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GÜL GÜNER1,∗ AND NEJAT EKMEKCI2

1Department of Mathematics, Karadeniz Technical University, Trabzon 61080, Turkey

2Department of Mathematics, Ankara University, Ankara 06100, Turkey

Abstract. Bertrand curves corresponding to the spherical curves in E3 are given in [1] . In this paper, we

apply the method of constructing Bertrand curves from the spherical curves to the curves in 3 dimensional

Minkowski space. We also investigate the Bertrand curves corresponding to the spherical indicatrices of

spacelike and timelike curves.
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1. Introduction

In [9] and [4], the authors have characterized the spherical spacelike and timelike curves.

In this work, firstly we give the Theorem about generating the Bertrand curves from the

spherical curves in the three dimensional Minkowski spacetime. This is a generalization of

the work of Izumiya and Takeuchi [1].We come up with the idea of considering the Sabban

frame upon the casual characters of a curve’s position vectors. In the next section, we

define the spherical indicatrices and their types upon the casual character of the space
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curve. Finally, we calculate the Bertrand curves corresponding to the indicatrices by using

the theorem given in previous section.

2. Preliminaries

Let E3 be 3 dimensional Euclidean space, then the pseudo scalar product or Lorentzian

inner product is defined by 〈a, b〉L = a1b1 + a2b2 − a3b3 where a = (a1, a2, a3) and b =

(b1, b2, b3) are two vectors in E3. (E3, 〈, 〉L) is called a 3 dimensional pseudo Euclidean

space or Minkowski 3 space. An arbitrary vector a = (a1, a2, a3) in L3 can have one of

three Lorentzian causal characters; it is spacelike if 〈a, a〉L > 0 or a = 0, timelike if

〈a, a〉L < 0 and null(lightlike) if 〈a, a〉L = 0 and a 6= 0. Similarly, an arbitrary curve

α = α (s) in L3 is locally spacelike, timelike or null(lightlike), if all of its velocity

vectors ά (s) are respectively spacelike, timelike or null, for each s ∈ I ⊂ R. Recall that

the pseudo-norm of an arbitrary vector a ∈ L3 is given by |a| =
√
|〈a, a〉L| and the velocity

υ of the curve is given by υ = ‖ά (s)‖ . Therefore, α is a unit speed curve if and only if

〈ά(s), ά(s)〉L = ±1. For any a = (a1, a2, a3) and b = (b1, b2, b3) ∈ L3, the pseudo-vector

product of a and b is defined as follows

a× b =

∣∣∣∣∣∣∣∣∣
i j −k

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣∣∣

Denote by {t(σ), n(σ), b(σ)} the moving Frenet frame along the nonlightlike curve α pa-

rameterized by a pseudo-arclength parameter σ. Let t(σ) = ά(σ), n(σ) =
ά́(σ)

|ά́(σ)|
and

b(σ) = t(σ) × n(σ) be the tangent, the principal normal and the binormal vector of the

curve α respectively. When α is a timelike curve, i.e. when t is a timelike vector, the

Frenet formulae read;

t́ = κn, ń = κt+ τb, b́ = −τn



900 GÜL GÜNER1,∗ AND NEJAT EKMEKCI2

When α is a spacelike curve, there are three possibilities depending on the causal character

of t′. If t′ is spacelike, then the Frenet formulae read;

t́ = κn, ń = −κt+ τb, b́ = τn

If t′ is timelike, then the Frenet formulae read;

t́ = κn, ń = κt+ τb, b́ = τn

If t′ is lightlike, then the Frenet formulae read;

t́ = n, ń = τn, b́ = −t− τb

The functions κ and τ are called the curvature and the torsion of α respectively [7].

When the curve α is not parametrized by the arc-length, the corresponding formulae of

the curvature and the torsion are;

κ2 (t) = δ
|ά (t)| 2 |ά́ (t)| 2 − 〈ά (t) , ά́ (t)〉 2

|ά (t)|6

τ (t) = −δdet (ά (t) , ά́ (t) , ά́́ (t))

κ2 (t) |ά (t)|6

where δ is 1 or −1 depending on ά́ (t) is a spacelike or timelike vector, respectively [6] .

For the timelike curves see [7] .

A hyperbola and a pseudo sphere are defined by respectively;

H2
1 (r)m =

{
a = (a1, a2, a3) ∈ R3 | 〈a−m, a−m〉L = −r2

}
S2
1 (r)m =

{
a = (a1, a2, a3) ∈ R3 | 〈a−m, a−m〉L = r2

}
where m = (m1,m2,m3) and r ∈ R+. H2

1 (r) := H2
1 (r)m − {m},S2

1 (r) := S2
1 (r)m − {m}

are respectively a hyperbola and a pseudo sphere with radius r at the center m. Denote

that S2
0 = S2

1 (1)0 and H2
0 = H2

1 (1)0 [3] .

3. Spherical Curves and Bertrand Curves in E3
1
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In [9] and [4], the autors have characterized the spherical spacelike and timelike curves.

In this section, we give the Theorem about generating the Bertrand curves from the

spherical curves in E3
1 .

Theorem 3.1. There are no null curves lying on the Lorentzian sphere in E3
1 [4].

Let γ be a unit speed nonlightlike curve. If σ is the arc lenght parameter of γ, then

the unit tangent vector of γ is t (σ) = γ̇ (σ) where γ̇ =
dγ

dσ
. We define a vector s (σ) =

γ (σ) × t (σ), then we have a pseudo-orthonormal frame {γ (σ) , t (σ) , s (σ)} along γ . If

γ is a spacelike curve, then the vector s is timelike where γ is in S2
1 and the vector s

is spacelike where γ is in H2
1 . Similarly, if the curve γ is timelike, then the vector s is

spacelike.

Theorem 3.2. Let γ be a unit speed spherical curve in E3
1 , then the spherical Frenet

formulas of γ are

i. If γ is a spacelike curve in H2
1

γ̇ (σ) = t (σ)

ṫ (σ) = γ (σ) + κg (σ) s (σ)

ṡ (σ) = −κg (σ) t (σ)

ii. If γ is a spacelike curve in S2
1

γ̇ (σ) = t (σ)

ṫ (σ) = −γ (σ)− κg (σ) s (σ)

ṡ (σ) = −κg (σ) t (σ)

iii. If γ is a timelike curve

γ̇ (σ) = t (σ)

ṫ (σ) = γ (σ) + κg (σ) s (σ)

ṡ (σ) = −κg (σ) t (σ)

where κg is the geodesic curvature of γ.
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Theorem 3.3. Let γ be a unit speed spherical curve in E3
1 , then

γ̃ (σ) = a

 σ∫
σ0

γ (υ) dυ + ε coth θ

σ∫
σ0

s (υ) dυ

+ c (1)

is a Bertrand curve where a and θ are constant numbers, c is constant vector and ε = ±1.

We take ε = 1 when the curve γ is spacelike and ε = −1 when the curve γ is timelike.

Moreover, all the Bertrand curves with nonlightlike pirincipal normal can be constructed

by this method.

Proof. If γ is a spacelike curve in H2
1 , then we have

.

γ̃(σ) = a(γ(σ) + coth θs(σ))

..

γ̃(σ) = a(1− coth θκg(σ))t(σ)

∴

γ̃(σ) = −a coth θ
.
κg(σ)t (σ) + a(1− coth θκg(σ))(γ(σ) + κg(σ)s(σ))

γ̃ is a spacelike curve, hence the curvature and torsion of γ̃ are

κ (σ) = ε
sinh 2θ (1− coth θκg (σ))

a

τ (σ) = −sinh 2θ (κg (σ)− coth θ)

a

where ε = ±1. Since

−a(εκ (σ)− coth θτ(σ)) = 1 (2)

γ̃ is a Bertrand curve. If γ is a spacelike curve in S2
1 or a timelike one, then the proof is

similar to the mentioned above.

For the converse, let γ̃ be a Bertrand curve with nonlightlike principal normal and

{T,N,B} be its Frenet frame. If γ̃ is a spacelike curve, we have two cases upon the

character of T ′ :

If T ′ is a spacelike vector, we define a curve

γ(σ) = ε (sinh θT (σ) + cosh θB (σ))
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In this case, γ is a spacelike curve. Using the equation (2), we calculate γ́(σ) =
ε sinh θN (σ)

a
.

When σ1 is the arc lenght parameter of γ, we have
dσ1
dσ

=
ε sinh θ

a
.

aγ (σ)
dσ1
dσ

= sinh θ (sinh θT (σ) + cosh θB (σ)) (3)

a coth θs (σ)
dσ1
dσ

= a coth θγ (σ)× dγ

dσ1

dσ1
dσ

= − cosh θ (cosh θT (σ) + sinh θB (σ)) (4)

If we substitute the equations (3) and (4) in (1) , we have

a

σ1∫
0

γ (υ) dυ + a coth θ

σ1∫
0

s (υ) dυ = −
σ∫

σ0

T (υ) dυ = −γ̃(σ) + c

Here we note that the curve γ̃ is negatively oriented. If T ′ is a timelike vector or γ̃ is a

timelike curve, then the proof is similar to the mentioned above.

4. Bertrand Curves Corresponding to The Spherical Indicatrices

in E3
1

We define the spherical indicatrices of spacelike and timelike curves and then we inves-

tigate the Bertrand curves corresponding to them.

Definition 4.1. Let γ : I −→ E3
1 be a unit speed curve, σ be its arc lenght parameter

and κ (σ) 6= 0. The curve γt given by γt (s) = t(s) is called the tangent indicatrix of γ. If

the curve γ is timelike or spacelike, then γt is on the sphere H2
1 or S2

1 respectively.

Theorem 4.1. The Bertrand curve corresponding to the tangent indicatrix of a curve in

E3
1 is

γ̃ (σt) = a

γ (σt) + ε coth θ

σt∫
σt0

b (υ) dυ

+ c

where σt is the arc lenght parameter of γt. If γt is a spacelike or timelike curve, then we

take ε = 1 or ε = −1 respectively.

Proof. The tangent vector of γt is tt =
dt

dσt
. If the curve γ is timelike, γt is a spacelike

curve and if the curve γ is spacelike, γt can be a spacelike or timelike curve. Wheter the
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curve γ is spacelike or timelike, we have
dσt
dσ

= κ (σ) . Now we define st = t× tt, then the

Bertrand curve corresponding to γt is

γ̃ (σt) = a

σt∫
σt0

t (υ) dυ + aε coth θ

σt∫
σt0

st (υ) dυ + c

= aγ (σt) + aε coth θ

σt∫
σt0

b (υ) dυ + c

Definition 4.2.Let γ : I −→ E3
1 be a unit speed curve, σ be its arc lenght parameter and

κ (σ) 6= 0. The curve γn given by γn (s) = n(s) is called the principal normal indicatrix of

γ. If the vector n is spacelike or timelike, then γt is on the sphere S2
1 or H2

1 respectively.

Theorem 4.2. The Bertrand curve corresponding to the principal normal indicatrix of a

curve in E3
1 is

γ̃ (σn) = a

 σn∫
σn0

n (υ) dυ + ε coth θ

σn∫
σn0

d (υ) dυ

+ c

where σn is the arc lenght parameter of γn. If γn is a spacelike or timelike curve, then we

take ε = 1 or ε = −1 respectively.

Proof.The tangent vector of γn is tn =
dn

dσn
. Wheter the curve γ is timelike or spacelike,

the curve γn can be spacelike or timelike. In both cases, we have
dσn
dσ

= ‖w (σ)‖ where

w is the darboux vector of γ. Now we define sn = n × tn, then the Bertrand curve

corresponding to γn is

γ̃ (σn) = a

σn∫
σn0

n (υ) dυ + aε coth θ

σn∫
σn0

sn (υ) dυ + c

= a

σn∫
σn0

n (υ) dυ + aε coth θ

σn∫
σn0

d (υ) dυ + c

Definition 4.3.Let γ : I −→ E3
1 be a unit speed curve, σ be its arc lenght parameter

and κ (σ) 6= 0. The curve γb given by γb (s) = b(s) is called the binormal indicatrix of γ.

If the curve γ is timelike or spacelike, in both cases, the curve γb is on the sphere S2
1 .
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Theorem 4.3. The Bertrand curve corresponding to the binormal indicatrix of a curve

in E3
1 is

γ̃ (σb) = a

 σb∫
σb0

b (υ) dυ + ε coth θ

σb∫
σb0

t (υ) dυ

+ c

where σb is the arc lenght parameter of γb. If the curve γ is timelike, then we take ε = 1

where γb is spacelike and ε = −1 where γb is timelike. If the curve γ is spacelike, then the

sign of ε reverses.

Proof.The tangent vector of γb is tb =
db

dσb
. Wheter the curve γ is timelike or spacelike, γb

can be a spacelike or timelike curve and we have
dσb
dσ

= τ (σ) . Now we define sb = b× tb,

then the Bertrand curve corresponding to γb is

γ̃ (σb) = a

σb∫
σb0

b (υ) dυ + aε coth θ

σb∫
σb0

sb (υ) dυ + c

= a

σb∫
σb0

b (υ) dυ + aε coth θ

σb∫
σb0

t (υ) dυ + c
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