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Abstract. In this paper, flow of the blood through asymmetric artery with mild stenosis has been investigated.

The effect of asymmetrical shape and non–Newtonian behaviour of blood, represented by Casson fluid, are simul-

taneously considered. The expressions for velocity, resistance impedance, wall shear stresses and wall apparent

viscosity are computed. The graphical results have been examined for different values of the parameters involved

on the problem. It was observed that the resistance impedance increases as the stenosis length, stenosis size and

flow rate increase, and it decreases as the stenosis shape parameter and yield value increases. It has been shown

that the axial velocity and the apparent viscosity give larger values in the upper–region as compared these values in

the lower–region. Also, the apparent viscosity increases as stenosis size, stenosis shape parameters and yield value

increase while it decreases when flow rate increases. Further, when stenosis shape parameter increases, there is a

convergence at the curves of the wall shear stresses in the upper–region while these is divergence at them in the

lower–region.
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1. Introduction

Blood is a concentrated suspension of formed cellular elements including red blood cells (RBCs

or erythrocytes), white blood cells (WBCs or leukocytes) and platelets (thrombocytes). These

cellular elements are suspended in an aqueous polymeric and ionic solution of flow viscosity, the

plasma, containing electrolytes and organic molecules such as metabolites, hormones, enzymes,

antibodies and other proteins. The formed elements are produced in the bone marrow and

represent approximately 45% by volume of the normal blood [1].

Blood flow in the vascular system is complicated in many respects and thus simplifying as-

sumptions are often made. Under normal condition, blood circulates within the body’s vascular

network. However, it has an inherent tendency to clot that is balanced by endothelium. The

clot formulation occurs for various reasons, endothelial injury, endothelial dysfunction, or flow

stagnation and recirculation among others. Clot formulation occurs when the initiating stimu-

lus exceeds certain threshold. Clots are formed at end of a serious of interacting biochemical

processes: platelet adhesion, activation and aggregation, coagulation, polymerization of fibrin

monomers formed from fibrinogen, and cross liking of the fibrin polymers stands to form a

fibrin network [2] and [3]. More applications can be found in [4], [5], [6], and [7].

The study of blood flow through stenosed arteries is very important because of the fact that

the cause and development of many arterial diseases leading to the malfunction of the cardio-

vascular system are, to a great extent, related to flow characteristics of the blood. Among the

various arterial diseases, the development of arteriosclerosis in blood vessels is quite common

which may be attributed to accumulation of lipids in the arterial wall [8]. Arteries are narrowed

by the development of atherosclerotic plaques that protrude into the lumen, resulting in stenosed

arteries [9]. As an obstruction developed in an artery, one of the most serious consequences is

the increased resistance and the associated reduction of blood flow to the particular vascular

bed supplied by the artery [10]. There ia a strong evidence that hemodynamical factors such

as separation, flow recirculation, low and oscillatory wall shear stress, play a major role in the

development and progression of atherosclerotic plaques and other arterial lesions (e.g. [11]

and [1]) but their role is not completely understood. Thus, the presence of stenosis can lead to

serious circulatory disorder.
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The assumption of Newtonian behaviour of blood is acceptable for high shear rate flow,

e.g. in the case of flow through large arteries. However, it is not valid when the shear rate is

low which is the case in small arteries and in the downstream side of the stenosis. The non–

Newtonian character of blood is typical in small arteries and veins where the presence of the

cells induces that specific behaviour [12].

Experiments on blood at low shear rates are extremely difficult to perform and consequently

a controversy remains on the behaviour of blood at the limit of zero shear rate. Despite this

controversy, it is commonly accepted that blood displays a yield stress, namely, there is a critical

value of the yield stress below which blood does not flow. The treatment of the yield stress as

a material parameter should be therefore independent of experimental factors and of yielding

criteria but this is not the case of blood. In fact there exists a large variation in yield stress values

for blood reported in the literature (e.g. [13]). The finite time required for the changes in blood

microstructure is related to blood yield stress and thixotropy. Charm and Kurland [14] found

that Casson model [15] gives the best fit to the blood data. Casson model is generalization of

the Bingham model that can capture both the yield stress and the shear–thinning behaviour of

blood.

In the past years, numerous researches of clinical and computational fluid dynamical analysis

have been performed to investigate the flow phenomena in the human artery. Charkravarty et

al. [16] presented a theoretical investigation to examine some of the significant characteristics

of the two–layered non–Newtonian rheology of blood flowing through a tapered flexible artery

in the presence of stenosis under pulsatile pressure gradient. Siddiqui et al. [17] studied the

pulsatile flow of blood in a stenosed artery by modelling blood as a Casson fluid. Sarifuddin et

al. [18] reviewed the mathematical model representing the dynamic response of heat and mass

transfer to blood streaming through the arteries under stenotic condition, where the blood and

arterial wall was treated as a generalized Newtonian fluid and a rigid having differently shaped

stenoses, respectively. Javadzadegan et al. [19] simulated the behaviour of two mathematical

models for blood as cross fluid and Oldroyed–B fluid in an artery with partial constriction.

Sankar and Lee [20] studied the pulsatile flow of blood through mild stenoses artery, where the

blood was treated as Herschel–Bulkely model.
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Recently, Nadeem et al. [21] analyzed the blood flow through a tapered artery with mild

stenosis. They assumed that the flow is steady and blood is treated as non–Newtonian power

law fluid model. Bandyopadhyay and Layek [22] considered a simple two–dimensional planar

geometrical model of a Newtonian viscous fluid through a constricted channel and the stream

function vorticity approach has been adopted. Blood flow in arteries is mostly dominated by

unsteady flow phenomena and the rigidity of the wall may be reasonably assumed. They men-

tioned in their study to understand the flow behaviour in pulsatile flows in a constricted channel.

Very recently, Ellahi et al. [23] examined the unsteady and incompressible flow of nonNewto-

nian micropolar fluid through composite stenosis with sip velocity. Gupta and Gupta [24] gave

a model to study the effects of axial variation of viscosity caused by accumulation of red cells

in the stenosis region of an artery with mild stenosis on resistance to flow and wall shear stress.

Awgichew et al. [25] studied the steady flow of an incompressible couple stress fluid in a two

dimensional uniform channel with stenosis under the influence of a magnetic field. Nandaku-

mar et al. [26] discussed the effects of percentage stenosis and Reynolds number on steady

flow, and Womersley number on pulsatile flow, of blood (modeled as the shear thinning model

proposed by Yeleswarapu) through a two dimensional channel with stenosis.

The purpose of this work is to mathematically simulate the behaviour of blood as Casson

fluid in an asymmetric artery with mild stenoses. The arterial wall segment is considered rigid

as well as deformable because, in the vicinity of the stenosis, it is usually relatively rigid when

stenosis develop in the human vasculature. To neglect the entrance, end and special wall ef-

fects, the artery length is assumed to be large enough as compared to its width. The effects

of asymmetric stenosis and non–Newtonian assumption of blood with various flow quantities

are discussed. The current model can include the important geometrical features of stenosed

arteries which may be useful to biomedical engineers in developing biomedical instruments for

treatment (surgical) modalities. Review of the problem is accordance with the following: Sec-

tion 2 contains the governing equations, motion and constitutive, for Casson fluid are modelled

and non–dimensionalized. Exact solution of these equation, along with the boundary conditions

of stenosed asymmetric artery, are resulted in Section 3. In Addition, the flow rate, resistance

to flow, wall shear stresses and apparent viscosity at the walls are expressed in the this section.
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FIGURE 1. Schematic diagram of the mathematical model of the problem under
investigation and the co–ordinate system employed.

The physical features of various emerging parameters are introduced and discussed, through the

appropriate graphs, in Section 4. Conclusions are given in Section 5.

2. Governing equations

2.1. Modelling of the problem. The segment of the stenosed artery under consideration is

simulated as a uniform rigid channel containing a non–Newtonian fluid representing the flowing

blood. The flow is considered as unsteady and laminar with mild stenosis, where blood is treated

as incompressible Casson fluid. To examine the effect of stenosis shape parameters, we consider

blood flow through a longitudinally non–symmetrical, and transversally asymmetric stenosis,

where there are two types of the shapes characterize the arterial segment which are often referred

to as lower–region and upper–region; such that the shape of stenosis can be changed only by

varying parameters n and m, respectively, as seen later. Fig. 1 shows the schematic of the

investigated problem, where x̄− and ȳ− coordinates are taken along the axis of the artery and

normal to x̄, respectively. The geometry of the channel upper walls is given by ([17], [27])
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η̄m(x̄) =


h− Ām

[
Lm−1

0 (x̄−d)− (x̄−d)m] , in d ≤ x̄≤ d +L0,

h otherwise,

(1)

and of the lower wall by

η̄n(x̄) =


−h+ Ān

[
Ln−1

0 (x̄−d)− (x̄−d)n] , in d ≤ x̄≤ d +L0,

−h otherwise,

(2)

where L0 represents the length of the stenosis, d denotes its location, η̄m(x̄) and η̄n(x̄) are the

upper and lower stenosis segments, respectively, x̄ is along the axis of the artery and h is the

maximum projection of the stenosis into the lumen. In addition, the parameters Ām and Ān are

expressed as 
Ām =

s̄
h Lm

0
m

m
m−1 ,

Ān =
s̄

h Ln
0

n
n

n−1 ,

(3)

where s̄ denotes the maximum height of the stenosis at x̄ = d + L0

m
m

m−1
and x̄ = d + L0

n
n

n−1
for the

upper and lower walls, respectively, such that s̄
h � 1 (the mild stenosis case).

The equations governing the steady flow of an incompressible Casson fluid in the absence of

body force are

(4)
∂ ū
∂ x̄

+
∂ v̄
∂ ȳ

= 0,


ρ

(
ū

∂ ū
∂ x̄

+ v̄
∂ ū
∂ ȳ

)
=−∂ P̄

∂ x̄
+

∂ τ̄xx

∂ x̄
+

∂ τ̄xy

∂ ȳ
,

ρ

(
ū

∂ v̄
∂ x̄

+ v̄
∂ v̄
∂ ȳ

)
=−∂ P̄

∂ ȳ
+

∂ τ̄yx

∂ x̄
+

∂ τ̄yy

∂ ȳ
,

(5)

where (ū, v̄) are the velocity components in the (x̄, ȳ) directions, respectively, ρ and P̄ are the

fluid density and pressure, respectively.
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The constitutive equation for Casson fluid is given by [15],

(6) |τ̄|=

[
µ

1
2
0 +

(
τ̄0

| ¯̇γ|

) 1
2
]2

¯̇γ at |τ̄| ≥ |τ̄0|,

(7) ¯̇γ = 0 at |τ̄| ≤ |τ̄0|,

where τ̄ represents the shear stress, µ0, ¯̇γ and τ̄0 are the Casson viscosity, rate of strain compo-

nent and yield value, respectively. For blood, τ̄0 is related to the hematocrit as

(8) τ̄
1
3
0 =

1
100

B(H−Hm),

where B = 0.0037±0.001(N/m2)
1
3 , where H is the normal hematocrit and Hm is the hematocrit

below, in which there is no yield stress.

2.2. Dimensionless formulation. On introducing the following set of non-dimensional quan-

tities 
x =

x̄−d
L0

, y =
ȳ
h
, u =

ū
U0

, v =
L0

hU0
v̄, P =

h2

µ0L0U0
P̄, s =

s̄
h
,

τ =
h

U0µ0
τ̄, τ0 =

h
U0µ0

τ̄0, γ̇ =
h

U0
¯̇γ,

(9)

where U0 is the maximum velocity of the blood at the entrance of the channel, Eqs. (1)–(7) can

be therefore rewritten in the dimensionless form as follows

ηm(x) =


1−Am [Lm

0 (x− xm)] , 0≤ x≤ 1,

1 otherwise,

(10)

ηn(x) =


−1+An [Ln

0(x− xn)] , 0≤ x≤ 1,

−1 otherwise,

(11)

where

Am =
s

h Lm
0

m
m

m−1 , and An =
s

h Ln
0

n
n

n−1 ,(12)
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(13) δ

(
∂u
∂x

+
∂v
∂y

)
= 0,


Re δ

(
u

∂u
∂x

+ v
∂u
∂y

)
=−∂P

∂x
+δ

∂τxx

∂x
+

∂τxy

∂y
,

Re δ
3
(

u
∂v
∂x

+ v
∂v
∂y

)
=−∂P

∂y
+δ

2 ∂τyx

∂x
+δ

∂τyy

∂y
,

(14)

where Re= ρhU0
µ0

is the Reynold’s number and δ = h
L0

is the geometric parameter where (δ� 1).

Finally, Casson model in the dimensionless form is given by

(15) |τ|=

[
1+
(

τ0

|γ̇|,

) 1
2
]2

γ̇ at |τ| ≥ |τ0|,

(16) γ̇ = 0 at |τ| ≤ |τ0|.

3. Solution of the problem

Solution of Eqs. (13) and (14) seems to be very difficult task due to the non–linearity terms,

depending on the stenosis size [28]. However, certain terms in these equations are of less

importance than others. Considering the case of mild stenosis, under the following conditions

[29],

(17)
s
h
� 1, Re

s
L0

n
1

n−1 � 1, Re
s

L0
m

1
m−1 � 1,

h
L0

n
1

n−1 ∼ O(1),
h
L0

m
1

m−1 ∼ O(1),

these equations can be therefore simplified to

(18)
∂P
∂x

+
∂τxy

∂y
= 0,

(19)
∂P
∂y

= 0,

where the shear stress τ =−τxy, which under the condition that τxy = 0 at y = 0, is given by

(20) τxy =−
∂P
∂x

y.



ANALYSIS OF THE CASSON FLUID MODEL FOR BLOOD FLOW 481

It should be also noted that the continuity equation is identically satisfied since the flow is one-

dimensional and fully developed.

When shear stress and strain rate have opposite signs at |τ| ≥ τ0, Eq. (6) can be written as, for
∂u
∂y < 0, τxy > 0 and 0≤ y≤ ηm,

(21) τxy = τ0 +

(
−∂u

∂y

)
+2 τ

1
2
0

(
−∂u

∂y

) 1
2

,

and as, for ∂u
∂y > 0, τxy < 0 and ηn ≤ y≤ 0,

(22) τxy =−

(
τ0 +

∂u
∂y

+2 τ
1
2
0

(
∂u
∂y

) 1
2
)
.

However, for |τ| ≤ τ0 and ηcn ≤ y≤ ηcm, Eq. (7) is written as

(23) γ̇xy = 0.

On substituting Eq. (21) on Eq. (20) and integrating the resulting equation, we get

(24)
∂P
∂x

=− ∂

∂y

[
τ0 +

(
−∂u

∂y

)
+2 τ

1
2
0

(
−∂u

∂y

) 1
2
]
.

On setting −∂u
∂y = Φ2, this results

(25) Φ
2 +2 τ

1
2
0 Φ+ τ0 +

∂P
∂x

y = 0,

whose roots are given by

(26) Φ =
1
2

[
−2 τ

1
2
0 ± y

1
2 (−4P,x)

1
2

]
,

On using Eq. (26), we get

(27)
∂u
∂y

=−1
4

[
4τ0∓2 τ

1
2
0 (−4P,x)

1
2 y

1
2 +(−4P,x)y

]
.

Integration Eq. (27) and using the condition that u = 0 at y = ηn, we obtain

(28) u =
1
4

[
4τ0(ηm− y)± 4

3
τ

1
2
0 (4P,x)

1
2

(
(−ηm)

3
2 − (−y)

3
2

)
− 1

2
(4P,x)

(
η

2
m− y2)] .
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Similarity, on solving Eq. (20) by using Eq. (22), we get

(29)
∂P
∂x

=
∂

∂y

(
∂u
∂y

+ τ0 +2τ
1
2
0

(
∂u
∂y

) 1
2
)
.

By integration and setting ∂u
∂y = Ψ2, it results

(30) Ψ
2 +2 τ

1
2
0 Ψ+ τ0−

∂P
∂x

y = 0,

whose roots are given by

(31) Ψ =
1
2

[
−2 τ

1
2
0 ± (−4P,x)

1
2 y

1
2

]
,

On using Eq. (31), we get

(32)
∂u
∂y

=
1
4

[
4τ0∓2 τ

1
2
0 (4P,x)

1
2 y

1
2 +(4P,x)y

]
.

Integration Eq. (32) and using the condition that u = 0 at y = ηm, we get

(33) u =−1
4

[
4τ0(ηn− y)∓ 4

3
τ

1
2
0 (4P,x)

1
2

(
η

3
2
n − y

3
2

)
+

1
2
(4P,x)

(
η

2
n − y2)] .

The upper limit of the plug flow region is obtained by

(34) ηcm =
τ0

−P,x
.

On using the condition τyx = τc at y = ηm [30] in Eq. (20), it results

(35) ηm =
τc

−P,x
.

This leads that

(36) ηcm = τ ηm; 0 < τ < 1,

where τ = τ0
τc

. Similarity, the lower limit of the plug flow region can be obtained under the

condition τyx =−τc at y = ηm as follows

(37) ηcn = τ ηn; 0 < τ < 1.

On using relations (36) and (37) and taking y = ηcm and ηcn in Eqs. (28) and (33), respectively,

we get the plug velocities as
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(38) um =
1
4

[
4τ0 (ηm−ηcm)±

4
3

τ
1
2
0 (4P,x)

1
2

(
(−ηm)

3
2 − (−ηcm)

3
2

)
− 1

2
(4P,x)

(
η

2
m−η

2
cm
)]

.

(39) un =−
1
4

[
4τ0 (ηn−ηcn)∓

4
3

τ
1
2
0 (4P,x)

1
2

(
η

3
2
n −η

3
2
cn

)
+

1
2
(4P,x)

(
η

2
n −η

2
cn
)]

.

3.1. Flow rate. We can define the dimensional flow rate Q̄ by

(40) Q̄ =
∫

η̄m

η̄n

ū dȳ.

On using Eqs. (9), defining the dimensionless flow Q as Q = Q̄
U0h and substituting Eqs. (28),

(33), (38) and (39) into Eq. (40), it may be then written as

(41) Q =
∫

ηm

ηn

u dy =
∫

ηcn

ηn

u dy+
∫ 0

ηcn

un dy+
∫

ηcm

0
um dy+

∫
ηm

ηcm

u dy,

which leads to

(42) E1 ξ
2∓E2 ξ +E3 = 0

whose solution is given by

(43) ξ =
1

2E1

[
±E2±

√
E2

2 −4E1E3

]
,

where 

ξ
2 = 4P,x ≡ F(ηm(x),ηn(x),Q),

E1 =
1
3
(
η

3
cn−η

3
n −η

3
cm +η

3
m
)
,

E2 =
4
5

τ
1
2
0

(
η

5/2
cn −η

5/2
n +(−ηcm)

5/2− (−ηm)
5/2
)
,

E3 = 2τ0
(
η

2
cn−η

2
n +η

2
cm−η

2
m
)
+4Q,

(44)
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When ηm = 1, ηn =−1, ηcn =−τ, ηcm = τ , it results that

E1 =−
2
3
(
τ

3 +1
)
,

E2 =
8
5

τ
1
2
0

(
(−τ)5/2− (−1)5/2

)
,

E3 = 4
(
τ0(τ

2−1)+Q
)
.

(45)

3.2. Resistance impedance. The pressure drop ∆P(= P0 at x = 0, PL at x = L) across the

stenosis between the sections x = 0 and x = L is resulted from Eq. (44–1), as in [31], by

(46) ∆P =
∫ L

0

dP
dx

dx.

The dimensionless resistance to the flow (or the resistance impedance) is denoted by λ and

defined as

(47) λ =
PL−P0

Q
=

1
Q

[∫ d

0
+
∫ d+ L0

L

d
+
∫ 1

d+ L0
L

]
ξ

2dx.

Since ηm(x) = 1 and ηn(x) =−1 in the regions 0≤ x≤ d and d + L0
L ≤ x≤ 1, respectively, the

resistance to the flow can be then simplified to

λ =
1
Q

(
1− L0

L

)
ξ

2

∣∣∣∣∣∣∣∣∣∣∣∣


ηm(x) = 1

ηn(x) =−1


+

L0

QL

∫ 1

0
ξ

2dx.(48)

3.3. Expression for the wall shear stress. The shearing stresses and (21) and (22) at the walls

ηm and ηn are obtained, respectively, as

τxy =



[(
−∂u

∂y

)
+2τ

1
2
0

(
−∂u

∂y

) 1
2

+ τ0

]
at y = ηm,

−

[(
∂u
∂y

)
+2τ

1
2
0

(
∂u
∂y

) 1
2

+ τ0

]
at y = ηn,

(49)
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where

∂u
∂y

=


−1

4

[
2τ

1
2
0 ±

(
−4ηm ξ

2) 1
2

]2

at y = ηm,

1
4

[
−2τ

1
2
0 ±

(
4ηn ξ

2) 1
2

]2

at y = ηn.

(50)

3.4. Apparent viscosity at the wall. From Eqs. (6) and (7), the apparent viscosity |µ̄| =[
µ

1
2
0 + τ̄

1
2
0 | ¯̇γ|(

− 1
2)
]2

in the dimensionless form is given by [32]

(51) |µ|= |µ̄|
µ0

=

[
1+ τ

1
2
0 |γ̇|(

− 1
2)
]2

.

The apparent viscosity at the walls can be then expressed as follows

µ =



[
1+ τ

1
2
0

(
−∂u

∂y

)(− 1
2)
]2

at y = ηm,

[
1+ τ

1
2
0

(
∂u
∂y

)(− 1
2)
]2

at y = ηn,

(52)

where
∂u
∂y

is defined in Eq. (50).

4. Results and discussion

To investigate the quantitative effects of n,m,s/h,τ0 and Q, MATHEMATICA 6 has been used

to develop codes for numerical evaluations of the analytic results obtained for the axial velocity

u, resistance to flow λ , wall shear stresses τxy and wall apparent viscosities µ, Eqs. (28), (33),

(48), (49) and (52), respectively. Fig. 2 shows variation of the resistance to flow, λ , with stenosis

length L0/L. It may be observed that λ increases steeply as L0/L increases and decreases as

stenosis shape parameters m, n and m = n increase. In addition, it increases when the stenosis

size s/h increases. Further, we notice that λ sharply decreases as τ0 increases, while it increases

when Q increases.

Fig. 3 describes variation of λ with stenosis size s/h. It depicts that λ behaves in a completely

similar manner as discussed for Fig. 2.
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FIGURE 2. Variation of λ , the resistance to flow, with L0/L, the stenosis length,
at τ = 0.3 for (a) n = 2, τ0 = 0.1, Q = 3, s = 0.2h, (b) m = 2, τ0 = 0.1, Q = 3,
s = 0.2h, (c) τ0 = 0.1, Q = 3, s = 0.2h, (d) m = 4, n = 3, τ0 = 0.1, Q = 3, (e)
m = 4, n = 3, Q = 3, s = 0.2h, and (f) m = 4, n = 3, τ0 = 0.1, s = 0.2h.

In Fig. 4, variation of the axial velocity, u, is studied as a function of the normal distance, y,

for various values of the fluid, stenosis size, and stenosis shape parameters. It can be noted from

Fig. 4(a) that for y in the range ηn and 0 with an increase in m, the velocity profile decreases

(i.e., the curves representing the axial flow velocity do shift towards the origin with an increase



ANALYSIS OF THE CASSON FLUID MODEL FOR BLOOD FLOW 487

”(b)”

”(d)””(c)”

n=2,4,6,8

m=n=2,4,6,8

0.00 0.05 0.10 0.15 0.20
1.25

1.30

1.35

1.40

1.45

1.50

1.55

Sêh

l
0.00 0.05 0.10 0.15 0.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

Sêh

l

0.00 0.05 0.10 0.15 0.20
0.8

1.0

1.2

1.4

1.6

1.8

Sêh

l
0.00 0.05 0.10 0.15 0.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

Sêh

l
/s h

λλ

/s h

λ λ

/s h /s h

m=2,4,6,8

0 0,0.1,0.3,0.5τ =

”(a)”

FIGURE 3. Variation of λ with s/h, the stenosis size, at L0 = 0.4L and τ = 0.3
for (a) n = 2, τ0 = 0.1, Q = 3, (b) m = 2, τ0 = 0.1, Q = 3, (c) τ0 = 0.1, Q = 3,
(d) m = 4, n = 3, Q = 3, and (e) m = 4, n = 3, τ0 = 0.1.

in m) while they shift away from the origin with an increase in m for y in the range 0 and ηm.

Fig. 4(b) depicts that the velocity profile has an opposite behaviour as compared with that in

Fig. 4(a). Moreover, in Fig. 4(c) as symmetric stenosis case (i.e. m = n) and for y < −0.5

and y > 0.5, the velocity increases with increasing values of stenosis shape parameter whereas

it decreases with increasing values of stenosis shape parameter for y in the range −0.5 to 0.5.

Fig. 4(d, e, f) show the variation of the axial velocity along the normal distance for different

values of s/h, τ0 and Q. It is found that with an increase of these parameters, the velocity profile

increases. It is also seen that for 0 < y < ηm, the axial velocity gives larger values as compared

these values for ηn < y < 0 because the stenosis shape parameter m is higher in the former than

that the stenosis shape parameter n.

Fig. 5(a) represents the variation of axial velocity with axial distance x for different values

of m. It is evident from the graph that the axial velocity, u, steeply increases in the upstream

from its approached value (i.e., at x = 0) to the peak value of the throat, then decreases in
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FIGURE 4. Variation of u, the axial velocity, with y for τ = 0.3 and x = 0.3 at
(a) n = 2, τ0 = 0.1, Q = 3, s = 0.2h, (b) m = 2, τ0 = 0.1, Q = 3, s = 0.2h, (c)
τ0 = 0.1, Q = 3, s = 0.2h, (d) m = 4, n = 3, τ0 = 0.1, Q = 3, (e) m = 4, n = 3,
Q = 3, s = 0.2h, and (f) m = 4, n = 3, τ0 = 0.1, s = 0.2h.

the downstream of the throat and assumes its approached magnitude at the endpoint of the

constriction profile (i.e., at x = 1). The increasing rate of u (with respect to the axial distance)

for ηn < y < 0 in the upstream of the throat decreases with the increasing values of m, whereas

this rate in the downstream of the throat increases with m. It is also observed that this result is

therefore a reversal behaviour with the observation of the axial velocity profile for 0 < y < ηm.

Fig. 5(b) and 5(c) show the influence of n and (m= n), respectively, on the axial velocity profile.
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It is observed that the opposite behaviour, of that described for the axial velocity in Fig. 5(a),

occurs. In Fig. 5(d) we notice that with an increase stenosis size, s/h, axial velocity decreases.

It is also seen that for the upper–region, 0 < y < ηm, velocity gives larger values as compared to

the lower–region, ηn < y < 0. Figs. 5(e) and 5(f) are prepared to see the variation of the axial

velocity with τ0 and Q. It is analyzed that with an increase in them, velocity profile increases.

Also, as τ0 and Q increase, the axial position of the throat approaches to the endpoint of the

constriction profile and due to the rapid fall in the velocity profile from its peak value at the

throat to approached value, one may anticipate the formulation of wake in the downstream of

the throat.

In Fig. 6 we depict the variation of dimensionless apparent viscosity, µ , at the walls, with

axial distance for various values of m, n, s/h, τ0 and Q. It is found that the apparent viscosity

steeply decreases in the upstream from its approached value (i.e., at x = 0) to the peak value at

the throat and assumes its approached magnitude at the endpoint of the constriction profile (i.e.,

at x = 1). In addition, we observed that the values of µ , which appears in the lower–region,

ηn < y < 0, are to be smaller than those in the upper–region, 0 < y < ηm.

Fig. 7 describes variation of µ with the stenosis sizes s/h for different values of m, n, τ0 and

Q. In these graphs µ increases as s/h, m, n and τ0 increase while it decreases when Q increases.

In addition, for various values of n, m, m = n, τ0 and Q, the apparent viscosity gives highly

value in the upper–region than its value in the lower–region.

Fig. 8 illustrates variation of the wall shear stresses (WSS), τxy, for different values of n, m,

s/h, τ0 and Q. It can be noted that in the lower–region, τxy decreases with the axial distance, x,

in the upstream of the stenosis throat and attains its maximum magnitude at the throat. It then

increases in the downstream of the throat and achieves the same magnitude at the end point of

the constriction profile (i.e., x = 1) same as its approached value at (i.e., x = 0) for any given set

of parameters. Whereas in the upper–region, WSS follows the opposite tend as discussed above

in the lower–region, except that the curves representing the wall shear stresses converge to each

other in this region. The flow characteristic, τxy, decreases with increasing in the upstream of

the throat but this property reverse in the downstream. However, we find that when n = m, the

wall shear stresses follows the same tend as described for different values of m except the curves
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FIGURE 5. Variation of u with x at τ = 0.3 and y = 0.5 for (a) n = 2, τ0 = 0.1,
Q = 3, s = 0.2h, (b) m = 2, τ0 = 0.1, Q = 3, s = 0.2h, (c) τ0 = 0.1, Q = 3,
s = 0.2h, (d) m = 4, n = 3, τ0 = 0.1, Q = 3, (e) m = 4, n = 3, Q = 3, s = 0.2h,
and (f) m = 4, n = 3, τ0 = 0.1, s = 0.2h.

representing the wall shear stresses which behave the same manner in both regions. It is also

observed that for different values of n, the wall shear stresses profile have the same behaviour

when compared to the wall shear stresses profile as described in Fig. 8(a), except the curves of

WSS are more closely values in the lower–region than in the upper–region. In addition, WSS

increases as s/h and Q increase in the upper–region whereas it decreases in the lower–region.
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FIGURE 6. Variation of µ , the apparent viscosity, with x at τ = 0.3 for (a) n = 2,
τ0 = 0.1, Q = 3, s = 0.2h, (b) m = 2, τ0 = 0.1, Q = 3, s = 0.2h, (c) τ0 = 0.1,
Q = 3, s = 0.2h, (d) m = 4, n = 3, τ0 = 0.1, Q = 3, (e) m = 4, n = 3, Q = 3,
s = 0.2h, and (f) m = 4, n = 3, τ0 = 0.1, s = 0.2h.

It is also observed that for different values of τ0, the influence on τxy matches the effect of each

s/h and Q, except that in the upper–region the curves representing the wall shear stresses are

identical as τ0 increases. Moreover, it may be noted that WSS profiles have positive values in

the upper–region while these profiles give negative values in the lower–region.
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FIGURE 7. Variation of µ with s/h at x = 0.3 and τ = 0.3 for (a) n= 2, τ0 = 0.1,
Q = 3, (b) m = 2, τ0 = 0.1, Q = 3, (c) τ0 = 0.1, Q = 3, (d) m = 4, n = 3, Q = 3,
and (e) m = 4, n = 3, τ0 = 0.1.

Fig. 9 reveals WSS, τxy, with stenosis size s/h for different values of n, m, τ0 and Q. It

depicts that in the upper–region τxy increases with increasing s/h and WSS attains its maximum

magnitude at the stenosis throat. Whereas, in the lower–region the curves representing WSS is

opposite like that was described previously. In addition, when m increases there is a conver-

gence at the curves in the upper–region while there is divergence at them in the lower–region.
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FIGURE 8. Variation of τxy, the wall shear stresses, with x at τ = 0.3 for (a)
n = 2, τ0 = 0.1, Q = 3, s = 0.2h, (b) m = 2, τ0 = 0.1, Q = 3, s = 0.2h, (c)
τ0 = 0.1, Q = 3, s = 0.2h, (d) m = 4, n = 3, τ0 = 0.1, Q = 3, (e) m = 4, n = 3,
Q = 3, s = 0.2h, and (f) m = 4, n = 3, τ0 = 0.1, s = 0.2h.

Moreover, the opposite happens when increasing n while it occurs similarity as n = m. Fur-

thermore, in the upper–region when τ0 and Q increase there is a substantial increase in WSS

but decreases in the lower–region. It is also seen that the curves diverge gradually as τ0 and Q

increase, except that they are identical in the upper–region as τ0 increases.
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FIGURE 9. Variation of τxy with s/h at x = 0.3 and τ = 0.3 for (a) n = 2, τ0 =
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Q = 3, and (e) m = 4, n = 3, τ0 = 0.1.

5. Conclusions

Casson fluid model for blood flow through asymmetric mild stenosis artery has been analyzed.

The effects of various flow parameters in the stenosed artery such as; shape parameters, stenosis

length, stenosis size, yield stress, flow rate on the axial velocity, wall shear stresses, resistance
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to flow (resistance impedance) and apparent viscosity at the walls are graphed and discussed in

details. The present results are itemized as follows:

• The resistance impedance, λ , increases as the stenosis length, L0/L, stenosis size, s/h,

and Q increase. However, It decreases as the stenosis shape parameters (i.e. m and n)

and τ0 increase.

• The axial velocity flow, u, decreases when ηn < y < 0 while it increases for 0 < y < ηm,

both with an increase in m. However, u has an opposite behaviour on variation with n.

Further, it increases as s/h, τ0 and Q increase.

• The increasing rate of u for ηn < y < 0 in the upstream of the throat decreases with of

m, whereas it increases with m in the downstream of the throat. However, the behaviour

is opposite for 0 < y < ηm and in the influence of n. This velocity increases with an

increase in τ0 and Q and decreases with an increase stenosis size, s/h. Further, due to

the rapid fall in the velocity profile from its peak value at the throat to approached value,

one may anticipate the formulation of wake in the downstream of the throat.

• The apparent viscosity, µ , are smaller in the lower–region, ηn < y < 0, than those in

the upper–region, 0 < y < ηm. Further, µ increases as s/h, m, n and τ0 increase while it

decreases when Q increases. In addition, for various values of n, m, m = n, τ0 and Q, the

apparent viscosity gives highly value in the upper–region than itself in the lower–region.

• In the lower–region, the wall shear stresses, τxy, decreases in the upstream of the stenosis

throat and then increases in the downstream. In addition, τxy decreases as s/h, τ0, Q and

s/h increase. Whereas in the upper–region, WSS follows the opposite tend. The flow

characteristic decreases with increasing in the upstream of the throat but this property

reverse in the downstream. In addition, τxy increases as s/h, τ0, Q and s/h increase. τxy

attains its maximum magnitude at the stenosis throat in the lower and upper regions.

In summary, it should be noted that some results for hydrodynamic fluid in [33] and [34] can

be obtained as the special cases of the current analysis by choosing n = m even though the

Cartesian coordinates have been used. In addition, the current results are compatible with those

obtained in [35] and [36].
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