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Abstract. This paper is devoted for introducing some background theory on the concept of the Fuzzy Transform as 

new tool for solving fractional order partial differential equations. We then investigate and apply the fuzzy transform 

on the rate dependent fractional diffusion-wave equation. In the process of this we give a new numerical algorithm, 

the algorithm will be simulated as a user-subroutine for the mathematical code MATLAB. The time-dependent 

fractional diffusion equation will be considered to show the efficiency of the algorithm, results will be obtained and 

compared for different partitions and fractional orders. The approximated results will be compared with the true 

solution of the differential equation. 
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1. Introduction 

 The concept of differentiation and integration to non-integer order is by no means new, interest 

in this subject was evident almost as soon as the ideas of the classical calculus were known. In 

1859 Leibniz mentioned it in a letter to L'Hospital [19]. 

Fractional order differential equations are considered to be as a generalization of classical integer 

order partial differential equations, it is used increasingly to model problems in elasticity, 

plasticity, fluid mechanics, economics and even finance. Consequently, considerable attention 

has been given to the solution of fractional order differential equations, since most of the 

fractional order differential equations do not have analytical solutions, Numerical algorithms, 
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therefore, are used extensively.  Recently numerical solution of differential equations of 

fractional orders gained increasing interest [ 1, 2, 7, 8, 9, 24, 25].   

Fractional derivatives had been ignored from the scientists for years because there are many 

nonequivalent definitions of it, but in recent years scientists started to use the fractional 

derivatives in their researches and it has given more accurate results, so scientists began to study  

the equations more  seriously and finding new ways to solve them [ 5, 7, 17,19].    

Partial fractional differential equations have an important role in mathematical modeling to 

describe complex processes in different branches of science "physics, biology, chemistry and 

economics ". In our study we will consider the time-dependent fractional diffusion equations as 

an example of the partial fractional differential equations. 

𝜕𝛼𝑢

𝜕𝑡𝛼
(𝑥, 𝑡) = 𝑐

𝜕2𝑢

𝜕𝑥2
(𝑥, 𝑡) + 𝑞(𝑥, 𝑡)                                                         (1) 

where 
∂αu

∂tα
(x, t) is the derivative of u with respect to time 𝑡 of order α in the sense of Caputo and 

 0 < α ≤ 2 . We can see that when α = 1 the equation is the heat "diffusion"  equation, when 

 0 < α < 1  the equation is called fractional sub-diffusion equation, when  1 < α < 2  the 

equation is called fractional super-diffusion equation, when α = 2  the equation will be the 

Poisson equation [8]. The Fuzzy Transform, which is introduced for the first time by Perfilieva 

[13 – 18], will be considered to introduce a new technique for approximating the solution of the 

above rate dependent fractional order differential equation. The fuzzy transform depends 

basically on Fuzzy Set Theory which was published in 1965 by Lotfi  Zadeh [26]. 

2. Fuzzy Transform 

To Avoid repetition the main definition of fuzzy sets, triangular shaped basic functions and 

Sinusoidal shaped basic functions can be found with details in [12-17, 21, 22, 23, 26].  In this 

section we will only state main definitions of  F-transform that will be used in the next sections 

of numerical  implementations.  

Definition 1    Let 𝐴1, … , 𝐴𝑛 be basic functions which form a fuzzy partition in [𝑎, 𝑏], and 𝑓 be 

any function in  𝐶[𝑎, 𝑏]. We say that the 𝑛-tuple of real numbers [𝐹1, … , 𝐹𝑛] given by  

𝐹𝑖 =
∫ 𝑓(𝑥)𝐴𝑖(𝑥)𝑑𝑥

𝑏

𝑎

∫ 𝐴𝑖(𝑥)𝑑𝑥
𝑏

𝑎

 ,          𝑖 = 1,… , 𝑛                                      (2) 

is the direct (integral) F-transform of 𝑓 with respect to 𝐴1, … , 𝐴𝑛. 

And to transform the F-transform back we use the next inverse  F-transform formula 
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 𝑓𝐹,𝑛(𝑥) = ∑ 𝐹𝑘𝐴𝑘(𝑥)𝑛
𝑘=0                                              (3) 

Since we are concerned about partial differential equations we will use the next two definitions 

of  F-transform and inverse F-transform with two variables [20]. 

Definition 2    Let 𝑢(𝑥, 𝑡) be an arbitrary continuous function in 𝓓 = [𝑎, 𝑏] × [𝑐, 𝑑]and let basis 

functions 𝐴1(𝑥), … , 𝐴𝑛(𝑥)  in  [𝑎, 𝑏]  and 𝐵1(𝑡), … , 𝐵𝑚(𝑡)  on [𝑐, 𝑑]  form a uniform fuzzy 

partitions we say that the real matrix 𝑈𝑛×𝑚 given by 

𝑈𝑖𝑗 = 
∫ ∫ 𝑢(𝑥, 𝑡)𝐴𝑖(𝑥)𝐵𝑗(𝑡)𝑑𝑥𝑑𝑡

𝑏

𝑎

𝑑

𝑐

∫ ∫ 𝐴𝑖(𝑥)𝐵𝑗(𝑡)𝑑𝑥𝑑𝑡
𝑏

𝑎

𝑑

𝑐

 ,                                                      (4)    

                                              𝑖 = 1,… , 𝑛, 𝑗 = 1,… ,𝑚        

is the F-transform of 𝑢(𝑥, 𝑡) with respect to the given fuzzy partition, and the  matrix entries are 

called the components of the F-transform of 𝑢(𝑥, 𝑡).  

Obviously to transform the F-transform back we use the following inverse F-transform formula 

[13, 14] 

 𝑢𝑛,𝑚
𝐹 (𝑥, 𝑡) = ∑ ∑ 𝑈𝑖𝑗𝐴𝑖(𝑥)𝐵𝑗(𝑡)

𝑚
𝑗=1

𝑛
𝑖=1                 (5) 

 

4. Numerical Algorithm 

The time  dependent fractional diffusion equation can be simply obtained by replacing the time 

derivative with a fractional derivative of order α. 

𝜕𝛼

𝜕𝑡𝛼
𝑢(𝑥, 𝑡) = 𝑘

𝜕2

𝜕𝑥2
𝑢(𝑥, 𝑡) + 𝑞(𝑥, 𝑡),   (𝑥, 𝑡) ∈ 𝒟0

2                          (6) 

Where 𝒟2 = [𝑎, 𝑏] × [𝑐, 𝑑] and 0 < 𝛼 ≤ 2 

 

With the initial condition 

𝑢(𝑥, 0) = 𝑓(𝑥)          𝑎 ≤ 𝑥 ≤ 𝑏 

And the boundary conditions 

𝑢(𝑎, 𝑡) = 𝑢(𝑏, 𝑡) = 0          𝑐 ≤ 𝑡 ≤ 𝑑 

First for calculations simplicity we will define the uniform partition on [𝑎, 𝑏], where 𝑎 = 𝑥1 <

⋯ < 𝑥𝑛 = 𝑏  with steps ℎ𝑥 = 𝑥𝑖+1 − 𝑥𝑖   on [𝑎, 𝑏], and define a basic function {𝐴1, … , 𝐴𝑛} of 

 [𝑎, 𝑏], and define the partition 𝑐 = 𝑡1 < ⋯ < 𝑡𝑚 = 𝑑  with steps ℎ𝑡
𝛼 = 𝑡𝑖+1 − 𝑡𝑖  on [𝑐, 𝑑], and 

define a basic function {𝐵1, … , 𝐵𝑚} of  [𝑐, 𝑑],  so we construct an uniform fuzzy partition of 𝒟2. 

Now we will apply F-transform on (6), and using the linearity property to get 
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𝐹2[𝑢𝑡𝛼
] = 𝑘𝐹2[𝑢𝑥𝑥] + 𝐹2[𝑞]                                                                 (7) 

Where 𝐹2[𝑢𝑡𝛼
],  𝐹2[𝑢𝑥𝑥]  and 𝐹2[𝑞]   are 𝑛𝑚  matrices of the F-Transform components of 

𝜕𝛼

𝜕𝑡𝛼 𝑢(𝑥, 𝑡),
𝜕2

𝜕𝑥2 𝑢(𝑥, 𝑡)  and 𝑞(𝑥, 𝑡) respectively, and entries of equation (7) can be written as the 

next linear combination. 

∫ ∫
𝜕𝛼

𝜕𝑡𝛼 𝑢(𝑥, 𝑡)𝐴𝑖(𝑥)𝐵𝑗(𝑡)𝑑𝑥𝑑𝑡
𝑏

𝑎

𝑑

𝑐

∫ ∫ 𝐴𝑖(𝑥)𝐵𝑗(𝑡)𝑑𝑥𝑑𝑡
𝑏

𝑎

𝑑

𝑐

= 𝑘
∫ ∫

𝜕2

𝜕𝑥2 𝑢(𝑥, 𝑡)𝐴𝑖(𝑥)𝐵𝑗(𝑡)𝑑𝑥𝑑𝑡
𝑏

𝑎

𝑑

𝑐

∫ ∫ 𝐴𝑖(𝑥)𝐵𝑗(𝑡)𝑑𝑥𝑑𝑡
𝑏

𝑎

𝑑

𝑐

+
∫ ∫ ∑ 𝑔(𝑥, 𝑡) 

𝑗
𝑘=1 𝐴𝑖(𝑥)𝐵𝑗(𝑡)𝑑𝑥𝑑𝑡

𝑏

𝑎

𝑑

𝑐

∫ ∫ 𝐴𝑖(𝑥)𝐵𝑗(𝑡)𝑑𝑥𝑑𝑡
𝑏

𝑎

𝑑

𝑐

                      (8) 

To use our algorithm for solving the above fractional problem, the time fractional derivative will 

be replaced by  its finite difference approximation 

𝜕𝛼𝑢( 𝑖 ,𝑗)

𝜕𝑡𝛼
=  

1

ℎ𝑡
𝛼  ∑ 𝜔𝑘

𝛼 𝑢(𝑖,𝑗−𝑘)

𝑗

𝑘=0

                                                                (9) 

where 𝜔𝑘
(𝛼)

 is the Grünwald weights and computed with the recurrence relationships. 

𝜔0
(𝛼)

= 1 , 𝜔𝑘
(𝛼)

= (1 −
𝛼 + 1

𝑘
)𝜔𝑘−1

(𝛼)
 ,    𝑘 = 1,2, …                               

And the space second derivative will be also replaced with its central difference approximation 

𝜕2𝑢 ( 𝑖,𝑗)

𝜕𝑥2
=

𝑢(𝑖+1,𝑗) − 2𝑢(𝑖,𝑗) + 𝑢(𝑖−1,𝑗)

ℎ𝑥
2

                                                   (10) 

After substituting equations (9) and (10) into (8) and simplify the equation we will get the 

following form 

−𝑟𝑈(𝑖−1,𝑗) + (2𝑟 + 1)𝑈(𝑖,𝑗) − 𝑟𝑈(𝑖+1,𝑗) = ℎ𝑡
𝛼𝐺𝑖𝑗 − ∑ 𝜔𝑘−1

𝛼  𝑈(𝑖,𝑗−𝑘) 

𝑗

𝑘=1

       (11) 

where 

𝑟 =
𝑘ℎ𝑡

𝛼

ℎ𝑥
2

 , 𝑖 = 1,… . , 𝑛 − 1, 𝑗 = 1, … .𝑚 

and  𝑈(𝑖−1,𝑗), 𝑈(𝑖,𝑗), and 𝑈(𝑖+1,𝑗) are components in 𝑈𝑛×𝑚 , and the boundary conditions 
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𝑈(1,𝑗) = 𝑢(𝑛,𝑗) = 0                                                                                  (12) 

And the initial condition 

𝑈(𝑖,1) = 𝑓(𝑥𝑖)                                                                                            (13) 

Equation  (11) can be written in a matrix form using the matrix form as 

𝐴𝑼𝒋 = ℎ𝑡
𝛼𝑮𝒋 − ∑ 𝜔𝑘

𝛼  𝑈(𝑖,𝑗−𝑘) 

𝑗

𝑘=1

                                                               (14) 

where 𝐴(𝑛−2) is a square matrix with 

𝐴𝑖𝑗 = {

(2𝑟 + 1)                                      𝑖 = 𝑗
     −𝑟                                    𝑗 = 𝑖 + 1  
    −𝑟                                    𝑗 = 𝑖 − 1
0                                   𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 

𝑼𝒋 = (𝑈(𝑖,𝑗))𝑖=2

𝑛−1
  , and 𝑮𝒋 = (𝐺(𝑖,𝑗))𝑖=2

𝑛−1
 are vectors for 𝑗 = 2,… ,𝑚 

The components of the F-transform of 𝑢(𝑥,𝑡) are computed from equations (12-14)  

𝐹2[𝑢] =  

[
 
 
 
 
𝑈11

𝑈21

𝑈12

𝑈22

⋯
⋯

𝑈1𝑚

𝑈2𝑚

⋮
⋮

⋱
⋱

⋱
⋱

⋮
⋮

𝑈𝑛1 ⋯ ⋯ 𝑈𝑛𝑚]
 
 
 
 

                                                                (15)  

The continuous approximation of 𝑢(𝑥,𝑡)  can be obtained using equation (15) and the inverse  

formula of the F-transform in equation (5). 

Example   Consider the time dependent fractional diffusion equation 

𝐷0
c

𝑡
𝛼𝑢(𝑥, 𝑡) −

𝜕2

𝜕𝑥2
𝑢(𝑥, 𝑡) = sin(𝑥) ,        0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑡 ≤ 1 

The differential equation is solved in [0,1] × [0,1] with the initial condition 

𝑢(𝑥, 0) = 0,
𝜕𝑢(𝑥, 0)

𝜕𝑥
= 0  ,       0 < 𝑥 < 1 

and boundary conditions 

𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0,                0 < 𝑡 < 1 

The exact solution of the above problem is: 

𝑢(𝑥, 𝑦) =  
1

𝜋2
[1 − 𝐸𝛼(−𝜋2𝑡𝛼)] sin(𝜋𝑥) 

Where 𝐸𝛼  is one-parameter Mittag-Leffler function. 
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The new algorithm in section (4) is applied to above fractional differential equation, it’s 

simulated as a user-subroutine   on the mathematical code MATLAB with double precision 

calculations. Equations (12) to (14) are applied to find the F-Transform components of 𝑢 for 

different partitions and values of 𝛼 = 0.7, 1, 1.7.  Fig. (1) and table (1)  show the exact  solution 

and approximated computed solutions of the above fractional order differential equation for 𝛼 =

0.7 with different values of  𝑛 ,𝑚.  Fig. (2) and table (2) show the exact  solution and the 

approximated computed solutions of the above fractional order differential equation for 𝛼 = 1 

with different values of  𝑛 ,𝑚 , and Fig. (3) and table (3) show the exact  solution and the 

approximated computed solutions of the above fractional order differential equation for 𝛼 = 1.7 

with different values of  𝑛 ,𝑚. Computational results are very close to analytical ones, and get 

more accurate as the number of partitions m and n increasing.  

 

Table 1-a  The Exact  solution 𝑢(𝑥, 𝑦) and the computed  solution for  𝛼 = 0.7,𝑚 =  𝑛 = 10  

x t Exact Solution 

Computed solution 

Sinusoidal shaped basic functions triangular shaped basic functions 

n=m=10 
Absolute 

error 
n=m=10 Absolute error 

0.125 0.125 0.031626418463580 0.024713929935935 6.9125e-003 0.027059073360794 4.5673e-003 

0.225 0.325 0.060046860110012 0.058389397119987 1.6575e-003 0.058631302423215 1.4156e-003 

0.525 0.425 0.093854416211246 0.092116012051016 1.7384e-003 0.091828779038076 2.0256e-003 

0.625 0.825 0.089636270201233 0.087979893983999 1.6564e-003 0.088769252563981 8.6702e-004 

0.825 0.925 0.050883961002329 0.051650655718926 7.6669e-004 0.050441238238927 4.4272e-004 

 

Table 1-b  The Exact solution 𝑢(𝑥, 𝑦) and the computed  solution for  𝛼 = 0.7 , 𝑚 = 20, 𝑛 = 30 

x t Exact solution 

Computed solution 

Sinusoidal shaped basic functions triangular shaped basic functions 

n=m=20 Absolute error n=m=20 Absolute error 

0.125 0.125 0.031626418463580 0.028422902970668 3.2035e-003 0.029395339869247 2.2311e-003 

0.225 0.325 0.060046860110012 0.058041849318320 2.0050e-003 0.059236400359664 8.1046e-004 

0.525 0.425 0.093854416211246 0.093266115621467 5.8830e-004 0.093313717256758 5.4070e-004 

0.625 0.825 0.089636270201233 0.089073170298655 5.6310e-004 0.089506627066611 1.2964e-004 

0.825 0.925 0.050883961002329 0.049590403634651 1.2936e-003 0.050748227928774 1.3573e-004 
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Table 2-a  The Exact solution 𝑢(𝑥, 𝑦) and the computed  solution for  𝛼 = 1 ,𝑚 =  𝑛 = 10  

x t Exact solution 

Computed Solution 

Sinusoidal shaped basic functions triangular shaped basic functions 

n=m=10 
Absolute 

Error 
n=m=10 

Absolute 

Error 

0.125 0.125 0.027482466014920 0.019175386311012 8.3071e-003 0.021437048746517 6.0454e-003 

0.225 0.325 0.063140941004369 0.058462636621803 4.6783e-003 0.058452754064054 4.6882e-003 

0.525 0.425 0.099485929326756 0.095046676665002 4.4393e-003 0.094460624380619 5.0253e-003 

0.625 0.825 0.093581334120924 0.091964832520955 1.6165e-003 0.092779455648408 8.0188e-004 

0.825 0.925 0.052934432601019 0.053861869431872 9.2744e-004 0.052587173317306 3.4726e-004 

 

Table 2-b  The Exact solution 𝑢(𝑥, 𝑦) and the computed  solution for  𝛼 = 1 ,𝑚 = 20, 𝑛 = 30  

x t Exact solution 

Computed solution 

Sinusoidal shaped basic functions Triangular shaped basic functions 

n=30, m=20 
Absolute 

error 
n=30, m=20 

Absolute 

error 

0.125 0.125 0.027482466014920 0.024146128895380 3.3363e-003 0.024112511967642 3.3700e-003 

0.225 0.325 0.063140941004369 0.060660246820567 2.4807e-003 0.060735980106444 2.4050e-003 

0.525 0.425 0.099485929326756 0.097577244599283 1.9087e-003 0.097531234991589 1.9547e-003 

0.625 0.825 0.093581334120924 0.093909992464966 3.2866e-004 0.093504450679766 7.6883e-005 

0.825 0.925 0.052934432601019 0.052379291000909 5.5514e-004 0.052934442051871 9.4509e-009 

 

Table 3-a  The Exact solution 𝑢(𝑥, 𝑦) and the computed  solution for  𝛼 = 1.7 , 𝑚 =  𝑛 = 10  

x t Exact solution 

Computed solution 

Sinusoidal shaped basic functions triangular shaped basic functions 

n= m=10 
Absolute 

error 
n=m=10 

Absolute 

error 

0.125 0.125 0.006913105647992 0.007199844503153 2.8674e-004 0.008613020524771 1.6999e-003 

0.225 0.325 0.049722851734235 0.047011126290422 2.7117e-003 0.046305279189023 3.4176e-003 

0.525 0.425 0.105655786293884 0.094275799837509 1.1380e-002 0.091878673860641 1.3777e-002 

0.625 0.825 0.141735239590746 0.120180949616185 2.1554e-002 0.121241683582674 2.0494e-002 

0.825 0.925 0.076586729407653 0.069894021004826 6.6927e-003 0.068077511468866 8.5092e-003 

 

Table 3-b  The Exact solution 𝑢(𝑥, 𝑦) and the computed  solution for  𝛼 = 1.7 , 𝑚 =  𝑛 = 100 

x t Exact solution 

Computed solution 

Sinusoidal shaped basic functions triangular shaped basic functions 

n= m=100 
Absolute 

error 
n=m=100 

Absolute 

error 

0.125 0.125 0.006913105647992 0.007058071887871 1.4497e-004 0.007154639430869 2.4153e-004 

0.225 0.325 0.049722851734235 0.049128185844175 5.9467e-004 0.049509917091144 2.1293e-004 

0.525 0.425 0.105655786293884 0.104283274387151 1.3725e-003 0.104448645287637 1.2071e-003 

0.625 0.825 0.141735239590746 0.139127922419599 2.6073e-003 0.139309323966533 2.4259e-003 

0.825 0.925 0.076586729407653 0.075196021343482 1.3907e-003 0.075551096437673 1.0356e-003 
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Fig.(3-a)   The exact solution 𝑢(𝑥, 𝑦)  for 𝛼 = 0.7 

 

 

 

Fig.(1-b)   The computed solution 𝑢(𝑥, 𝑦) for 𝑚 =  𝑛 = 10 

with sinusoidal shaped functions 

 

 

 

Fig.(1-c)   The computed solution 𝑢(𝑥, 𝑦) for 𝑚 =  𝑛 = 10 with 

triangular shaped functions 

 

Fig.(1-d)   The computed solution 𝑢(𝑥, 𝑦) for 𝑚 =  𝑛 = 20 

with sinusoidal shaped functions 

 

Fig.(1-e)   The computed solution 𝑢(𝑥, 𝑦) for 𝑚 =  𝑛 = 20 with 

triangular shaped functions 
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Fig.(2-a)   The exact solution 𝑢(𝑥, 𝑦)  for 𝛼 = 1 

 

 

 

 

 

Fig.(2-b)   The computed solution 𝑢(𝑥, 𝑦) for 𝑚 =  𝑛 = 10 with 

triangular shaped functions. 

 

 

 

Fig.(2-c)   The computed solution 𝑢(𝑥, 𝑦) for 𝑚 =  𝑛 = 10 

with sinusoidal shaped functions. 

 

 

 

 

Fig.(2-d)  The computed solution 𝑢(𝑥, 𝑦) for 𝑚 = 20, 𝑛 = 30  

with triangular shaped functions. 

 

 

 

 

Fig.(2-e)   The computed solution 𝑢(𝑥, 𝑦) for 𝑚 = 20 𝑛 =

30 with sinusoidal shaped functions. 
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Fig.(3-a)   The exact solution 𝑢(𝑥, 𝑦)  for 𝛼 = 1.7 

 

 

 

 

Fig. (3-b)   The computed solution 𝑢(𝑥, 𝑦) for 𝑚 =  𝑛 = 10 

with triangular shaped functions. 

 

 

Fig.(3-c)   The computed solution 𝑢(𝑥, 𝑦) for 𝑚 =  𝑛 = 10 

with sinusoidal shaped functions. 

 

 

 

 

Fig.(3-d)   The computed solution 𝑢(𝑥, 𝑦) for 𝑚 =  𝑛 = 

100 with sinusoidal shaped functions. 

 

 

Fig.(3-e)   The computed solution 𝑢(𝑥, 𝑦) for 𝑚 =  𝑛 =

100 with triangular shaped functions. 
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5. Conclusions  

In this article, The F-Transform is simulated to obtain a new numerical algorithm to find the 

solution of fractional order partial differential equations, It’s shown that the F –transform can be 

applied efficiently to the fractional order as well as the integer order differential equations [3]. 

Computational results indicate that, the proposed incremental algorithm provided very promising 

method in estimating the solution of rate dependent fractional order partial differential equations.  

It’s well known that solving the time dependent fractional diffusion problems  is one of the most 

difficult problems, but partitioning  𝓓𝟐 = [𝑎, 𝑏] × [𝑐, 𝑑]   and using F-transform to get a 

continuous computed solution to the problem  decreases the number of hard calculations we have 

to deal with. 

In our calculations we have used the numerical fractional forms of Podlubny [19] and we 

obtained a good solution with an accepted error relative to the analytical solution as the number 

of partition increased, same calculations can be done using other numerical fractional formulas. 
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