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Abstract. We study the concept of false convergence in the nonlinear shooting method for boundary-value prob-

lems. We show that false convergence is due to the global error that exists in the Runge-Kutta solution to the

associated initial-value problem. We show how the situation can be remedied through the device of global error

control in the Runge-Kutta method. We suggest the use of the RKQ algorithm for this purpose.
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1. Introduction

A well-known algorithm for finding a numerical solution to the nonlinear boundary-value

problem

y′′ = f
(
x,y,y′

)
(1)

x ∈ [a,b] y(a) = α y(b) = β
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is the iterative nonlinear shooting method [1− 5]. This method, to be discussed in more detail

in the next section, requires the solution of an initial-value problem of the form

y′ = z,

z′ = f (x,y,z) ,(2)

x ∈ [a,b] y(a) = α z(a) = y′ (a) = θ .

This initial-value problem is usually solved numerically using a Runge-Kutta (RK) method.

Of course, an approximation error exists in the RK solution. The effect that this error - the RK

global error - has on the convergence of the shooting algorithm is the subject of this paper. We

will see that the RK error can lead to erroneous convergence, and we will propose a remedy

such that, even if convergence is erroneous, the shooting algorithm will still yield an acceptably

accurate result.

In the next few sections we describe notation, terminology and concepts relevant to our work;

we present a theoretical discussion, followed by a numerical example; and we make a few

relevant comments.

2. Notation, terminology and relevant concepts

The shooting method for (1) is summarized by the iterative procedure

(3) θ k+1 = θ k− (wk (b)−β )

(
θ k−θ k−1

wk (b)−wk−1 (b)

)
.

In this expression k indicates the iteration count, θ k is the approximate value of y′ (a) after iter-

ation k, and wk (b) is the approximation to β obtained using an RK method applied to (2), with

z(a) = θ k. Note that the term in parentheses on the RHS is a finite-difference approximation to

the reciprocal of the derivative dy/dθ . This procedure requires that two initial guesses for the

slope, θ 1 and θ 2, are specified. The iteration then proceeds until the residual |wk+1 (b)−β | is

less than a user-specified tolerance ε. The resulting θ k+1 is taken as the slope y′ (a) , and the

RK solution of (2), with z(a) = θ k+1, is taken as the solution to (1).
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We define the errors

δ k ≡ yk (b)−β ,

∆k ≡ wk (b)− yk (b) ,

where yk (b) indicates the exact value of (2) when z(a) = θ k. Of course, yk (b) is not known and

is approximated by wk (b) . Using these definitions we find, for the residual,

(4) |wk+1 (b)−β |= |δ k+1 +∆k+1| .

The quantity ∆k is known as the global error in the RK solution at b and, in general, we must

assume that ∆k 6= 0. It is clear that δ k = 0 when θ k = θ .

3. Analysis

Our analysis centers on the residual (4). Clearly, the convergence condition

(5) |wk+1 (b)−β |= |δ k+1 +∆k+1|6 ε

could be satisfied if

∆k+1 '−δ k+1,

and this could be true even if the magnitudes of the errors are larger than ε. In such a case,

we would find convergence of (3), even though |δ k+1| > ε. We refer to this state of affairs

as false convergence. Also, even if θ k = θ , we could find that the residual is larger than the

tolerance, because of a large RK global error. In other words, the exact value θ might not yield

convergence! It is clear, then, that the RK global error has the capacity to corrupt the shooting

algorithm.

We propose the following remedy: assume that the RK global error can be controlled, such

that

(6) |∆k+1|6
ε

2
.

Then, if both (5) and (6) are true, we must necessarily have

(7) |δ k+1|6
3ε

2
.
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In this case, even if false convergence occurs, the magnitude of δ k+1 is still bounded by a known

value, which can, via ε, be made acceptably small.

4. Numerical example

The false convergence described above, and its remedy, may be demonstrated by means of

the test problem

y′′ =
32+2x3 + yy′

8

x ∈ [1,3] y(1) = 17 y(3) =
43
3
,

which has solution y(x) = x2 + 16/x, so that θ = −14. In applying the shooting method, the

initial-value problem that must be solved, for each θ k, is

y′ = z,

z′ =
32+2x3 + yz

8
,(8)

x ∈ [1,3] y(1) = 17 z(1) = y′ (1) = θ k.

Of course, when θ k = θ =−14, the solution to this initial-value problem is the solution to the

test problem.

We use two tolerances - ε = 10−6 and ε = 10−10 - and, for each, we consider the cases where

the RK global error at x = 3 is controlled and uncontrolled. When controlled, it is limited by

ε/2. We use a third-order RK method [6], denoted RK3, to solve (8). We always choose θ 1 =

−6 and θ 2 =−7, although it is understood that this choice is arbitrary. The ‘true’ solution, for

each θ k, is obtained using an eighth-order RK method (RK8) [7] with a suitably small stepsize

(maximal error in the RK8 solution was estimated to be ∼ 10−13 or less). This RK8 solution

enables us to compute δ k. Obviously, we then compute ∆k from ∆k = wk+1 (3)−43/3−δ k. We

also consider the controlled case where ε = 10−4, but |∆k| 6 5× 10−11. Results are shown in

Table 1. In this table, we have dropped the subscript k; the δ and ∆ shown here are the values

at the point of convergence.
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Table 1. Results for the test problem.

ε = 10−6 Uncontrolled Controlled

∆ 0.322513×10−4 0.4983×10−6

δ −0.322512×10−4 −0.4982×10−6

|δ +∆| 0.91×10−10 0.9×10−10

ε = 10−10 Uncontrolled Controlled

∆ 0.461549×10−6 0.499×10−10

δ −0.461456×10−6 0.429×10−10

|δ +∆| 0.93×10−10 0.928×10−10

ε = 10−4 Controlled

∆ 0.5×10−10

δ −0.25×10−5

|δ +∆| 0.25×10−5

In all cases, |δ +∆| 6 ε but, clearly, |δ | � ε for the uncontrolled cases. This is the false

convergence discussed previously. For the controlled cases, we have |δ | < 3ε/2, as expected.

For the last case, where the tolerance on the shooting iteration is fairly loose, and the RK toler-

ance is tight, we see that the RK global error does not contaminate the convergence condition,

since here |∆| � |δ | . We believe, however, that tight tolerances on the shooting algorithm are

preferable. The resulting solutions for the various cases differed from θ =−14 by ∼ 10−5 (for

the first case, uncontrolled) to∼ 10−11 (second case, controlled). Furthermore, the second case,

controlled, yields an RK3 solution to (8), with z(1) = −13.99999999992703, that differs from

the exact solution to the test problem by no more than 1.2×10−10 anywhere on [1,3] .

5. Comments

(1) In the above example, for the sake of a clear demonstration, we have controlled the RK

error only at the endpoint of the interval, by simply choosing a suitably small stepsize.
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We have not attempted to control the error anywhere else on the interval (although the

small stepsize happens to result in a globally accurate RK solution). In practice, we

would want to control the RK error everywhere on the interval, not only at the endpoint.

This can be achieved using the RKQ algorithm [8,9], developed recently by us, which

facilitates step-by-step control of the global error in the RK solution. We did not use

RKQ in the example, since the stepsize adjustments arising in RKQ resulted in a global

error at the endpoint that was much smaller than the tolerance, and so the effect of false

convergence was not demonstrated clearly. Rather, such a small error at the endpoint(
∼ 10−12 when ε = 10−10) actually corresponds to the third case in Table 1, where the

RK error is so small that it does not contaminate the shooting algorithm.

(2) In principle, we should write

wk (b)− yk (b) = ∆k +µk,

where µk denotes a roundoff error that may be present in the numerical quantity wk (b) .

This roundoff component, unlike ∆k, is not proportional to some power of the RK step-

size. However, in our work here we have assumed that it is small enough, compared to

∆k, to be ignored. This is a good assumption provided that the RK stepsize is not very

small, compared to the length of the interval [a,b] . This condition is likely to be met if

the the RK method used is of reasonably high order, and that the RK tolerance ε is not

so small that it is similar to machine precision.

(3) The shooting algorithm used here is based on the root-finding method of Linear Inter-

polation. A more sophisticated version exists, based on Newton’s Method [1], wherein

a second initial-value problem must be solved in conjunction with (2). However, even

in this version of the method, the condition (5) must still be satisfied, so that false con-

vergence is likely to occur, for the same reasons discussed above.

(4) We note that RK error must be present in the denominator on the RHS of (3). Such error

could affect the performance of the iteration process, but we do not think that it would

contribute to false convergence, per se. We do not study this effect here.
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(5) The tolerance ε considered above is an absolute tolerance. If we were to impose a

relative tolerance on the problem, as in∣∣∣∣wk+1 (b)−β

β

∣∣∣∣ =

∣∣∣∣δ k+1 +∆k+1

β

∣∣∣∣6 ε

⇒ |δ k+1 +∆k+1| 6 ε |β | ,

then we simply replace ε with ε |β | in (6) and (7), and the same analysis holds. We

make this point because relative error control would usually be preferred when |β |> 1,

particularly when |β | is very large.

6. Conclusion

We have studied false convergence in the nonlinear shooting method, showing how it arises

as a consequence of Runge-Kutta global error. We have suggested that control of the Runge-

Kutta global error will result in control of the convergence condition, leading to a satisfactory

solution. We have considered an example wherein the Runge-Kutta error has been controlled

at the endpoint of the interval of integration (for the sake of demonstration), although we have

proposed that control of the Runge-Kutta error over the entire interval might be preferable, and

for this purpose the RKQ algorithm may be well-suited.
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