times. 

 

3.2 Performance of HSS-pGMRES 

In this experiment, we compare time cost of three different solvers: Gauss Jordan Elimination 

(GJE), HSS-GJE and HSS-pGMRES (Algorithm 4) for incompressible Navier-Stokes equation. 

The grid in this experiment is 8×8. In HSS-pGMRES (Algorithm 4), we set tolHSS = 10⁻² and 
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tolGMRES = 10⁻¹². The time cost of all three solvers is tested for three times, average values and 

standard deviations are plotted in Figure 2.  

 

 

Figure 2. The time cost of the three solvers for incompressible Navier-Stokes equation: GJE, 

HSS-GJE and HSS-pGMRES 

 

From Figure 2 we can see, to solve a linear system with the same size, HSS-pGMRES 

(Algorithm 4) is the fastest, HSS-GJE is the middle, and GJE is the slowest. To quantitatively 

measure the acceleration of every solver, we define the acceleration rate as the following: 

𝑟𝑎𝑡𝑒 =
𝑡𝑠𝑙𝑜𝑤𝑒𝑠𝑡

𝑡𝑖
, 

where tslowest is the time cost of the slowest solver GJE, ti is the time cost of a testing solver, and 

rate is the calculated acceleration rate. The calculated acceleration rates for the three solvers GJE, 

HSS-GJE and HSS-pGMRES (Algorithm 4) are listed in Table 1. 

 

Table 1. Calculated acceleration rate for the three solvers: GJE, HSS-GJE and HSS-pGMRES 

 GJE HSS-GJE HSS-pGMRES 

Acceleration rate 1.00 2.71 12.93 

 

From Table 1 we can see, HSS-pGMRES (Algorithm 4) is about 12.93 times faster than GJE, 

and HSS-GJE is about 2.71 times faster than GJE. From Figure 2 and Table 1 we can see, HSS-
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pGMRES (Algorithm 4) significantly accelerates the solution speed of the saddle point problem 

from incompressible Navier-Stokes equation. 

HSS-pGMRES (Algorithm 4) increases the solution speed of the saddle point problem from 

incompressible Navier-Stock equation, does HSS-pGMRES (Algorithm 4) produce the same 

results to GJE and HSS-GJE? To answer this question, we plot calculated velocity u from GJE, 

HSS-GJE and HSS-pGMRES (Algorithm 4) in Figure 3. 

 

(i)                                                                        (ii)

 

(iii) 

Figure 3. Calculated velocity u for incompressible Navier-Stokes equation by IFISS [36]: (i) 

GJE, (ii) HSS-GJE and (iii) HSS-pGMRES 
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From Figure 3 we can see, the three solvers, GJE, HSS-GJE and HSS-pGMRES (Algorithm 4) 

produce the same results of calculated velocity u. We also plot calculated pressure p from GJE, 

HSS-GJE and HSS-pGMRES (Algorithm 4) in Figure 4. 

 

 

(i)                                                                        (ii) 

 

(iii) 

Figure 4. Calculated pressure p for incompressible Navier-Stokes equation by IFISS [36]: (i) 

GJE, (ii) HSS-GJE and (iii) HSS-pGMRES 

 

From Figure 4 we can see, the three solvers, GJE, HSS-GJE and HSS-pGMRES (Algorithm 4) 

produce the same results of calculated pressure p. While Figure 3 and Figure 4 provide visual 

coincidence among results from GJE, HSS-GJE and HSS-pGMRES (Algorithm 4), quantitative 

coincidence among results from the three solvers can be compared by their estimated errors. 
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3.3 Scalability of HSS-pGMRES to the Grid Size 

In this subsection, we compare the solution accuracy of HSS-pGMRES (Algorithm 4) in 

different grid size: 8×8, 16×16 and 32×32. We set tolHSS = 10⁻² for 8×8, tolHSS = 10⁻³ for 16×16 

and tolHSS = 10⁻⁴ for 32×32. Estimated error is plotted in Figure 5. 

 

(i)                                                                        (ii) 

 

(iii) 

Figure 5. Estimated error by HSS-pGMRES for incompressible Navier-Stokes equation by 

IFISS: (i) tolHSS = 10⁻² and grid = 8×8, (ii) tolHSS = 10⁻⁴ and grid = 8×8 and (iii) tolHSS = 10⁻⁴ and 

grid = 32×32 
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From Figure 5 we can see, by HSS-pGMRES (Algorithm 4) for incompressible Navier-Stokes 

equation, the estimated error decreases along with increasing the tolerance of HSS tolHSS, also the 

estimated error decreases along with increasing the grid size. 

 

3.4 Scalability of HSS-pGMRES to Number of Threads 

In this experiment, we test the acceleration of HSS-pGMRES (Algorithm 4) for incompressible 

Navier-Stokes equation along with increasing the number of threads. The grid in this experiment 

is 16×16. In inexactHSS, we set tolHSS = 10⁻³. In GMRES, we set m = 10 and tolGMRES = 10⁻¹². 

The time cost of different number of threads is recorded for three times, average values and 

standard deviations are plotted in Figure 6. 

 

 

Figure 6. The time cost of different number of threads of HSS-pGMRES for incompressible 

Navier-Stokes equation 

 

From Figure 6 we can see, HSS-pGMRES (Algorithm 4) scales well with respect to the number 

of threads, and increasing the number of threads significantly decreases the time cost of HSS-

pGMRES (Algorithm 4). In Figure 6, the time cost of HSS-pGMRES (Algorithm 4) does not 

linearly decrease, and the reason why this phenomenon happens is that parallel Gram-Schmidt 

process occupies a portion of computation of HSS-pGMRES (Algorithm 4). 
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4.  CONCLUSIONS 

In this paper, we find that large portion of computational efforts for solving the linear system is 

occupied by the vector projection in GMRES. By our parallel Gram-Schmidt process based 

GMRES and newly developed preconditioner Hermitian/Skew-Hermitian Separation, we 

develop a fast solver HSS-pGMRES (Algorithm 4) for the saddle point problem from 

incompressible Navier-Stokes equation. Theoretical analysis shows that, HSS-pGMRES 

(Algorithm 4) decreases the computational complexity of finite element solver for 

incompressible Navier-Stokes equation from O(m2n) to O(mn), where m is the grid size. 

Computational results show that, HSS-pGMRES (Algorithm 4) significantly increases the 

solution speed of saddle point problem from incompressible Navier-Stokes equation than the 

conventional solvers. 

 

5.  DISCUSSION 

In this paper, the fast solver HSS-pGMRES (Algorithm 4) is built by parallel Gram-Schmidt 

process. However, parallelization of Gram-Schmidt process is not the unique approach to 

accelerate GMRES, and other strategies are also possible to build parallel GMRES [37-41]. Also, 

the orthogonal set is built by Gram-Schmidt process in the fast solver HSS-pGMRES (Algorithm 

4), and other orthonormalization algorithms are also suitable for this purpose. 

In this paper, HSS-pGMRES (Algorithm 4) is implemented by CPU multi-threading 

programming. However, other parallel platforms such as GPU programming are also applicable. 

Recently, incompressible Navier-Stokes equation is widely accelerated in the platform of GPU 

computing. For example, Kelly et al. developed a GPU-accelerated mesh-less method in [42], 

Yidong et al. developed OpenACC-based GPU acceleration in [43], and Chandar et al. 

developed GPU-based solver on moving overset grids in [44]. 

HSS-pGMRES (Algorithm 4) has two loops: the outer loop of HSS and the inner loop of 

GMRES. The accuracy of HSS-pGMRES (Algorithm 4) is decided by the tolerances of the two 

loops: the tolerance of the outer loop HSS tolHSS and the tolerance of the inner loop GMRES 

tolGMRES: small tolerance means higher accuracy but more computation. Therefore, to obtain 

maximum accuracy of HSS-pGMRES (Algorithm 4) with the minimum computational burden, 

the selection of both tolerances should be careful. 
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In this paper, we apply the fast solver HSS-pGMRES (Algorithm 4) for the saddle point problem 

from incompressible Navier-Stokes equation. HSS-pGMRES (Algorithm 4) is also beneficial to 

saddle point problems from other equations such as computational solid mechanics, 

computational electromagnetic, linear elasticity and constrained quadratic optimization. 
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