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Abstract. In this paper, we will introduce the concept of interval value fuzzy n-fold KU-ideal in KU-algebras,
which is a generalization of interval value fuzzy KU-ideal of KU-algebras and we will obtain few properties that is
similar to the properties of interval value fuzzy KU-ideal in KU-algebras, see [8]. Also, we construct some
algorithms for folding theory applied to KU-ideals in KU-algebras.
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1. Introduction

Prabpayak and Leerawat [12, 13] constructed a new algebraic structure which is called KU-
algebras and introduced the concept of homomorphisms for such algebras. Akram et al and
Yaqoob et al [1, 14] introduced the notion of cubic sub-algebras and ideals in KU-algebras. They
discussed relationship between a cubic subalgebra and a cubic KU-ideal. Zadeh [15] presented
the notion of fuzzy sets. At present this concept has been applied to many mathematical branches,
such as groups, functional analysis, probability theory and topology. Muhiuddin [11] introduced
the notions of bipolar fuzzy KU-subalgebras and bipolar fuzzy KU-ideals in KU-algebras. He
considered the specifications of a bipolar fuzzy KU-subalgebra, a bipolar fuzzy KU-ideal in KU-
algebras and discussed the relations between a bipolar fuzzy KU-subalgebra and a bipolar fuzzy
KU-ideal. Gulistan et al [3] studied (a, B)-fuzzy KU-ideals in KU-algebras and discussed some
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special properties. Mostafa et al [8] introduced the notion of interval value fuzzy KU-ideals of
KU-algebras and then they investigated several basic properties which are related to interval
value fuzzy KU-ideals. Akram et al [2] introduced the notion of interval-valued (5 " ) -fuzzy

KU-ideals of KU-algebras and obtained some related properties. Jun and Dudek [5] introduced
the notion of n-fold BCC-ideals and obtained some related results. In [4] Jun, introduced n-fold
fuzzy BCC-ideals and gave a relation between n-fold fuzzy BCC-ideal and a fuzzy BCK-ideal.
Mostafa and Kareem [9, 10] introduced n-fold KU-ideals and fuzzy n-fold KU-ideals of KU-
algebra. They obtained some related properties. In this paper, we will introduce a generalization
of interval value fuzzy KU-ideal of KU-algebras. Therefore, few properties similar to the
properties of interval value fuzzy KU-ideal in KU-algebras can be obtained. Also, few results of
interval value fuzzy n-fold KU-ideals of KU-algebra under homomorphism have been discussed.

Also, some algorithms for folding theory have been constructed.

2. Preliminaries

In this section, we will recall some known concepts related to KU-algebra from the literature
which will be helpful in further study of this article.

Definition2.1. [12, 13] an algebra(XX, *, 0) of type (2, 0) is said to be a KU -algebra, if for all
X, Y,z € X, the following axioms are satisfied:

(ku;) (x*y)*[(y*2z)*(x*2)]=0,

(ku,) x*0=0,

(kuy) O=x=x,

(ku,) x*y=0and y*x=0 impliesx=y,

(kug) x*x=0,

On a KU-algebra (X ,*,0) we can define a binary relation < on X by putting:
X<y y*xx=0.
Thus a KU-algebra X satisfies the conditions:

(kuy) (y*2)*(x*z) < (x*y)
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(ku,) 0<x
(kus\) X<y, y<x impliesx=y,

(ku,) y*x<x.

Theorem 2.2. [7]. In a KU-algebra X , the following axioms are satisfied:

Forallx,y,ze X,

(1) x<yimplyy*z<x=*z,
(2) x*(y*2z)=y*(x*2),
G ((y*x)*x)<y.

Definition 2.3[13]. A non-empty subset S of a KU-algebra (X,*, 0) is called a KU-sub algebra

of X ifx*yeS wheneverx,yeS.

Definition2.4 [12]. A non-empty subset | of a KU -algebra (X,*, 0) is called an ideal of X if
forany x,ye X,

()oel,

(i) x*y,xel implyyel.

Definition2.5 [13]. Let I be a non empty subset of a KU-algebra X . Then | is said to be an
KU-ideal of X , if
(1) Oel

(1,) vx,y,ze X,if xx(y*z)el and yel, implyxxzel.

For any elements xand y of a KU-algebra X, x" *y denotes x*(x*...(X*Yy), where x occurs

ntimes.

Definition2.6[10]. A nonempty subset | of a KU-algebra X is called n-fold KU-ideal of X if
(1) Oel
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(I1) ¥x,y,z e X there exists a natural numbern such that x"*z e | whenever x"*(y*z) el
andyel.
For a KU-algebra X , obviously {0} and X itself are n-fold KU-ideal of X for every positive

integern.

Example 2.7. Let X = {0, 1, 2, 3, 4} be a set with = defined by the following table:

Al W N | O

o O o o ol o
o O k| O | k-
O O O] O N N
O O W W w w
o &~ B B DD

By using the algorithms in Appendix A, we can prove that (X, *, 0) is a KU-algebra and it is
easy to check that | ={0,1,2,3}is n-fold KU-ideal of X for every positive integer n.

Definition 2.8 [15]. Let X be a set, a fuzzy set p in X is a function u: X — [0, 1]. For a fuzzy
setuin X and t €[0,1]. Define U (u,t)to be the set U (u,t)={xe X : u(x)>t}, which is called

a level set of 4.

Definition2.9[10]. A fuzzy set u in a KU-algebra X is called n-fold fuzzy KU-ideal of X if
(N,) u(0)= u(x)forallxe X .

(N,) Vx,y,z e X, there exists a natural numbern such that

p(x" * 2) 2 min{u(x" * (y * 2)), u(y)}-

Example 2.10. Let X = {0, 1, 2, 3, 4} be a set with = defined as in Example2.7, define a fuzzy
set win X by u(4)=0.2and u(x)=0.7forall x#4. Then g is n-fold fuzzy KU-ideal of X .
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Definition 2.11 [13]. Let (X,*,0) and (X'#*'0") be KU-algebras, a homomorphism is a
map f : X = X' satisfying f(x*y)= f(x)*' f(y)forall x,ye X.

Theorem 2.12[13]. Let f be a homomorphism of KU-algebra X into KU-algebraY , then

(1) If O istheidentityin X ,then f(0) is the identity inY .

(if) If S is a KU- subalgebra of X , then f (S) is a KU-subalgrbra of Y .

(iii) If I is n-fold KU- ideal of X , then f (I)is n-fold KU- ideal in Y .

(iv) If S is a KU- subalgebra of Y , then f (S) is a KU- algebra of X .

(v) If B is n-fold KU- ideal in f(X), then f 7(B) is n-fold KU- ideal in X .

3. Interval value fuzzy n-fold KU-ideals of KU-algebras
In this section, we begin with the concepts of interval-valued fuzzy sets.
An interval number is a=[a",a”], where 0<a"<a" <1. LetD [0, 1] be denote the family
of all closed sub-intervals of [0, 1], i.e.,
D[01] = {5 =[a",a"]:a"<a"” fora",a" e[O,l]}.

We define the operations<, >, =, rmin and rmax in case of two elements in D [0, 1]. We
consider two elements & = [a', a" Jand b =[b",b"]in D [0, 1].
Then

a<b iff at <b",a” <b’;
2-a>b iff at >b",a” >b";
3-a=b iff a- =b",a" =b";
4-rmin{§ E)v}z[min{aL bL},min{aU,bU }] ;
5-rmax{é' } [maxfa®,b" }, maxfa,b" }]
Here we consider that 0 = [0,0] as least element and 1 = [1,1]as greatest element.
Let & e D[01], where i € A .We define

rinf & :{inf ati,inf aui} and rsup3g; —{supaﬂ,supaui]

ieA ieA ieA ieA ieA ieA
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An interval valued fuzzy set zz in X is defined as z = {<x : [yL(x),yU (x)], X e X>} , Where

i X — D[0,4] and 1" (x) < 1’ (x), forall x € X . Then the ordinary fuzzy sets

u": X —[01]and 1 : X —[01]are called a lower fuzzy set and an upper fuzzy set of 1

respectively.

Definition 3.1. Let X be a KU-algebra. An interval valued fuzzy set z in X is called an interval
valued fuzzy KU-subalgebra of X if z(x*y) > rmin{u(x), z(y)}, forall x,ye X .
Definition3.2. An interval valued fuzzy set zzin a KU-algebra X is called an interval valued
fuzzy ideal of X if

(i,) z(0)> u(x)forallxe X .

(ii,) vx,y € X, u(y) = rmin{u(x*y), u(x)}

Definition3.3. An interval valued fuzzy set uin a KU-algebra X is called an interval valued
fuzzy KU-ideal of X if
(f)) u(0)> u(x)forallxe X .

(f)) VX, y,ze X, p(x*z) = rmin{u(x(y *2)), u(y)}-

Lemma 3.4. If g is an interval valued fuzzy ideal of KU-algebra X and if x <y, then
H(X) = u(y) .
Proof. If x <y, then y*x=0, by ku, Oxx=x and for all xe X , z(0) > z(x) . We get

A(0*x) = z(x) = rmin{z(0* (y * X)), (y)} = r min{z(0+0), u(y)}
= rmin{z(0), z(y)}= u(y).
Definition 3.5. An interval valued fuzzy x is called an interval valued fuzzy relation on any

set X , if z is an interval valued fuzzy subset zz: X x X — D[01] .

Definition 3.6. If z is interval valued fuzzy relation on a set X and ﬁ is an interval-valued fuzzy

subset of X , then z is an interval valued fuzzy relation on ﬁ if

(%, y) <rmin{B(x), B(y)}, VX, y € X .



252 MOSTAFA, RADWAN, IBRAHEM AND KAREEM

Definition 3.7. Let z and ,E be two interval valued fuzzy subsets of a set X , the product of 1

andﬁ is define by (u x E)(x, y)=r min{ﬁ(x),ﬁ(y)}, VX, y e X.

Definition 3.8. If ﬁ Is an interval valued fuzzy subset of a set X , the strongest interval valued

fuzzy relation on X , that is, an interval valued fuzzy relation onﬁ is ﬁﬁ given by

7z (x,y) = rmin{B(x), B(Y)},Vx,y € X .

Definition3.9. An interval valued fuzzy set uin a KU-algebra X is called an interval valued
fuzzy n-fold KU-ideal of X if
(L) z(0)> u(x)forallxe X .

(L,) ¥x,y,z € X, there exists a natural number n such that

H(X" *2) = rmin{u(x" *(y *2)), u(y)}-

Remark 3.10. An interval valued 1-fold fuzzy KU-ideal is precisely an interval valued fuzzy
KU-ideal.

Example 3.11. Let X ={0,1,2,3,4}be a set with * defined as in Example 2.7, define x (x) as
follows:

[03,09] if x={01,23}

A= [0.106] if x=4

It is easy to check that z is an interval valued fuzzy n-fold KU-ideal of X.

Lemma 3.12. In a KU-algebra X , every interval valued fuzzy n-fold KU-ideal is an interval
valued fuzzy ideal.

Proof. Let xbe an interval valued n-fold fuzzy KU-ideal of a KU-algebra X . By taking x=0 in

(L,)and using (ku, ), we get

H(2) = u(0" * z) = rmin{z(0" * (y * 2)), u(y)}=r min{u(y * 2), u(y)}or all y,ze X .
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Hence x is an interval valued fuzzy ideal of X .

Lemma 3.13. Let zz be an interval valued fuzzy n-fold KU-ideal of a KU-algebra X, if the
inequality x" * y <z holds in X, Then z(y) >r min{ﬁ(x”),ﬁ(z)} .

Proof: Assume that the inequality x" = y < zholds in X, then z*(x" *y) =0and by (L2)
A((X" * y)) 2 rmin{ (X" * (2 * y)), u(2)}

but
Fi(0* y) = i(y) > rmin{Zi(0* (X" * ), i(x") }=r min{fi(x" * y), (x")
> rmin{ii(2), 4(x")} (by (1))
ie. ,Zz(y)Zrminw(x”),[Z(z)} :
Proposition 3.14. If x is an interval valued fuzzy n-fold KU-ideal of X , then
A(X" (X" *y) =2 pa(y)
Proof: By taking z = x" *y in (L2) and using (kuz) , we get
B (X" y)) 2 rmingia(x" = (y * (X" * y)), Z(y)}=rmin{i(x" = (x" = (y * ), (y)}
= rmin{ii(x" * (x" *0), f(y)}
= rmin{i(x" *0), ii(y)}

= rmin{zz(0), Z(y)} = a(y).
The proof is completed.

Proposition3.15. If z is an interval valued fuzzy n-fold KU-ideal, then

H(X" *(y*2)) = u(X" *2)

by(2),Th.2.2, kus

Proof. Since{(xn #2)# (X" *(y*2))=X"*((X"*2)*(y*2)))=x"*(y*((x"*2)*2))=
=y*(X"#((X"*2)*2) = y*((X"*2)*(x"*2))=y*0=0

, then we have X" *(y*z)) <(x" *Zz), by Lemma 3.4, we get
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a(x" #(y*2)) > u(x" *z). The proof is completed.

Proposition3.16. Let Abe a nonempty subset of a KU-algebra X and zz be an interval valued

T Xe A
[6.t.] , wheret, > a;, t,>a, and

fuzzy set in X define by z(x) =
Y y () {[al,az] otherwise

t,,t,,a, @, €[0,1]. Then x is an interval valued fuzzy n-fold KU-ideal of X if and only if A is

an interval valued fuzzy n-fold KU-ideal of X . Moreover X; = A, where

X5 ={xe X : fi(x) = Z(0)}.

Proof: Assume that x is an interval valued fuzzy n-fold KU-ideal of X . Since z(0) > z(x) for
allxe X , we have x(0)=[t,,t,]Jandso Oe A. Forany Xx,y,ze X such that x"*(y*z)e A
andy e A. Using(L,), we know that z(x" *z) > rmin{u(x" *(y *2)), u(y)}=1t,, t,]and
thus zz(x" *z) =[t;,t,]. Hencex"*ze A, and Ais n-fold KU-ideal of X .

Conversely, suppose that A is n-fold KU-ideal of X . Since 0 € A, it follows that
£(0)=[t,,t,]1> u(x)forall xe X . Letx,y,ze X . If yg Aand x"*ze A, then clearly
A(X" % Z) = rmindu(x" * (y * ), 1(y)}-

Assume that ye Aandx"*z ¢ A. Then by (ll), we have x" *(y*z) g A. Therefore

a(x" xz) =[t,,t,] = rmin{u(x" *(y * z)), u(y)}. Finally we have that

X, ={xe X 1 a(x) = Z0)}={x e X : G0 = [t LT} = A.

Theorem 3.17. Let u be an interval valued fuzzy set in a KU-algebra X and n a positive integer.
Then z is an interval valued fuzzy n-fold KU-ideal of X if and only if the nonempty level set
U(u,t)of i is n-fold KU-ideal of X . Then call U(z,t) the level n-fold KU-ideal of 1 .

Proof: Suppose that x is an interval valued fuzzy n-fold KU-ideal of X and U (z,t) = ¢ for any
t =[t,,t,] € D[01], there exists x €U (zz,t)and so zz(x) > t . It follows from(L,) that

2(0) > z1(x) >t sothat 0eU (i, t). Let x,y,ze X be such that x" = (y*z) eU(iz,1)

andy eU (u,t). Using (L,), we know that
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(X" #2) > rminf{za(x" *(y *2)), z(y)}=> rmin{t, t}=t, thus x"*zeU(z,1). Hence
U(z,t) is n-fold KU-ideal of X .

Conversely, suppose that U (iz,t) = ¢ is n-fold KU-ideal of X for everyt e D[0,1]. For

anyxe X, let z(x) =t , then xeU(z,1). Since0 U (i, 1), it follows that zz(0) >t = z(x) so
that z2(0) > z(x) for all x e X . Now, we need to show that zz satisfies(L,). If not, then there

exista,b,c e X such that z(a" *c)>rmin{u(a" * (b*c)),z(b)}. By taking
£ - %(ﬁ(a” #C) + rmingii(a” (b *c)), Z(b)}) then we have

a(@" *c) < t, < rmin{zz(a" *(b*c)), z(b)}. Hence (@" *(b*c)) eU (i, 1) and beU (1, 1),
buta” *c ¢ U (4, 1,), which means that U (z, t,) is not n-fold KU-ideal of X . This is

contradiction. Hence 4 is an interval valued fuzzy n-fold KU-ideal of X .

Lemma 3.18. Let z be an interval valued fuzzy n-fold KU-ideal of a KU-algebra X and
t,t, e D[0]witht > t,. Then

(U (1) cU(at),

(i) Whenever i, t, € Im(zz), where Im(zz) ={t :i € A} thenU (z,t) #U (&, 1),

(iii) U (&, t) =U (&, ,) if and only if there does not exist x e X such that t, < z(x) < t,.

Proof: clear.

Theorem 3.19. Let iz be an interval valued fuzzy n-fold KU-ideal of a KU-algebra X with
Im(zz) ={t :ieA}and Q={U(x,t):i e A}where A isan arbitrary index set. Then

(i) There exists a unique i, e Asuchthat t >t forallie A.

(i) X; =U(E D) =U @ D),
(i) X ={Ju (@ D),

Proof: (i) since z2(0) e Im(zz), there exists a unique i, € A such that zz(0) = fo Hence by (L,),

we get z1(x) < z(0) =t forallxe X ,andso t >t forallieA.
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(if) We have that
U t) ={xe X a(x) >t }={xe X a(x) =t }={xe X : a(x) = a(0)}= X .

Note that U(z,t)cU (. t) for allieA, so thatU(i,t )< \U(it). SinceijeA , it

ieA

follows that X ; =U (&2, £ ) = (U (1. T).

ieA

(iii) For any x e X we have zi(x) € Im(zz) and so there exists i(x) € A such that z(x) = t,, .
This impliesx eU (11, %, ) = JU (2, ) . Hence X = JU (11.t).

ieA ieA
4. Image (Pre-image) of interval valued fuzzy n-fold KU-ideals under

homomorphism

Definition4.1.

Let f be a mapping from the set X to the set Y . If & is an interval valued fuzzy subset of X ,

then the fuzzy subset B of Y defined by

~ a(x), if f(y)={xeX, f(x)=
f(ﬁ)(y>=B<y>=+§“ﬁ;y>“(x)' Wlee R I =al =g

otherwise
Is said to be the image of x under f . Similarly if E is a fuzzy subset of Y , then the fuzzy
subset 1 :Eo f in X (i.e. the interval valued fuzzy subset defined by z(x) =ﬁ(f(x)) for all

x € X ) is called the pre-image of ,E under f.

Theorem 4.2. An onto homomorphic pre-image of an interval valued fuzzy n-fold KU-ideal is

also an interval valued fuzzy n-fold KU-ideal.

Proof: Let f:X — X' be an onto homomorphism of KU-algebras, E be an interval valued
fuzzy n-fold KU-ideal of X’and 7 be the pre-image of B under f , then z(x) = B(f (x)) , for

all xe X . Letxe X, then zz(0) = A(f(0)) = A(f (X)) = zi(x). Now let x,y,ze X then
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A *2) = B(E(C #2) = B(EC) ¥ @) 2 rminiB(F () () ¥ £@). A(T ()]
~ rminlB(f (<" *(y+2))), B (F ()]
= rmin{a(x" *(y *2)). A(y))

, the proof is completed.

Definition4.3. An interval valued fuzzy subset x of X has sup property if for any subset T of

X, there exist t, e T suchthat u(t,) =SuUP z(t)-
teT

Theorem 4.4, Let f : X — X' be a homomorphism between two KU-algebras X and X'. For
every interval valued fuzzy n-fold KU-ideal zz in X , f () is an interval valued fuzzy n-fold KU-
ideal of X"

Proof : By definition B(y") = f (Z)(y") == sup z(x) forall y'e X' and supg:=0.

xef(y)
We have to prove that B((x')" * z') = r min{B ((x')" *(y' * 2')),B(Y))}, VX', y', 2" € X".
Let f : X —> X' be an onto homomorphism of a KU-algebra, z be an interval valued fuzzy n-
fold KU-ideal of X with sup property andﬁ be the image of z under f , since iz is an interval
valued fuzzy n-fold KU-ideal of X , we have z2(0) > zz(x) forall xe X . Note that 0e f(0') ,

where 0 , 0' are the zero of X and X' respectively , Thus, B(0') = sup zi(t) = 2(0) = zi(x), for

tef(0)

all x e X, which implies that B(0") > sup zi(t) = B(x'),forany x' e X'. Now, for any

tef 1(x)
Xy, Z’eX' let x,ef*(X),y,ef(y),z,ef*(z') besuch that

f((%)" *2) = sup  p(t), u(y,)= sup u(t) and

tefL(x)"*2") tef 2(y")
F((%)" * (Yo * 2)) = BLE (%)™ * (Yo *Zo))3= B((X)" * (y' * 2))
= sup L((%)" * (Yo * 20)} = sup 4(t).
(%0 )" *(yo *2o)ef H(X)"*(y'*2") te f (X)) #(y'*x"))

Then B((X)" #2) = sup  fi(t) = f((X))" *2o) = rmin{zi((x,)" * (Yo * o), Fi(Yo)} =

tef L((x)"*z")
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rmin{ sup (), sup ﬁ(t)}: rmin{B((X)" *(y'*2)) , B(y)}.

tef H(x)"*(y"2) tef 1(y)

Hence B is an interval valued fuzzy n-fold KU-ideal of Y.

Proposition4.5. For a given interval valued fuzzy subsetﬁ of a KU-algebra X , Ietﬁﬁ be the
strongest fuzzy relation on X . If [zﬁ is interval valued fuzzy n-fold KU-ideal of X x X ,

thenﬁ(x) < ,E(O) forall xe X .

Proof: Since /75 is an interval valued fuzzy n-fold KU-ideal of X x X , it follows from (L,) that

A5 (6. X) = rmin{B(x), S(0} < rmin{/(0), 5(0)}, then S(x) < 5(0).

Theorem 4.6. Let i and,E be two interval valued fuzzy n-fold KU-ideals of a KU-algebra X,

then z xﬁ is an interval valued fuzzy n-fold KU-ideal of X x X .

Proof: for any(x,y) e X x X , we have

(2% £)(0,0) = rmin{z(0), B(0)}> rmin{zi(x), B(y)}= (& x B)(X, ).
Now let(x;, X,),(Y,,Y,),(z,,2,) € X x X, then

(% )04 #2,, %] *2) =rminfi(x",2,) , B(.2,)]
> rminfrmin{z(q" = (y, * 2). () frminlB " «(y, * 2,)). 5(y,) )
= rminr min{za(x” (v, *2.)), 50" (¥, * 2,)) rmin{a(y,). 5(v,))]

= rmin{(zx B)(%" * (v, *2).%," * (¥, * 2).(% B)(¥o.v,)]
Hence xﬁ is an interval valued fuzzy n-fold KU-ideal of X x X .

Analogous to theorem 3.2 [ 6] , we have a similar results for interval-valued n-fold KU- ideal ,

which can be proved in similar manner , we state the results without proof .
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Theorem 4.7. Let z and ,E be two interval valued fuzzy subsets of a KU-algebra X , such
that x,E is an interval valued fuzzy n-fold KU-ideal of X x X , then

(i) either zZ(x) < 72(0) or B(x) < B(0) forallxe X ,

(i) if Z(x) < z(0) for all xe X , then either 7z(x) < B(0)or B(x) < 5(0),

(iii) if B(x) < B(0) forall xe X , then either zz(x) < 7(0) or B(X) < z(0),

(iv) either z or ,5 IS an interval valued fuzzy n-fold KU-ideal of X .

Theorem 4.8. Let E be an interval valued fuzzy subset of a KU-algebra X and /75 be the

strongest fuzzy relation on X , thenﬁ is an interval valued fuzzy n-fold KU-ideal of X if and
only if ﬁﬁ is an interval valued fuzzy n-fold KU-ideal of X x X .

Proof: Assume that ﬁ is an interval-valued fuzzy KU-ideal of X , we note from (L,) that:
75(0,0) = rmin{3(0), B(0)} = r min{B(x), B(y)}= F5(x, Y)

Now, for any (X, X,),(Y;,Y,),(z,,2,) € X x X, we have from(L,):

50"+ 2,0+ 2,) = rmin{B(x" +2,) (%" #2,)]

> rminfr min{B(x" * (v, * 2,)), By b rmin{B " * (v, *2,)), B,) )
= rminjrmin{F(x" * (y, * 2)). B0%" (¥ * )} rmin{B(y,), A (y,)|]

= rmin{(i; (¢ (9 % 22),06" * (%, #2,)), 5 (U, ¥s))
Hence /75 is an interval valued fuzzy KU-ideal of X x X .
Conversely: Forall(x,y)e X x X , we have
71;(0,0) = rmin{3(0), £(0)} = r min{B(x), B(y)} = i; (x, y) It follows that B(0)> B(x) for all
x e X , which prove (L)).

Now, let(x,,X,),(Y;,¥,),(Z,,2,),€ Xx X , then
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rmin{F(x," *2,), 506" *2,)}= B (%, %2,,%," +2,)

> rmin{g; (06" 6") * (Vs V2) * (20, 2,0), 25 (0, V)|

- rmin{r min{ﬁﬁ(xln #(y, %2,),%," *(Y, *22))},%()/1, Y2)}

= rminfe min{iz; (6 (v, *2,), 06 * (v, *2,)} rminfi; (v,), 75 (1) )
— rminfrmin{Fx" * (v, *2.), %" * (v, *2,) ) rmin{B(y,), By |

= rminfrmin{(x" *(y, *2,), A(y) b rminlF (%" (v, *2,). B(y.) |
In particular, if we takex, =y, =z, =0, then

E(xln *2,)>T min{ﬁ(xln *(y, * zl)),,E(yl)}. This proves (L,)and completes the proof.

Conclusion: we have studied the interval valued fuzzy foldedness of a KU-ideal in a KU-algebra.
Also we discussed few results of interval valued fuzzy n-fold KU-ideal of KU-algebras under
homomorphism, the image and the pre-image of interval valued fuzzy n-fold KU-ideals in KU-
algebras are defined. How the image and the pre-image of interval valued fuzzy n-fold KU-ideals
are studied. Moreover, the product of interval valued fuzzy n-fold KU-ideals to product KU-
algebras is established. Furthermore, we construct some algorithms for folding theory applied to
KU-ideals in a KU-algebra.

The main purpose of our future work is to investigate the foldedness of other types of interval
valued fuzzy ideals such as an implicative (commutative, positive implicative) and 7 -cubic n-
fold KU-ideals of a KU-algebra.

Appendix A. Algorithms
This appendix contains all necessary algorithms

Algorithm for KU-algebras

Input ( X :set, * :binary operation)

Output (“ X is a KU-algebra or not”)
Begin
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If X =¢ thengoto (L);

EndIf

If 0 X thengoto (1.);

EndIf

Stop: =false;

i=1;

While | < |X| and not (Stop) do

If X; *X; # 0 then

Stop: = true;

EndIf

j=1

While j <|X| and not (Stop) do

IF ((y; * %) * %) # 0 then

Stop: = true;
EndIf
EndIf

k=1

While K < |X| and not (Stop) do

1F (% % Y;)*((Y; *2,) * (% *2,)) # 0 then
Stop: = true;
EndIf
EndIf While
EndIf While
EndIf While
If Stop then
(1) Output (“ X is not a KU-algebra”)
Else
Output (“ X is a KU-algebra”)
EndIf
End
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Algorithm for fuzzy subsets

Input ( X :KU-algebra, A: X —[01]);

Output (“ Ais a fuzzy subset of X or not”)
Begin
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Stop: =false;
i=1;
While | < |X| and not (Stop) do

If(A(X,) <0)or (A(X;) >1) then
Stop: = true;
EndIf
EndIf While
If Stop then
Output (“ Ais a fuzzy subset of X )
Else
Output (“ A is not a fuzzy subset of X )
EndIf
End.

Algorithm for n-fold KU-ideals

Input ( X :KU-algebra, | :subsetof X,ne N);

Output (“ | is an n-fold KU-ideal of X or not”);
Begin

If | =¢ thengoto (L1.);

EndIf

If O g | thengoto (L.);

EndIf

Stop: =false;

i=1;

While 1 < |X| and not (Stop) do
j=1

While | < |X| and not (Stop) do
k=1

While K < |X| and not (Stop) do

it (X" *(y;*2))€land y; € then

if (X"i *2,) & | then

Stop: = true;
EndIf
EndIf
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EndIf While
EndIf While
EndIf While
If Stop then
Output (“ | is an n-fold KU-ideal of X )
Else
(1.) Output (“ | is not an n-fold KU-ideal of X )
EndIf
End.
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Algorithm for fuzzy n-fold KU-ideals

Input ( X : KU-algebra, * :binary operation, A :fuzzy subset of X );

Output (“ Ais a fuzzy n-fold KU-ideal of X or not”)
Begin

Stop: =false;

i=1;

While 1 < |X| and not (Stop) do

It A(0) < A(X;) then

Stop: = true;
EndIf

j=1
While j < |X| and not (Stop) do
k=1

While K < |X| and not (Stop) do

It AXX *2,) <min(A(X" *(y; *2,)), A(Y;)) then

Stop: = true;

EndIf

EndIf While
EndIf While
EndIf While
If Stop then
Output (“ A'is not a fuzzy n-fold KU-ideal of X »)
Else
Output (“ A is a fuzzy n-fold KU-ideal of X ”)

EndIf
End
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