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Abstract. Let X be a Banach space X and let Cp(`
p∗ ,X) = {T : `p∗ → X : ‖T‖C(p) = sup(

∞

∑
n=1
‖T θn‖p)

1
p < ∞},

where the supremum is taken over all p∗−orthonormal sequences in `p∗ . The object of this paper is to study the

isometries of Cp(`
p∗ ,X). We give full characterization of certain classes of onto isometries of Cp(`

p∗ ,X) for some

Banach spaces X .
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1. Introduction

Let X be a Banach space and T be a bounded linear operator on X . T is called an isometry

if ‖T x‖ = ‖x‖ for all x ∈ X . The characterization of onto isometries on X has been an impor-

tant topic in analysis. Isometries is a main tool to study the Geometry of Banach spaces like

extreme points, smooth points and exposed points of the unit ball a Banach space. In [1], Kadi-

son characterized the isometries of L(H), the space of bounded linear operators on a Hilbert

space H. The isomerties C(I,X) were characterized by Lau [2]. The isometries of ϕ−nuclear

operators on general Banach spaces were characterized by Khalil and Salih [3]. Isometries
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of L(`p) 1 ≤ p 6= 2 < ∞, was an open problem since 1951. Khalil and Saleh [4] gave a full

characterization of such isometries. The isometries of the p−nuclear operators Np(`
p,X) were

characterized by Yousef and Khalil [5].

In this paper we study the onto isometries of p-nuclear type operators, to be denoted by

Cp(`
p∗,X). These are Schatten type classes. We give full characterization of some classes of

onto isometries of Cp(`
p∗,X). We refer to [2], [3], [6] and [7] for the basic facts on tensor

product of Banach spaces and functional analysis.

2. The Space Cp(`
p∗,X)

In this section, we introduce our space of p-nuclear type operators.

Definition 2.1. Let X be a Banach space, and (xn) be a sequence in X . The sequence (xn) is

called p-orthogonal if ‖∑λnxn‖= (∑ |λn|p ‖xn‖p)
1
p . It is called p-orthonormal if ‖xn‖= 1.

One can easily show that in `p−spaces, (xn) is p-orthogonal if and only if the x,sn have disjiont

support.

Now, we introduce our space.

Definition 2.2. For a Banach space X , we set

Cp(`
p∗ ,X) = {T : `p∗ → X : ‖T‖C(p) = sup(

∞

∑
n=1
‖T θn‖p)

1
p < ∞},

where the supremum is taken over all p∗−orthonormal sequences in `p∗ . One can easily see

that
(

Cp(`
p∗,X),‖.‖C(p)

)
is a normed space.

Further, we have

Theorem 2.3. If X is Banach space, then
(

Cp(`
p∗,X),‖.‖C(p)

)
is a Banach space.

Proof. We claim that every absolutely convergent series is convergent. So let Tn ∈ Cp(`
p∗,X)

be a sequence such that
∞

∑
n=1
‖Tn‖C(p) < ∞. We claim

∞

∑
n=1

Tn ∈Cp(`
p∗,X). Define T : `p∗ → X as
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T (x) =
∞

∑
n=1

Tn(x). Clearly, T is bounded and ‖T‖ ≤ ‖T‖C(p) . Further, we have

‖T‖C(p) = sup

(
∞

∑
k=1
‖T (θk)‖p

) 1
p

= sup

(
∞

∑
k=1

∥∥∥∥∥ ∞

∑
n=1

Tn(θk)

∥∥∥∥∥
p) 1

p

≤ sup

(
∞

∑
k=1

(
∞

∑
n=1
‖Tn(θk)‖

)p) 1
p

≤ sup
∞

∑
n=1

(
∞

∑
k=1
‖Tn(θk)‖p

) 1
p

≤
∞

∑
n=1
‖Tn‖C(p) < ∞.

Hence, we have T ∈ Cp(`
p∗,X). Remains to prove that

∞

∑
n=1

Tn converge to T . So we claim

‖T −Sn‖C(p)→ 0.

‖T −Sn‖C(p) = sup

(
∞

∑
k=1
‖T θk−Snθk‖p

) 1
p

= sup

(
∞

∑
k=1

∥∥∥∥∥ ∞

∑
n+1

Tnθk

∥∥∥∥∥
p) 1

p

≤ sup
∞

∑
n+1

(
∞

∑
k=1
‖Tnθk‖p

) 1
p

≤
∞

∑
n+1
‖Tn‖C(p) .

But this goes to zero since it is the tail of a convergent series. Hence ,
(

Cp(`
p∗,X),‖.‖C(p)

)
is

a Banach space.

Theorem 2.4. Let X be a Banach space. Then the followings are equivalent:

(i) T ∈Cp(`
p∗,X)

(ii) There exist (λn) ∈ `p, and gn ∈ X , such that ‖gn‖= 1 , and T =
∞

∑
n=1

λnδn⊗gn.

Further, ‖T‖c(p) = ‖(λn)‖p.

Proof. First, we show i⇒ ii). Let T ∈Cp(`
p∗,X) and (δn) be the natural basis in `p∗. Then
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T x = T
∞

(∑
n=1

anδn), ( where x = (a1,a2, .......))

=
∞

∑
n=1

anT δn (since T is bounded linear operator)

=
∞

∑
n=1

λnangn, ( where gn =
T δn
‖T δn‖ and λn = ‖T δn‖)

=
∞

∑
n=1

λn 〈δn,x〉gn .

(an = 〈δn,x〉 , and (λn)∈ `p since T ∈Cp(`
p∗,X)). Consequently, T =

∞

∑
n=1

λnδn⊗gn. Remains

to prove that ‖T‖c(p)= ‖(λn)‖p . Let T ∈Cp(`
p∗,X), 1< p<∞, and T =

∞

∑
n=1

λnδn⊗gn. Further,

let (θk) be any p∗ - orthonormal sequence in `p∗ . Then T θk =
∞

∑
n=1

λn 〈δn,θk〉gn and

(
∞

∑
k=1
‖T θk‖p

) 1
p

=

(
∞

∑
k=1

∥∥∥∥∥ ∞

∑
n=1

λn 〈δn,θk〉gn

∥∥∥∥∥
p) 1

p

≤

(
∞

∑
k=1

(
∞

∑
n=1

λn 〈|δn| , |θk|〉
)p) 1

p

=
∞

∑
k=1

(
∞

∑
n=1

ηkλn 〈|δn| , |θk|〉
)
,

where ‖(ηk)‖p∗ = 1 ( By Hahn Banach Theorem and the fact that (`p)∗= `p∗ ). Now, if (en) is p

- orthonormal in `p, then (|en|) is p - orthonormal. Hence, x=
∞

∑
n=1
|λn| |δn| ∈ `p, ‖x‖p = ‖(λn)‖p,

and y =
∞

∑
k=1
|ηk| |θk| ∈ `p∗ , ‖y‖p∗ = 1. Now,

(
∞

∑
k=1
‖T θk‖p

) 1
p

=

∣∣∣∣∣ ∞

∑
n,k=1
|λn| |ηk| 〈|δn| , |θk|〉

∣∣∣∣∣ =
∣∣∣∣∣
〈

∞

∑
n=1
|λn| |δn| ,

∞

∑
k=1
|ηk| |θk|

〉∣∣∣∣∣
= |〈x,y〉| ≤ ‖x‖p ‖y‖p∗ ≤

(
∞

∑
n=1
|λn|p

) 1
p

,
(
‖y‖p∗ = 1

)
.

Hence, for any p - orthonormal sequence (θk), we have(
∞

∑
k=1
‖T θk‖p

) 1
p

≤

(
∞

∑
n=1
‖T δn‖p

) 1
p

=

(
∞

∑
n=1
|λn|p

) 1
p

.

So, sup
(

∞

∑
k=1
‖T θk‖p

) 1
p

= ‖(λn)‖p.
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Next, we show (ii)⇒ (i). Let T =
∞

∑
n=1

λnδn⊗gn , where (λn) ∈ `p and ‖gn‖= 1. Then as in

case (i⇒ ii) we get

‖T‖C(p) =

(
∞

∑
n=1
|λn|p

) 1
p

< ∞, and T ∈Cp(`
p∗,X).

This ends the proof of the Theorem.

Theorem 2.5. Every operator T ∈Cp(`
p∗,X) has a representation for which the supremum is

attained.

Proof. From Theorem 2.4, we find the desired conclusion immediately.

3. The isometries

In this section, we study the isometric onto operators of Cp(`
p∗ ,X).

Theorem 3.1. Let A be an isometric onto operator of `p∗ , and B be an isometric onto operator

on X. Then the map defined by F : Cp(`
p∗ ,X)→Cp(`

p∗,X), F(T ) = BTA is an isometric onto

operator of Cp(`
p∗,X).

Proof. Let x ∈ `p∗ and letT =
∞

∑
n=1

λnδn⊗gn be an element in Cp(`
p∗,X). Since B is an isometry,

we have

F(T )x = BTAx =
∞

∑
n=1

λn 〈δn,Ax〉Bgn

=
∞

∑
n=1

λn 〈A∗δn,x〉Bgn =
∞

∑
n=1

λn 〈A∗δn,x〉
∧
gn,

where
∥∥∥ ∧gn

∥∥∥= 1. Further, Since A∗ is an isometric onto operator on `p, then A∗δn = δϕ(n), where

ϕ : N→N is (1−1) and onto map on the set of natural numbers. Thus F(T ) =
∞

∑
n=1

λnδϕ(n)⊗
∧
gn

=
∧
T , say. Now,

∥∥∥∥∧T∥∥∥∥= ( ∞

∑
n=1
|λn|p

) 1
p

, and F is an isometry by Theorem 3.3.4.

To show that F is onto, let S =
∞

∑
n=1

anδn⊗ gn ∈ Cp(`
p∗ ,X), and

∧
S =

∞

∑
n=1

anδϕ−1(n)⊗B−1gn.

Clearly F(
∧
S) =

∞

∑
n=1

anδn⊗gn = S. Then F is onto.This completes the proof.

Definition 3.2. A basic atom in Cp(`
p∗,X) is an operator of the form δk⊗h for some k ∈ N and

h ∈ X .
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Theorem 3.3. Let F : Cp(`
p∗,X)→Cp(`

p∗,X). If F preserves basic atoms and if F preserves

rank, then the following are equivalent:

(i) F is an isometric onto operator.

(ii) There exist two isometric onto operators: A : `p→ `p and B : X → X , and a sequence

(an), |an|= 1 for all n with F(∑δn⊗ xn) = ∑A(δn)⊗anBxn.

Proof. First, we show (i)⇒ (ii). Let F be an isometric onto operator. We divide the proof into

steps:

Step (i) . Let X1 = δ1⊗X = {δ1⊗ x : x ∈ X}.

Then F(X1) = {δk⊗ y : y ∈ X , for fixed k , ∀y ∈ X}.

Claim. Let x1,x2 ∈ X . If possible assume F(δ1⊗ x1) = δk1 ⊗
∧
x1and F(δ1⊗ x2) = δk2 ⊗

∧
x2,

and δk1 6= δk2 . Then, δ1⊗ x1 + δ1⊗ x2 = δ1⊗ (x1 + x2) is a basic atom. Since F preserves

basic atoms then F(δ1⊗ x1 + δ1⊗ x2) = δ j⊗ y for some y ∈ X and j ∈ N. Hence, δ j⊗ y =

δk1⊗
∧
x1+δk2⊗

∧
x2, which is a contradiction since δk1 6= δk2. So δk1⊗

∧
x1+δk2⊗

∧
x2 is not a basic

atom. So F(δ1⊗ x) = δk⊗ y, for fixed k ∈ N. Similarly for δ2,δ3, ....

Step (ii) . Define A : `p→ `p, Aδ1 = δk, where F(δ1⊗X) = δk⊗X . Similarly for δ2,δ3, ....

Then A is an isometric onto operator since it permutes the basis (δk) and F is onto. So A can be

recognized as: Aδn = δϕ(n), where ϕ is a permutation on the set of natural numbers, N.

Step (iii) . F(δ1⊗ x) = δϕ(1)⊗ x1, and F(δ2⊗ x) = δϕ(2)⊗ x1.

Claim. If possible assume F(δ1⊗ x) = δϕ(1)⊗ y and F(δ2⊗ x) = δϕ(2)⊗ z, y 6= z. Now,

δ1⊗x+δ2⊗x = ( δ1+δ2)⊗x, which is a 1−rank operator. But F((δ1+δ2)⊗x) = δϕ(1)⊗y+

δϕ(2)⊗ z. Now, since ‖y‖= ‖z‖= ‖x‖, (since F is an isometry ) then either y,z are independent

or y = ±z . If y,z are independent, then F((δ1 +δ2)⊗ x) = δϕ(1)⊗ y+δϕ(2)⊗ z is a two rank

operator which is a contradiction, since F preserves rank. Hence, F(δ1⊗ x) = δϕ(1)⊗a1y,and

F(δ2⊗ x) = δϕ(2)⊗a2y, with |ai|= 1.

In a similar way one can prove {F(δk⊗ x) : k ∈ N}= {δϕ(k)⊗aky : |ak|= 1,k ∈ N}.

Step (iv) . Define B : X → X , B(x) = y, where F(δk⊗ x) = akδϕ(k)⊗ y, and |ak|= 1. Then

B is well-defined linear maps.To prove the linearity of B, let x1,x2 ∈ X , and β ∈ R. Then,

F(δk⊗ (βx1 + x2)) = F(βδk⊗ x1 + δk⊗ x2) = βF(δk⊗ x1)+F(δk⊗ x2) = βakδϕ(k)⊗
∧
x1 +

akδϕ(k)⊗
∧
x2 = akδϕ(k)⊗

(
β
∧
x1 +

∧
x2

)
= akδϕ(k)⊗ (βB(x1)+B(x2)) ,, where |ak| = 1. That is
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B(βx1 + x2) = βB(x1)+B(x2). Since F is an isometric operator, we have ‖x‖ = ‖δk⊗ x‖ =

‖F(δk⊗ x)‖=
∥∥akδϕ(k)⊗ y

∥∥= ‖y‖= ‖B(x)‖. Hence B is an isometry. Finally, let y ∈ X . Then

δk⊗ y = F(δϕ−1(k)⊗ x), since F is onto. Therefore, y = B(x) for some x ∈ X . Thus B is an

isometric onto operator.

Now, we want to show that F(T ) =
∞

∑
n=1

A(δn)⊗ anBxn. Indeed, we have F(
∞

∑
n=1

δn⊗ xn) =

∞

∑
n=1

F(δn⊗ xn) =
∞

∑
n=1

δϕ(n)⊗anyn =
∞

∑
n=1

A(δn)⊗anBxn.

Now, we are in a position to show (ii)⇒ (i). Let T =
∞

∑
n=1

δn⊗xn be an element in Cp(`
p∗,X).

Since B is an isometry, we have F(T ) =
∞

∑
n=1

(A(δn)⊗anB(xn)) =
∞

∑
n=1

(δϕ(n)⊗anyn) =
∧
T , where

‖yn‖= ‖xn‖.

Now,

‖F(T )‖=
∥∥∥∥∧T∥∥∥∥=

(
∞

∑
n=1
|λn|p

) 1
p

= ‖T‖ .

Hence F is an isometry by Theorem 3.1. To show that F is onto, let S =
∞

∑
n=1

δn ⊗ yn ∈

Cp(`
p∗ ,X), where yn = anxn such that |an| = 1. Let

∧
S =

∞

∑
n=1

δϕ−1(n)⊗B−1xn . Clearly F(
∧
S) =

∞

∑
n=1

δn⊗anxn =
∞

∑
n=1

δn⊗ yn = S. Then F is onto. This ends the proof.

Theorem 3.4. Let T = δk ⊗ x ∈ C1 (`
∞,X) with ‖T‖ = 1.Then T is an extreme points of

C1 (`
∞,X) if and only if x is extreme in B[X ].

Proof. Let x ∈ ext(B1[X ]). We claim that T = δk ⊗ x is an extreme points of C1 (`
∞,X).

Without loss of generality, assume T = δ1⊗x and assume that T is not an extreme point. Hence,

there exist T1 =
∞

∑
n=1

δn⊗ xn and T2 =
∞

∑
n=1

δn⊗ yn ∈ C1 (`
∞,X) such that δ1⊗ x = 1

2(T1 + T2)

and ‖T1‖ = ‖T2‖ = 1. Thus δ1⊗ x = 1
2(T1 + T2). So, (x,0,0,0, ...) = 1

2

∞

∑
n=1

δn⊗ (xn + yn) =

(x1+y1
2 , x2+y2

2 , ...).Then x = x1+y1
2 which is a contradiction, since x ∈ ext(B1[X ]). Hence, δk⊗ x

is an extreme points of C1 (`
∞,X).

The Converse is clear. This ends the proof.

For X = `p, 1≤ p < ∞, we have the following.
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Theorem 3.5. Let F : C1 (`
∞, `p)→C1 (`

∞, `p) be an isometric onto operator. Then F preserves

basic atoms.

Proof. Let F be an isometric onto operator of C1 (`
∞, `p). Then as is known, F preserves the

extreme points of the unit ball of C1 (`
∞, `p). Now, let δk⊗h ∈C1 (`

∞, `p) be basic atom. Then

by Theorem 3.3.8 δk⊗ h
‖h‖ ∈ ext B1(C1 (`

∞, `p)). Hence F(δk⊗ h
‖h‖) = δ j⊗g for some g ∈ ext

B1(`
p). Since ‖h‖δk⊗ h

‖h‖ = δk⊗h , then F(δk⊗h) = ‖h‖δ j⊗g = δ j⊗
∧
g , where

∥∥∥∧g∥∥∥= ‖h‖ .
Theorem 3.6. Let F : C1 (`

∞, `p)→C1 (`
∞, `p) be a linear operator that preserves rank. Then

F is an isometric onto operator, if and only if F(
∞

∑
n=1

δn⊗ xn) =
∞

∑
n=1

A(δn)⊗ anB(xn), where

A : `1→ `1 is an isometric onto operator, and B : `p→ `p is an isometric onto operator, and

(an) is a sequence of reals such that |an|= 1.

Proof. By using Theorem 3.5, We see that F preserves basic atoms, and by using Theorem

3.3m we can obtain the result immediately.
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