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Abstract: In this paper, the peristaltic flow of a Jeffrey fluid with variable viscosity under the effect of 

magnetic field is investigated under the assumptions of long wavelength and low Reynolds number. 

The flow is examined in a wave frame of reference moving with velocity of the wave.  The problem is 

formulated using   perturbation expansion in terms of viscosity parameter  . The governing 

equations are developed upto first-order in the viscosity parameter . The zero order system yields the 

classical Poiseuille flow when the Hartmann number M  tends to zero and 1  tends to zero. We 

simplify a complicated group of products of Bessel functions by approximating the polynomial. The 

effects of Hartmann number M , viscosity parameter  and material parameter 1  on the pumping 
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characteristics and friction force are discussed in detail through the graphs. 

Keywords: Hartmann number; Jeffrey fluid; peristalsis; variable viscosity. 
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1. Introduction  

The analysis of flow dynamic of a fluid in a circular tube induced by a 

traveling wave on its wall has numerous applications in various branches of science. 

The peristaltic transport is a physical mechanism that occurs due to the action of a 

progressive wave which propagates along the length of a distensible tube containing 

fluid. The peristaltic mechanism is nature’s way of moving the content within hollow 

structures by successive contraction of their muscular fibers. The mechanism is 

responsible for transport of biological fluids such as urine in the ureter, chyme in 

gastro-intestinal tract, semen in the vas deferens and ovum in the female fallopian 

tube. Considerable analysis of this principle has been carried out, primarily for a 

Newtonian fluid with a periodic train of sinusoidal peristaltic waves. The inertia free 

peristaltic flow with long wave length analysis is given by Shapiro et al. [13]. The 

early developments on mathematical modeling and experimental fluid mechanism of 

peristaltic flow are given in a comprehensive review by Jaffrin and Shapiro [10].  

Moreover many of the physiological fluids of known to be non-Newtonian. 

Peristaltic transport of blood in small vessels was investigated using the visco-elastic, 

power-law, micropolar, Casson fluid models by (Bohme and Friedrich [4]; Radha- 

Krishnamacharya [11]; Srinivasacharya et al. [14]; Srivastava and Srivastava [15]) 

respectively. Biomagnitic fluid dynamics is a relatively new area that deals with the 

fluid dynamics of magneto hydrodynamic biological fluid. During the last decades 

extensive literature is available on the MHD flows of biological fluids. The magnetic 

hydrodynamic flow of blood in a channel having walls that execute peristaltic waves 

using long wave length approximation has been discussed by Agrawal and 

Anwaruddin [2]. Abd El Hakeem et al. [1] have studied the hydromagnetic flow of 

fluid with variable viscosity in uniform tube with peristalsis. Peristaltic flow of 
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Johnson-Segalman fluid under effect of a magnetic field is studied by Elshahed and 

Haroun [5].  Hayat et al. [7] have discussed peristaltic transport of a third order fluid 

under the effect of a magnetic field in a tube. Hayat et al. [6] have studied the effect of 

endoscope on the peristaltic flow of a Jeffrey fluid. Peristaltic motion of a Jeffrey 

fluid under the effect of a magnetic field in a tube is discussed by Hayat and Ali [8]. 

Hayat et al. [9] have investigated the influence of an endoscope on the peristaltic flow 

of a Jeffrey fluid under the effective of magnetic filed in a tube.  Ali et al. [3] have 

investigated peristaltic flow of MHD fluid in a channel with variable viscosity under 

the effect of slip condition. Reddappa et al. [12] have investigated the peristaltic 

transport of a Jeffrey fluid in an inclined planar channel with variable viscosity under 

the effect of a magnetic field.  Recently, Subba Reddy et al. [16] have studied the 

effects of magnetic field and slip on the peristaltic flow of Jeffrey fluid through a 

porous medium in an asymmetric channel.   

  To the best of our knowledge, no investigation has been made yet to analyze 

the peristaltic flow of a Jeffrey fluid with variable viscosity under the effect of 

magnetic field. The flow is examined in a wave frame of reference moving with 

velocity of the wave.   The problem is formulated using perturbation expansion in 

terms of viscosity parameter  . The governing equations are developed upto 

first-order in the viscosity parameter  . The zero order system yields the classical 

Poiseuille flow when the Hartmann number M tends to zero and 1  tends to zero. 

We simplify a complicated group of products of Bessel functions by approximating 

the polynomial. The effects of Hartmann number M, viscosity parameter  and 

material parameter 1  on the pumping characteristics and friction force are studied 

in detail. 

2. Mathematical formulation 

Consider the axisymmetric flow of a Jeffery fluid in a uniform circular tube with a 

sinusoidal peristaltic wave of small amplitude traveling down its wall. We further 

assume that wall is extensible and fluid is electrically conducting. A uniform magnetic 

field Bo is applied in the transverse direction to the flow. The magnetic Reynolds 
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member is taken small so that the induced magnetic field is neglected. The geometry 

of wall surface is therefore described as 

2
( , )   sin  ( )R H Z t a b Z ct





 
    

 
        (2.1) 

in which a is the average radius of the undisturbed tube, b is the amplitude of the 

peristaltic wave,  is the wavelength, c is the wave propagation speed, and t is the 

time, R and Z are the cylindrical coordinate with Z measures along the axis of the tube 

and R is in the radial direction.  Let (U, W) be the velocity components in fixed 

frame of reference (R, Z).  Fig. 1 shows the physical model of the tube.  

 

 

Fig. 1. Physical model.  

The constitutive equations for an incompressible Jeffery fluid are  

  T pI S                 (2.2) 

2

1

( )
( )

1

R
S


  


 


            (2.3) 

where T and S are Cauchy  stress tensor and extra stress tensor respectively, p is the 

pressure I is the identity tensor, 1 is the ratio of relaxation to retardation times, 2 is 

the retardation time,  is the dynamic viscosity,   is the shear rate and dots over the 

quantity indicate differentiation with respect to time. 

In the fixed frame of reference (R, Z) the flow is unsteady. However, in a 
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coordinate frame moving with the wave speed c  (wave frame) (r, z) the boundary 

shape is stationary. 

The transformation from fixed frame to wave frame is given below as 

- ,    z Z ct r R  , ( ,  ) - ,  ( ,  )w r z W c u r z U  .   (2.4) 

where u and w being the velocity components in the wave frame. 

 The governing hydrodynamic equations are the equations of conservation of mass 

and momentum. The momentum equation here is modified to account for the 

interaction between magnetic field and fluid flow through the ponder motive force.  

 The governing equations in the wave frame are given as follows 

0
u u w

r r z

 
  

 
             (2.5) 

1
( ) ( )rr rz

Su u p
u w rS S

r z r r r z r


     

      
     

     (2.6) 

1
( ) ( )rz zz

w w p
u w rS S

r z z r r z


     
      

     
 2

0 ( )B w c    (2.7) 

where   is the density,  is the electrical conductivity of the fluid and 

2

1

( )
1

1

r
S u w

r z


 



    
    

    
.         (2.8) 

Introducing the following non-dimensional variables  

2

0

, , ,
r z u pa

r z u p
a c c   

    ,  
0 0

( )
, , , ,

r w a aS
r w S

c c


 

  
   

 , 1 sin 2
b

h z
a

     , 

where   is the amplitude ratio, 0 is the viscosity and  is the wave number, in the 

equations (2.5) – (2.8), we get 

0
u u w

r r z

 
  

 
             (2.9) 

3 2Re ( ) ( ) ( )rr rz

u u p
u w rS S S

r z r r r z r



 

      
      

     
  (2.10) 

21
Re ( ) ( ) ( 1)rz zz

w w p
u w rS S M w

r z z r r z
 

     
       

     
  (2.11) 
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where 

 2

1

2
( ) 1

1
rr

c u
S r u w

a r z r

 




     
    

     
, 

22

1

1
( ) 1

1
rz

c w u
S r u w

a r z r z

 
 



        
       

        
, 

2

1

2
( ) 1

1

c u
S r u w

a r z r


 




    
    

    
, 

2

1

2
( ) 1

1
zz

c w
S r u w

a r z z

 




     
    

     
, 

0

0

M aB



  is the Hartmann number and 

0

Re
ac


  is the Reynolds member. 

The corresponding non-dimensional boundary conditions are 

0, 0
w

u
r


 


at     0r  ,          (2.12) 

1w        at     1 sin 2r h z    .       (2.13) 

Using the long wavelength approximation ( 1  ) and low Reynolds number 

( Re 0 ) assumptions, the equations (2.10) and (2.11) becomes  

0
p

r





               (2.14) 

2

1

1
( ) ( 1)

(1 )

p w
r r M w

z r r r




   
   

    
.       (2.15) 

From the equations (2.14) and (2.15), we have  

2

1

1
( ) ( 1)

(1 )

dp w
r r M w

dz r r r




 
  

  
.        (2.16) 

The effect of viscosity variation on peristaltic flow can be investigated for any 

given function (r). For the present investigation, we assume that viscosity variation 

in the dimensionless form  

( )      or      ( ) 1     for    1rr e r r       .     (2.17) 

The dimensionless volume flow rate in the wave frame is given by 

0
2

h

q wrdr  .              (2.18) 
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The dimensionless instantaneous volume flow rate in the fixed frame of 

reference is given by  

  2

0 0
, 2 2 ( 1)

h h

Q x t wrdr w rdr q h      .       (2.19) 

The dimensionless time mean flow over a period  /T c of the peristaltic 

wave is defined as  

2

0

1
( , ) 1

2

T

Q Q x t dt q
T


    .           (2.20) 

From Eq. (2.20),  we have 
2

1
2

q Q


   . 

The non-dimensional expressions for the pressure rise p per one wave length 

and friction force F (on the wall) are respectively given as 

1

0

dp
p dz

dz
              (2.21) 

and 
1

2

0

dp
F h dz

dz

 
  

 
 .             (2.22) 

3. Perturbation solution 

 We look for a regular perturbation in terms of all small parameter  as follows 

 
2

0 1 ( )w w w O                (3.1) 

 
2

0 1 ( )u u u O                (3.2) 

 20 1 ( )
dp dpdp

O
dz dz dz

               (3.3) 

 
2

0 1 ( )q q q O                (3.4) 

 Substitutions from equations (3.1) – (3.3) in the equations (2.16), (2.12) and 

(2.13), we get  

3.1 The system of order zero 

 0 0( )1
0

ru w

r r z

 
 

 
             (3.5) 

 0 0
p

r





                (3.6) 
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 20 0
0

1

1
( 1)

(1 )

p w
r M w

z r r r

   
   

    
.        (3.7) 

 With the dimensionless boundary conditions 

 0
00, 0

w
u

r


 


 at 0r  ,           (3.8) 

 0 01,
dh

w u
dz


   , at 1 sin 2r h z    .       (3.9) 

 

3.2 The system of order one 

 1 1( )1
0

ru w

r r z

 
 

 
             (3.10) 

 1 0
p

r





                (3.11) 

 2 201 1
1

1

1

(1 )

wp w
r r M w

z r r r

   
    

     
        (3.12) 

 with the dimensionless boundary conditions 

 1
10, 0

w
u

r


 


 at 0r             (3.13) 

 1 10, 0w u    at 1 sin 2r h z    .       (3.14) 

3.3. Solution of order zero  

Solving Eq. (3.7) using the boundary conditions (3.8) and (3.9), we get 

 0 1
0 0 02

0

(1 )
( ) ( ) 1

( )

dp
w I Nr I Nh

dz N I Nh


          (3.15) 

where 1(1 )N M  . 

 The volume flow rate 0q  in the moving coordinate system is given by  

0 0
0

h

q rw dr  .             (3.16) 

Substituting from (3.15) into (3.16) and solving the result for 0dp

dz
 yields 

 

4 2

0 0 0

2 2

1 1 0

( )(2 )

1 2 ( ) ( )

dp N I Nh q h

dz NhI Nh N h I Nh




   

.       (3.17) 

3.4 Solution of order one  

Substituting from Eq. (3.15) in Eq. (3.12) yields.  
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2
2 2 2 2 01 1 1

1 12 2

0

(1 )
( )

dpw w dp G
r r N r w r

r r dz N I Nh dz


  
     

   
,   (3.18) 

where 2 3 2

0 1( ) ( )G N r I Nr Nr I Nr  . 

Differentiating equation (3.18) and with respect to r , yields 

2
2 2 2 0 1

12 2

0

(1 )
( 1)

( )

dpS S
r r N r S G

r r dz N I Nh

 
   

 
,      (3.19) 

where 2 2 3 3

1 0 12 ( ) ( ) ( )G N r I Nr N r Nr I Nr   , 

 1w
S

r





.               (3.20) 

 The determination of a particular solution of Eq. (3.19) corresponding to this 

group of terms is complicated, and to avoid tedious manipulation we recall a similar 

group of terms. We represent the right hand side of Eq. (3.19) by a polynomial in the 

following form 

  
2

2 2 2 2 201

2 2
00

1
( 1) ( )

( )

k

k

k

dps s
r r N r S b Nr

r r N I Nh dz

 




 
   

 
 ,    (3.21) 

where 

 
  

22 1

(2 1)(2 3)

2 1 ( 1)
k

k

k k
b

k k

 


  
 for  0,1,2,3,...k        (3.22) 

 The reason for the lower limit of the sum being zero and for the even power of r 

in the series is that, when the right-hand side of equation (3.19) is expanded in a 

power series in (Nr) using a series expansion of  0I Nr and  1I Nr , we obtain only 

even power beginning with  
2

Nr  and then we can determine kb . 

 Therefore, Eq. (3.18) can be rewritten as  

2
2 2 2 2 2 201 1 1 1

1 12 3
00

(1 )
(1 ) ( )

( ) 2 1

kk

k

dp bw w dp
r r N r w r Nr

r r dz N I Nh dz k









  
    

  
 .   (3.23) 

Solving Eq. (3.23) using the boundary conditions (3.13) and (3.14), we get 

 
2 3

01 1 1
1 0 02 3

00 0

( )(1 ) (1 )
( ) ( )

( ) ( ) 2 3

k

k

k

dp a Nrdp
w I Nr I Nh

N I Nh dz N I Nh dz k

  



 
  


  
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 

2 3

0 1 0

23
00

( )(1 ) ( )

2 3( )

k

k

k

I Nr dp a Nh

dz kN I Nh

 







 ,      (3.24) 

where  

1
0

1
,

2 (2 1)(2 3)

k k
k

b a
a a

k k


 

 
  for  0,1,2,3,...k  ,     (3.25) 

 0I Nr and  1I Nr are the modified Bessel functions of the first kind.  

The volume flow rate 1q  in the moving coordinate system is given by 

 1 1
0

h

q w rdr  .             (3.26) 

Substituting from Eq. (3.24) into the Eq. (3.26) and solving the results for 1dp

dz
, yields 

 

4 2 3

1 01 1

2
011 1 0

2 5

2

01

2 ( ) ( )

(1 ) 2 3(1 ) 2 ( ) ( ) ( )

( )
                                        

(1 ) 2 5

k

k

k

k

k

k

q N I Nh a Nhdp A

dz kNhI Nh Nh I Nh

a NhA

k













 
  


 





,  (3.27) 

where 
3 2

0
1 2

1 0

(2 )

2 ( ) ( ) ( )

N q h
A

NhI Nh Nh I Nh





, 

 

 

3 2

0 0
2 2

2

1 0

( )(2 )

2 ( ) ( ) ( )

N I Nh q h
A

NhI Nh Nh I Nh





. 

 Substituting from equations (3.15), (3.24) into the Eq. (3.1) using the relation 

0 1
dp dpdp

dz dz dz
   and negating terms greater than O() we get 

 
2 3

1 0 0 1

2 3
00 0

(1 )( ( ) ( )) ( )(1 )

( ) ( ) 2 3

k

k

k

I Nr I Nh a Nrdp dp
w

N I Nh dz N I Nh dz k

 






  
 


  

                 
 

 

2 31 0

23
00

(1 ) ( )
( )

2 3( )

k

k

k

dp
I Nr

a Nhdz

kN I Nh













 .    (3.28) 

 Substituting from equations (3.17) and (3.27) into the Eq. (3.3) using the relation 

0 1q q q  , where q is defined through Eq. (2.18) and neglecting the terms greater 

than  O  , we have  
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where B1 and B2 are given by 

 

2
3 2

1 2

1 0

( 1 )
2

2 ( ) ( ) ( )

N Q h

B
NhI Nh Nh I Nh


  




 and 

 

2
3 2

0

2 2
2

1 0

( )( 1 )
2

2 ( ) ( ) ( )

N I Nh Q h

B
NhI Nh Nh I Nh


  




. 

The pressure rise p  and friction force F  (on the wall) in the tube length  

in their non-dimensional forms are given by 

1

0

dp
p dz

dz
   ,             (3.30) 

1
2

0

dp
F h dz

dz

 
  

 
 .            (3.31) 

4. Main results 

A regular perturbation series in terms of the viscosity parameter () is used to 

obtain solution to the field equations for peristaltic flow of a Jeffery fluid in an 

axisymmetric tube. Since the integrals in equations (3.30) and (3.31) are not 

integrable in closed form, we have evaluated it numerically using a 

MATHEMATICA package. The values of various parameters for the transport of 

mucus in the small intestine, as reported in Shukla et al. (1980) and Srivastava et al. 

(1983) are 2 / minc cm , 1.25a cm , 8.01cm  . The values of viscosity 

parameter  as reported in Srivastava et al. (1983) are 0   and 0.1  . It may be 

noted that the theory of long wave length and zero Reynolds number of the present 

investigation remains applicable here, since the radius of the small intestine is very 

small compared with the wave length. 

 Fig. 2 shows the variation of pressure rise p  with time averaged volume flow 

rate Q  for different values of Hartmann number M with 0.1  , 0.5  , and 

1 0.2  . Any two pumping curves intersect at a point in the first quadrant. To the left 
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of this point pumping increases and to the right pumping, ( 0)p   free pumping 

( 0)p  and co-pumping ( 0)p  are all decreases with increasing the Hartmann 

number M . 

 The variation of pressure rise p  with time averaged flux Q for different values 

of viscosity parameter with 0.5  , 1 0.2  and 1M as shown in Fig. 3. For 

0p  , the time average flux Q  increases with a decrease in   for 0p  , the 

Q  increases with an increase in  . 

 Fig. 4 depicts the variation of pressure rise p with time averaged flux Q  for 

different values of 1  with 0.5  , 0.1   and 1M . In the pumping and 

co-pumping regions, Q  decreases with an increase in 1 . Whereas in the co-pumping 

region Q  increases with an increase in 1 . 

 The variation of pressure rise p  with time mean flow rate Q  for different 

values of amplitude ratio with 0.1  , 1M  and 1 0.2  as presented in Fig. 5. 

Both pumping and free pumping increases with an increase in  . But in the 

co-pumping region, Q  increases with an increase in amplitude ratio   0 1  , 

for an appropriately chosen ( 0)p  . 

 In order to see the effects of Hartmann number, viscosity parameter, material 

parameter and amplitude ratio on the friction force on the wall of the tube, we have 

plotted figures 6-9. From Fig. 6 it is noted that, the friction force increases with 

increase in the M. From Fig. 7, it is observed that, the friction force first increase and 

then decrease with an increase in viscosity parameter . From Fig. 8, it is noted that, 

as the material parameter 1  increases the friction force first increases and then 

decreases. From Fig. 9, it is observed that the friction force decreases with an increase 

in . In general, figures 2-9 show that the friction force has opposite character in 
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comparison to the pressure rise. 

5. Conclusions 

 In this paper, we investigated the peristaltic transport of magnetohydro-dynamic 

(MHD) Jeffrey fluid with variable viscosity in a tube. The analytical expressions are 

constructed for the axial velocity, axial pressure gradient, pressure rise and frictional 

force.  The effects of Hartmann number M , amplitude ratio , viscosity parameter 

  and 1  on pumping characteristics and frictional force. It is found that, an 

increase in M leads to an increase in the magnitudes of p and F . The magnitudes 

of p and F  decreases with an increase in both viscosity parameter   and 1 . As the 

amplitude ratio increases the magnitudes of p and F increases. Further, as 

1 0  our results coincides with the results obtained by Abd El Hakeem et al. [1]. 

 

 

Fig. 2. The variation of pressure rise p  with Q  for different values of Hartmann 

number M with 0.5, 0.1    and 1 0.2  .  
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Fig. 3. The variation of pressure rise p  with Q  for different values of viscosity 

parameter  with 0.5, 1M    and 1 0.2  . 

 

 

 

 

Fig. 4. The variation of pressure rise p  with Q  for different values of 

1 with 0.5, 0.1    and 1M  . 
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Fig. 5. The variation of pressure rise p  with Q  for different values of amplitude 

ratio with 1 0.2, 0.1    and 1M  . 

 

 

 

Fig. 6. The variation of Friction force F  with Q  for different values of Hartmann 
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number M with 0.5, 0.1    and 1 0.2  . 

 

 

 

 

Fig. 7. The variation of Friction force F  with Q  for different values of viscosity 

parameter  with 0.5, 1M    and 1 0.2  . 
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Fig. 8. The variation of Friction force F  with Q  for different values of 

1 with 0.5, 0.1    and 1M  . 

 

 

Fig. 9. The variation of Friction force F  with Q  for different values of amplitude 

ratio with 1 0.2, 0.1    and 1M  . 
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