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Abstract. In this paper, we characterize the boundedness, compactness and closedness of the range of the multi-

plication operators on Orlicz-Lorentz sequence spaces.
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1. Introduction

Let (X ,S,µ) be a σ−finite measure space and let f be a complex-valued measurable function

defined on X . For s≥ 0 the distribution function µ f of f is defined as

µ f (s) = µ ({x ∈ N : | f (x)|> s})

and the non-incrasing rearrangement of f is defined as

f ∗(t) = inf
{

s > 0 : µ f (s)≤ t
}
, t ≥ 0.
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By a weight function w, we mean w : (0,∞)→ (0,∞) is a non-increasing locally integrable

function such that
∞∫
0

w(t)dt = ∞.

The Orlicz-Lorentz space Lϕ,w(µ) is defined as

Lϕ,w(µ) =

 f : X → C measurable :
∞∫

0

ϕ (α. f ∗(t))w(t)dt < ∞ for some α > 0

 .

Then Lϕ,w(µ) is a Banach space with respect to the Luxemburg norm

‖ f‖
ϕ,w = inf

ε > 0 :
∞∫

0

ϕ

(
| f ∗(t)|

ε

)
w(t)dt ≤ 1

 ,

where ϕ : [0,∞)→ [0,∞) is a continuous convex function which satisfies the following condi-

tions;

(i) ϕ(x) = 0 if and only if x = 0,

(ii) limx→∞ ϕ(x) = ∞.

Such a function ϕ is known as a Young’s function. The Young’s function ϕ is said to satisfy

the42−condition if for some M > 0, ϕ(2.x)≤M.ϕ(x), ∀x > 0.

For more details on Orlicz-Lorentz spaces one can refer [8,11,12,14,16] and the references

there in.

In this paper, we take X =N, the set of natural numbers, S = P(N) and µ is counting measure

defined on P(N), the family of all subsets of N. A weight sequence w = w(n) is a positive

decreasing sequence such that limn→∞ w(n) = 0 and limn→∞W (n) = ∞, where W (n) =
n
∑

i=1
w(i)

for every n ∈ N(see [6] , [9]).

Let l0 be the space of all sequences a : N→ R. We write for n ∈ N, the distribution function

µa of a = {a(n)}i≥1 can be written as

µa(s) = µ ({n ∈ N : |a(n)|> s}) , s≥ 0.

The non-increasing rearrangemenet a∗ of a is given as

a∗(t) = inf{s > 0 : µa(s)≤ t } , t ≥ 0.
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We can interpret the non-increasing rearrangement of a with µa(s) < ∞, s > 0, as a sequence

{a∗(n)} if we define for n−1≤ t < n,

a∗(n) = a∗(t) = inf{s > 0 : µa(s)≤ n−1} .

Then the sequence a∗= {a∗(i)} is obtained by permutating {|a(n)|}n∈S , where S= {n : a(n) 6= 0 },

in the decreasing order with a∗(n) = 0 for n > µ(s) if µ(s)< ∞.

The Orlicz-Lorentz sequence space `ϕ,w (N) ( or `ϕ,w ) is defined as

`ϕ,w(N) =

{
a ∈ l0 :

∞

∑
n=1

ϕ (α.a∗(n))w(n)< ∞, for some α > 0

}
.

The space `ϕ,w equipped with the Luxemburg norm

‖a‖
ϕ,w = inf

{
ε > 0 :

∞

∑
n=1

ϕ

(
a∗(n)

ε

)
w(n) ≤ 1

}

is a Banach space. In [8] , [9] , a description of the duals, isomorphic `p−subspaces of Orlicz-

Lorentz sequence spaces is given and in [6] geometric properties of Orlicz-Lorentz sequence

spaces are discussed.

If ϕ(u) = up, 1 ≤ p < ∞, then d(w, p) := `ϕ,w is a Lorentz sequence space. If w(n) = 1 for

every n ∈ N, then `ϕ := `ϕ,w is an Orlicz sequence spaces (see [12] , [13]).

Singh and Komal [18] initiated the study of composition operators on sequence space. Re-

cently, Komal and Gupta [10] , stuied multiplication operators on Orlicz spaces and Arora, Datt

and Verma [2] , [3] studied multiplication and composition operators on Orlicz-Lorentz space.

Multiplication operators are studied in various function and sequence spaces [1,2,3,4,5,10,15,17] .

Let u = {u(n)} be a complex sequence. We define a linear transformation Mu on the Orlicz-

Lorentz sequence spaces `ϕ,w, into the linear spaces of au complex sequences by

Mu(a) = u.a = {u(n).a(n)} ,

where a= {a(n)}. If Mu is bounded with range in `ϕ,w, then it is called a multiplication operator

on `ϕ,w. By B
(
`ϕ,w

)
we mean the algebra of all bounded linear operators on `ϕ,w.

2. Characterizations
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In this section boundedness, invertibility, range and compactness of the multiplication oper-

ator Mu on the space `ϕ,w, induced by a sequence u = {u(n)} are characterized.

Theorem 1. The multiplication transformation Mu : `ϕ,w→ `ϕ,w is bounded if and only if u is

bounded.

Proof. Assume that u is bounded, then |u(n)| ≤ K for all n ∈ N and some K > 0. Hence for

any a = {a(n)} in `ϕ,w, ua = {u(n).a(n)} satisfies |u(n).a(n)| ≤ K |a(n)|. For the nonnegative

rearrangement of Mu f , one can find the distribution function of Mua = u.a as

µMua(s) = µ {n ∈ N : (Mu(a))(n)> s}

= µ {n ∈ N : |u(n).a(n)|> s}

≤ µ {n ∈ N : K. |a(n)|> s}

(2.1) = µK.a(s).

Hence for each t ≥ 0, by (2.1) we get

{s > 0 : µK.a(s)≤ t} ⊆
{

s > 0 : µMua(s)≤ t
}

and we find (Mu(a))
∗ (n)≤ K.a∗(n) for each n ∈ N, and so we obtain

∞

∑
n=1

ϕ

(
(Mu(a))

∗ (n)
K.‖a‖

ϕ,w

)
.w(n)≤

∞

∑
n=1

ϕ

(
K.a∗(n)

K.‖a‖
ϕ,w

)
≤ 1.

Hence for a ∈ `ϕ,w,

‖Mua‖
ϕ,w ≤ K.‖a‖

ϕ,w .

Thus Mu is bounded on `ϕ,w.

Conversely, suppose Mu is a bounded operators. Then there exists K > 0 such that

‖Mu(a)‖ϕ,w ≤ K.‖a‖
ϕ,w

for all a ∈ `ϕ,w. If the sequence u = {u(n)} is not bounded then for every positive integer k,

there exists nk such that |u(nk)|> k. It is not hard to see χ{nk} ∈ `ϕ,w satisfies∥∥∥χ{nk}

∥∥∥
ϕ,w

=
1

ϕ−1
(1

c

) ,
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where c =
µ({nk})

∑
m=1

w(m). Also we have

(
u.χ{nk}

)∗
(m)≥ k.χ∗{nk}(m).

This give us ∥∥∥Mu.χ{nk}

∥∥∥
ϕ,w

≥ inf

{
ε > 0 :

∞

∑
m=1

ϕ

(
k.χ∗{nk}(m)

ε

)
.w(m)≤ 1

}
= k.

∥∥∥χ{nk}

∥∥∥
ϕ,w

.

This contradicts the boundedness of Mu. Hence u must be a bounded sequence.

Theorem 2. Let Mu ∈ B
(
`ϕ,w

)
. Then Mu is invertible if and only if there is δ > 0 such that

|u(n)| ≥ δ for all n ∈ N.

Proof. If Mu is invertible then we find δ > 0 such that

‖Mua‖
ϕ,w ≥ δ .‖a‖

ϕ,w

for all a ∈ `ϕ,w. In particular, for en = {en(m)} this gives |u(n)| ≥ δ .

Conversely, if |u(n)| ≥ δ for all n ∈ N and some δ > 0, then define another sequence v(n) =
1

u(n) . Clearly in view of Theorem 2.1, Mv is bounded on `ϕ,w and Mv = M−1
u .

Theorem 3. Let Mu ∈ B
(
`ϕ,w

)
. Then Mu has closed range if and only if for some δ > 0,

(2.2) |u(n)| ≥ δ for all n ∈ S,

where S = {n ∈ N : u(n) 6= 0}.

Proof. If |u(n)| ≥ δ for all n ∈ S, then for x ∈ `ϕ,w(N), where x = {x(k)}k≥1,

(u.x.χS)
∗ (k)≥ δ .(x.χS)

∗ (k)

and so we get

(2.3) ‖Mu.x.χS‖ϕ,w ≥ δ .‖x.χS‖ϕ,w .
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Let x ∈ cl (ranMu). Then there exists a sequence {xn} ⊂ `ϕ,w(N), where xn = {xn(k)} such that

Muxn→ x as n→ ∞. Then we have

‖Muxn−Muxm‖ϕ,w→ 0

as n,m→ ∞.

Let define (xnχS) such that xnχS =

 xn(k) , if k ∈ S

0 ,otherwise
. Then MuxnχS = Muxn and there-

fore it follows (2.2), that

‖xnχS− xmχS‖ϕ,w ≤
1
δ
‖Muxn−Muxm‖ϕ,w→ 0

as n,m→ ∞. Thus {xnχS} is a Cauchy sequence in `ϕ,w(N) and in view of completness of

`ϕ,w(N), there exists y ∈ `ϕ,w(N) such that xnχS→ y as n→ ∞. In others words Muxn→Muy.

Hence x = Muy so that Mu has a closed range. Suppose that Mu has closed range. Therefore

there exists a δ > 0 such that ‖Mua‖
ϕ,w ≥ δ .‖a‖

ϕ,w for all a ∈ `ϕ,w(S), where

`ϕ,w(S) =
{

a = a(n) ∈ `ϕ,w(N) : a(n) = 0 for n ∈ N−S
}
=
{

aχS : a ∈ `ϕ,w
}
.

If the condition (2.2) does not hold, then for each k ∈N we can find nk ∈ S such that |u(nk)|<
1
k . It is seen that χ{nk} ∈ `ϕ,w(S) satisfies∥∥∥χ{nk}

∥∥∥
ϕ,w

=
1

ϕ−1(1
c )
,

where c =
µ({nk})

∑
m=1

w(m). Also we have

(
u.χ{nk}

)∗
(m)≤ 1

k
.
(

χ{nk}

)∗
(m).

Hence

∥∥∥Mu.χ{nk}

∥∥∥
ϕ,w

= inf

ε > 0 :
∞

∑
m=1

ϕ


(

u.χ{nk}

)∗
(m)

ε

 .w(m)≤ 1


< inf

ε > 0 :
∞

∑
m=1

ϕ

 1
k

(
χ{nk}

)∗
(m)

ε

 .w(m)≤ 1


=

1
k
.
∥∥∥χ{nk}

∥∥∥
ϕ,w

,



MULTIPLICATION OPERATORS ON ORLICZ-LORENTZ SEQUENCE SPACES 271

which is a contradiction. This completes the proof.

Theorem 4. Mu ∈ B
(
`ϕ,w

)
is compact if and only if `ϕ,w(Uδ ) is finite dimensional for each

δ > 0, where `ϕ,w(Uδ ) =
{

a.χUδ
: a ∈ `ϕ,w

}
and Uδ = {n ∈ N : |u(n)| ≥ δ}.

Proof. Assume that Mu ∈ B
(
`ϕ,w

)
is compact. Then Mu

∣∣∣`ϕ,w(Uδ )
is also a compact operator and

∥∥∥Mu.χUδ
.a
∥∥∥

ϕ,w
≤ δ

∥∥∥χUδ
.a
∥∥∥

ϕ,w

for each a ∈ `ϕ,w. Since Mu

∣∣∣`ϕ,w(Uδ )
is a compact and invertible, we get that `ϕ,w(Uδ ) is finite

dimensional for each δ > 0.

Conversely, suppose that `ϕ,w(Uδ ) is finite dimensional for each δ > 0. For each n∈N, if we

define un = {un(m)} such that

un(m) =

 u(m) , if m ∈U1
n

0 ,otherwise

, then it is easy to see that all operators Mun are compact. Also, for each a ∈ `ϕ,w and for all

s≥ 0, we have

{m ∈ N : |(un−u)(m).a(m)| ≥ s} ⊂ {m ∈ N : |a(m)| ≥ s}

and so

((un−u) .a)∗ (m)≤ 1
n
.a∗(m).

Therefore

‖(Mun−Mu).a‖ϕ,w ≤
1
n
.‖a‖

ϕ,w

and so Mu is compact operator.

Conflict of Interests

The authors declare that there is no conflict of interests.
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