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Abstract. We consider the ternary semigroup 𝑆 of the fuzzy points of a ternary semigroup 𝑆, and discuss the relation 
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1. Introduction 

 

The concept of fuzzy set was initiated by L. Zadeh[14]. The study of fuzzy algebraic structures 

started with the introduction of the concepts of fuzzy groups in the pioneering paper of 

Rosenfeld [13]. Kuroki [6, 7, 8, 9] defined a fuzzy semigroup and various kinds of fuzzy ideals 

in semigroups and characterized them. M. Santiago and S. Bala developed the theory of ternary 

semigroups[12]. Kar and Sarkar defined fuzzy left (right, lateral) ideals of ternary semigroups 

and characterize regular and intra-regular ternary semigroups by using the concept of fuzzy 

ideals of ternary semigroups[3,4]. The concept of anti fuzzy interior ideals of ternary semigroups 

introduced in[2]. Kim considered the semigroup 𝑆 of the fuzzy points of a semigroup 𝑆, and 

discussed the relation between some fuzzy ideals of a semigroup 𝑆 and the subsets of 𝑆  [5]. 

Hamouda considered the ternary semigroups of fuzzy points and investigated some relations 

between of ideals of fuzzy points and fuzzy ideals of ternary semigroups [1]. Based on the 

concept of anti fuzzy ideals of a ternary semigroup [13], in the present paper we consider the 
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ternary semigroup 𝑆  of the fuzzy points in a ternary semigroup  𝑆 , and discuss the relation 

between some anti fuzzy ideals of a ternary semigroup 𝑆 and the subsets of 𝑆. 

 

2. Preliminaries 

 

Definition 2.1[12] A ternary semigroup is a nonempty set 𝑆 together with a ternary operation 

(𝑎, 𝑏, 𝑐) → 𝑎𝑏𝑐 satisfying (𝑎𝑏𝑐)𝑑𝑒 = 𝑎(𝑏𝑐𝑑)𝑒 = 𝑎𝑏(𝑐𝑑𝑒) for all 𝑎; 𝑏; 𝑐; 𝑑; 𝑒 ∈ 𝑆. 

 

Example 2.2 Let ℤ−  be the set of all negative integers. Then with the usual ternary 

multiplication, ℤ− forms a ternary semigroup. 

 

Definition 2.3 [3] A non-empty subset 𝐴 of a ternary semigroup is called 

1) A ternary subsemigroup if 𝐴3 = 𝐴𝐴𝐴 ⊆ 𝐴.  

2) A left ideal of  𝑆 if 𝑆𝑆𝐴 ⊆ 𝐴. 

3) A lateral ideal of  𝑆 if 𝑆𝐴𝑆 ⊆ 𝐴. 

4) A right ideal of  𝑆 if 𝐴𝑆𝑆 ⊆ 𝐴. 

5) An ideal of 𝑆 if 𝐴 is a left ideal, a lateral ideal and a right ideal of  𝑆. 

 

Definition 2.4 [4]  A ternary subsemigroup 𝐵 of a ternary semigroup 𝑆 is said to be a bi-ideal of 

 𝑆 if 𝐵𝑆𝐵𝑆𝐵 ⊆ 𝐵. 

 

Definition 2.5 [10] A ternary subsemigroup 𝐵  of a ternary semigroup  𝑆  is called an interior 

ideal of  𝑆 if  𝑆𝑆𝐵𝑆𝑆 ⊆ 𝐵. 

 

Example 2.6 Let  𝑆 = {(0,0), (0,1), (1,0), (1,1)}. Then 𝑆 is a ternary semigroup with respect to 

ternary multiplication defined by 

(𝑖, 𝑗)(𝑘, 𝑙)(𝑚, 𝑛) = (𝑖, 𝑛). 

 

Let  𝐴 = {(0,0), (0,1)} be a subset of  𝑆.Then 𝐴 is a right ideal of 𝑆, but not a lateral ideal nor a 

left ideal because 

in  𝑆𝐴𝑆, 
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(1,0)(0,1)(1,1) = (1,1) ∉ 𝐴, 

in 𝑆𝑆𝐴, 

(1,0)(1,1)(0,0) = (1,0) ∉ 𝐴. 

Let  𝐵 = {(0,1), (1,1)} be a subset of 𝑆. Then 𝐵 is a left ideal of 𝑆, but not a lateral ideal nor a 

right ideal because 

in  𝑆𝐵𝑆, 

(1,0)(1,1)(1,0) = (1,0) ∉ 𝐵, 

in 𝐵𝑆𝑆, 

(0,0)(1,1)(0,0) = (0,0) ∉ 𝐵.  

 

    A function  𝑓  from 𝑆  to the closed interval [0, 1] is called a fuzzy set in 𝑆 . The ternary 

semigroup 𝑆 itself is a fuzzy set in 𝑆 such that  𝑆(𝑥) = 1 for all 𝑥 ∈ 𝑆.  

 

Definition 2.7[13] Let 𝑓 be a fuzzy set in a nonempty set 𝑆. For any 𝑡 ∈ [0,1]; the subset 𝑓𝑡 =

{𝑥 ∈ 𝑆: 𝑓(𝑥) ≤ 𝑡} of  𝑆 is called anti level subset of 𝑓. 

 

    Let 𝐴 and 𝐵be two fuzzy sets in𝑆. Then theinclusion relation 𝐴 ⊆ 𝐵 is defined by 𝐴(𝑥) ≤

𝐵(𝑥)  for all 𝑥 ∈ 𝑆 . 𝐴 ∩ 𝐵  and 𝐴 ∪ 𝐵  are fuzzy sets in S defined by (𝐴 ∩ 𝐵)(𝑥) =

𝑚𝑖 𝑛{𝐴(𝑥), 𝐵(𝑥)} = 𝐴(𝑥) ∧ 𝐵(𝑥),(𝐴 ∪ 𝐵)(𝑥) = 𝑚𝑎𝑥 {𝐴(𝑥), 𝐵(𝑥)} = 𝐴(𝑥) ∨ 𝐵(𝑥), for all 𝑥 ∈ 𝑆. 

 

Definition 2.8 Let  𝑆  be a non-empty set and 𝑥 ∈ 𝑆, 𝑡 ∈ [0,1). An anti fuzzy point  𝑥𝑡 of  𝑆  is a 

fuzzy set in 𝑆, defined by, 

 

𝑥𝑡(𝑦) = {
𝑡       𝑖𝑓 𝑥 = 𝑦,

 1     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
 

 

for all 𝑦 ∈ 𝑆 .  

 

Definition 2.9.[13] A non-empty fuzzy set  𝐴 in a ternary semigroup  𝑆 is called an anti fuzzy 

ternary subsemigroup of  𝑆 if 𝐴(𝑥𝑦𝑧) ≤ 𝐴(𝑥) ∨ 𝐴(𝑦) ∨ 𝐴(𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑆. 
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Definition 2.10.[13] A non-empty fuzzy set  𝐴 in a ternary semigroup S is called an anti fuzzy left 

(resp. lateral, right) ideal of S if  𝐴(𝑥𝑦𝑧) ≤ 𝐴(𝑧) (resp. 𝐴(𝑥𝑦𝑧) ≤ 𝐴(𝑦), 𝐴(𝑥𝑦𝑧) ≤ 𝐴(𝑥)) for all 

𝑥, 𝑦, 𝑧 ∈ 𝑆. 

If 𝐴 is an anti fuzzy left ideal, a fuzzy lateral ideal and a fuzzy right ideal of  𝑆, then  𝐴 is called 

an anti fuzzy ideal of  𝑆. 

 

Definition 2.11.[13] An anti fuzzy ternary subsemigroup 𝐵 in a ternary semigroup 𝑆 is called an 

anti fuzzy interior ideal of  𝑆 if 𝐵(𝑥𝑠𝑎𝑟𝑦) ≤ 𝐵(𝑎)for all 𝑥, 𝑎, 𝑟, 𝑠, 𝑦 ∈ 𝑆. 

 

Example 2.12. In example 2.6, 𝑆 = {(0,0), (0,1), (1,0), (1,1)} is a ternary semigroup and 𝐴 =

{(0,0), (0,1)} is a right ideal of 𝑆. Define a fuzzy set 𝑓 in 𝑆 as follows: 

 

𝑓(𝑥) = {
0.6        𝑖𝑓 𝑥 ∈ 𝐴;

 1         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

 

It is clear that 𝑓 is an anti fuzzy right ideal, but not an anti fuzzy lateral ideal nor an anti fuzzy 

left ideal because 

𝑓((1,1)(0,1)(1,1)) = 𝑓((1,1)) = 1 ≴ 𝑓((0,1)) = 0.6, 

and 

𝑓((1,1)(0,1)(0,1)) = 𝑓((1,1)) = 1 ≴ 𝑓((0,1)) = 0.6, 

 

Similarly, for the left ideal 𝐵 = {(0,1), (1,1)}we can define an anti fuzzy left ideal 𝑓 which is 

neither an anti fuzzy lateral ideal nor an anti fuzzy right ideal. 

 

3. Main Results 

 

Let 𝓕(𝑺) be the set of all fuzzy sets in a ternary semigroup 𝑆. For each 𝐴, 𝐵, 𝐶 ∈ 𝓕(𝑺), the anti 

product of 𝐴 , 𝐵, 𝐶 is a fuzzy set 𝐴 ∗ 𝐵 ∗ 𝐶 defined as follows: 

 

(𝐴 ∗ 𝐵 ∗ 𝐶)(𝑥) =  {
⋀ {𝐴(𝑎) ∨ 𝐵(𝑏) ∨ 𝐶(𝑐)}

𝑥=𝑎𝑏𝑐
           𝑖𝑓 𝑎𝑏𝑐 = 𝑥

                           1                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
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Proposition 3.1.  (𝓕(𝑺), ∗) is a ternary semigroup. 

 

Proof. It is obvious that 𝓕(𝑺) is closed under the ternary operation ∗.  Let  𝐴, 𝐵, 𝐶, 𝐸, 𝐹 be fuzzy 

sets in 𝓕(𝑺). Let 𝑥 be any element of 𝑆 such that it is not expreeible as product of three elements 

in 𝑆, then 

((𝐴 ∗ 𝐵 ∗ 𝐶) ∗ 𝐸 ∗ 𝐹)(𝑥) = 1 = (𝐴 ∗ (𝐵 ∗ 𝐶 ∗ 𝐸) ∗ 𝐹)(𝑥) = (𝐴 ∗ 𝐵 ∗ 𝐶 ∗ (𝐸 ∗ 𝐹))(𝑥). 

 If 𝑥 = 𝑎𝑏𝑐 for some 𝑎, 𝑏, 𝑐 in 𝑆, then 

 

((𝐴 ∗ 𝐵 ∗ 𝐶) ∗ 𝐸 ∗ 𝐹)(𝑥) =  ⋀ {((𝐴 ∗ 𝐵 ∗ 𝐶)(𝑎) ∨ 𝐸(𝑏) ∨ 𝐹(𝑐)}

𝑥=𝑎𝑏𝑐

= 

                             = ⋀ {⋀ {𝐴(𝑝) ∨ 𝐵(𝑞) ∨ 𝐶(𝑟)}
𝑎=𝑝𝑞𝑟

∨ 𝐸(𝑏) ∨ 𝐹(𝑐)}
𝑥=𝑎𝑏𝑐

= ⋀ {𝐴(𝑝) ∨ 𝐵(𝑞) ∨ 𝐶(𝑟)}
𝑥=(𝑝𝑞𝑟)𝑏𝑐 

∨ 𝐸(𝑏) ∨ 𝐹(𝑐)}

= ⋀ {𝐴(𝑝) ∨ 𝐵(𝑞) ∨ (𝐶(𝑟)
𝑥=𝑝𝑞(𝑟𝑏𝑐) 

∨ 𝐸(𝑏) ∨ 𝐹(𝑐))}

= ⋀ {⋀ 𝐴(𝑝) ∨ 𝐵(𝑞) ∨ (𝐶 ∗
𝑤=𝑟𝑏𝑐

𝐸 ∗ 𝐹)(𝑤)}
𝑥=𝑎𝑏𝑐

= ⋀ 𝐴(𝑝) ∨ 𝐵(𝑞) ∨ (𝐶 ∗
𝑥=𝑝𝑞𝑤

𝐸 ∗ 𝐹)(𝑤) 

= (𝐴 ∗ 𝐵 ∗ (𝐶 ∗ 𝐸 ∗ 𝐹))(𝑥) 

 

In similar argument, we show that (𝐴 ∗ 𝐵 ∗ (𝐶 ∗ 𝐸 ∗ 𝐹))(𝑥) = (𝐴 ∗ (𝐵 ∗ 𝐶 ∗ 𝐸) ∗ 𝐹)(𝑥). Hence  

(𝓕(𝑺), ∗) is a ternary semigroup.  □ 

 

     Let  𝑆 be the set of all anti fuzzy points in a ternary semigroup 𝑆.  

 

Proposition 3.2.  If  𝑥𝛼, 𝑦𝛽 and 𝑧𝛾 ∈  𝑆, then 𝑥𝛼 ∗ 𝑦𝛽 ∗ 𝑧𝛾 = (𝑥𝑦𝑧)𝛼∨𝛽∨𝛾 . 

 

Proof.  Let 𝑤 ∈ 𝑆. If 𝑤 ≠ 𝑎𝑏𝑐 for any  𝑎, 𝑏, 𝑐 ∈ 𝑆, then 

(𝑥𝛼 ∗ 𝑦𝛽 ∗ 𝑧𝛾)(𝑤) = 1 = (𝑥𝑦𝑧)𝛼∨𝛽∨𝛾(𝑤). 
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If 𝑤 = 𝑎𝑏𝑐 for some  𝑎, 𝑏, 𝑐 ∈ 𝑆, then we have 

(𝑥𝛼 ∗ 𝑦𝛽 ∗ 𝑧𝛾)(𝑤) = ⋀ {𝑥𝛼(𝑎) ∨ 𝑦𝛽(𝑏) ∨ 𝑧𝛾(𝑐)}
𝑤=𝑎𝑏𝑐

 

1) If  𝑥 = 𝑎, 𝑦 = 𝑏 and 𝑧 = 𝑐, then 𝑤 = 𝑥𝑦𝑧 and 𝑥𝛼(𝑥) = 𝛼, 𝑦𝛽(𝑦) = 𝛽 and 𝑧𝛾(𝑧) = 𝛾. 

Therefore, (𝑥𝛼 ∗ 𝑦𝛽 ∗ 𝑧𝛾)(𝑤) = 𝑥𝛼(𝑥) ∨ 𝑦𝛽(𝑦) ∨ 𝑧𝛾(𝑧) = 𝛼 ∨ 𝛽 ∨ 𝛾 = (𝑥𝑦𝑧)𝛼∨𝛽∨𝛾. 

2) If either 𝑥 ≠ 𝑎 𝑜𝑟 𝑦 ≠ 𝑏  or 𝑧 ≠ 𝑐 , then either 𝑥𝛼(𝑎) = 1 𝑜𝑟 𝑦𝛽(𝑏) = 1  or 𝑧𝛾(𝑐) = 1  and 

hence (𝑥𝛼 ∗ 𝑦𝛽 ∗ 𝑧𝛾)(𝑤) = 1 = (𝑥𝑦𝑧)𝛼∨𝛽∨𝛾(𝑤).  

Therefore, we conclude that  𝑥𝛼 ∗ 𝑦𝛽 ∗ 𝑧𝛾 = (𝑥𝑦𝑧)𝛼∨𝛽∨𝛾. □ 

 

    It is clear that (𝑥𝛼 ∗ 𝑦𝛽 ∗ 𝑧𝛾) ∗ 𝑤𝜎 ∗ 𝑢𝜏 = 𝑥𝛼 ∗ (𝑦𝛽 ∗ 𝑧𝛾 ∗ 𝑤𝜎) ∗ 𝑢𝜏 = 𝑥𝛼 ∗ 𝑦𝛽 ∗ (𝑧𝛾 ∗ 𝑤𝜎 ∗ 𝑢𝜏) 

for 𝑥𝛼, 𝑦𝛽 , 𝑧𝛾, 𝑤𝜎, 𝑢𝜏 ∈ 𝑆 . Thus 𝑆 is a ternary subsemigroup of 𝓕(𝑺). For any 𝐴 ∈  𝓕(𝑺), we 

denote  𝐴 = {𝑥𝛼 ∈ 𝑆: 𝐴(𝑥) ≤ 𝛼}. For any 𝐴, 𝐵, 𝐶 ⊆ 𝑆, we define the product of  𝐴, 𝐵and 𝐶 as 𝐴 ∗

𝐵 ∗ 𝐶 = {𝑥𝛼 ∗ 𝑦𝛽 ∗ 𝑧𝛾: 𝑥𝛼 ∈ 𝐴, 𝑦𝛽 ∈ 𝐵, 𝑧𝛾 ∈ 𝐶}. 

 

Lemma 3.3. Let A, B and C be fuzzy sets in a ternary semigroup S. Then 

a) If 𝐴 ⊆ 𝐵, then 𝐵 ⊆ 𝐴. 

b) 𝐴 ∪ 𝐵 = 𝐴 ∪ 𝐵. 

c) 𝐴 ∩ 𝐵 = 𝐴 ∩ 𝐵. 

d) 𝐴 ∗ 𝐵 ∗ 𝐶 ⊇ 𝐴 ∗ 𝐵 ∗ 𝐶. 

 

Proof. (a)  Straightforward. 

b)  Let 𝑧𝛼 ∈ 𝐴 ∪ 𝐵 , then  

(𝐴 ∪ 𝐵)(𝑧) = 𝐴(𝑧) ∨ 𝐵(𝑧) ≤ 𝛼. 

Hence, 𝐴(𝑧) ≤ 𝛼 𝑜𝑟 𝐵(𝑧) ≤ 𝛼, that is , 𝑧𝛼 ∈ 𝐴 ∪ 𝐵. This implies that 𝐴 ∪ 𝐵 ⊆ 𝐴 ∪ 𝐵. Let  𝑧𝛼 ∈

𝐴 ∪ 𝐵 , then (𝑧) ≤ 𝛼 𝑜𝑟 𝐵(𝑧) ≤ 𝛼 and hence(𝐴 ∪ 𝐵)(𝑧) ≤ 𝛼. This implies that 𝑧𝛼 ∈ 𝐴 ∪ 𝐵 and 

consequently, 𝐴 ∪ 𝐵 ⊆ 𝐴 ∪ 𝐵 . Therefore,  𝐴 ∪ 𝐵 = 𝐴 ∪ 𝐵. 

 (c) the proof is similar to (a), by considering the suitable modifications. 

(d) Let  𝑧 ∈ 𝑆and𝑧𝜔 ∈ 𝐴 ∗ 𝐵 ∗ 𝐶 , then 𝑧𝜔 = 𝑎𝛼 ∗ 𝑏𝛽 ∗ 𝑐𝛾 such that 𝑎𝛼 ∈ 𝐴,  𝑏𝛽 ∈ 𝐵 and 𝑐𝛾 ∈ 𝐶. 

If 𝑧 = 𝑝𝑞𝑟  for some𝑝, 𝑞, 𝑟 ∈ 𝑆 , then 𝐴(𝑝) ≤ 𝑎𝛼(𝑝), 𝐵(𝑞) ≤ 𝑏𝛽(𝑞) and 𝐶(𝑟) ≤ 𝑐𝛾(𝑟). Hence, 

we have 𝐴(𝑝) ≤ ⋀   𝑎𝛼(𝑝)𝑎𝛼 ∈𝐴 , 𝐵(𝑞) ≤ ⋀   𝑏𝛽(𝑞)𝑏𝛽 ∈𝐵  and 𝐶(𝑟) ≤ ⋀   𝑐𝛾(𝑟)𝑐𝛾 ∈𝐶 . Thus 
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(𝐴 ∗ 𝐵 ∗ 𝐶)(𝑧) = ⋀ 𝐴(𝑝) ∨ 𝐵(𝑞) ∨ 𝐶(𝑟)

𝑧=𝑝𝑞𝑟  

 

                              ≤ ⋀ ⋀ 𝑎𝛼(𝑝) ∨

𝑎𝛼∈𝐴, 𝑏𝛽∈𝐵, 𝑐𝛾∈𝐶𝑧=𝑝𝑞𝑟  

𝑏𝛽(𝑞) ∨ 𝑐𝛾(𝑟)

= ⋀  ⋀ 𝑎𝛼(𝑝) ∨

𝑧=𝑝𝑞𝑟𝑎𝛼∈𝐴, 𝑏𝛽∈𝐵,  𝑐𝛾∈𝐶 

𝑏𝛽(𝑞) ∨ 𝑐𝛾(𝑟)

= ⋀ (𝑎𝛼 ∗ 𝑏𝛽 ∗ 𝑐𝛾)(𝑧)

𝑎𝛼∈𝐴, 𝑏𝛽∈𝐵, 𝑐𝛾∈𝐶 

= ⋀ 𝑧𝜔(𝑧) = 𝜔.

𝑎𝛼∈𝐴, 𝑏𝛽∈𝐵, 𝑐𝛾∈𝐶 

 

 

This implies that 𝑧𝜔 ∈ 𝐴 ∗ 𝐵 ∗ 𝐶  and hence  𝐴 ∗ 𝐵 ∗ 𝐶 ⊇ 𝐴 ∗ 𝐵 ∗ 𝐶. □ 

 

Theorem 3.4. Let A be a fuzzy set in a ternary semigroup S. then the following conditions are 

equivalent: 

a) A is an anti fuzzy left (lateral, right) ideal of S. 

b) 𝐴 is a left (lateral, right)ideal of 𝑆. 

 

Proof. Let A is an anti fuzzy left ideal in S, and let 𝑥𝑝 ∈ 𝐴  and 𝑦𝑞 , 𝑧𝑟 ∈ 𝑆. Then  𝑦𝑞 ∗ 𝑧𝑟 ∗ 𝑥𝑝 =

(𝑦𝑧𝑥)𝑞∨𝑟∨𝑝 ∈ 𝑆 ∗ 𝑆 ∗ 𝐴. Since A is an anti fuzzy left ideal, we have  𝐴(𝑦𝑧𝑥) ≤ 𝐴(𝑥) ≤ 𝑝 ≤ 𝑞 ∨

𝑟 ∨ 𝑝.  Hence 𝑦𝑞 ∗ 𝑧𝑟 ∗ 𝑥𝑝 = (𝑦𝑧𝑥)𝑞∨𝑟∨𝑝 ∈ 𝐴.  This implies that 𝑆 ∗ 𝑆 ∗ 𝐴 ⊆ 𝐴 , thus 𝐴  is a left 

ideal of 𝑆. Conversely, assume that 𝐴  is a left ideal of 𝑆 . Let  𝑥, 𝑦, 𝑧 ∈ 𝑆,  if  𝐴(𝑧) = 1 , then 

𝐴(𝑥𝑦𝑧) ≤ 1 = 𝐴(𝑧). If 𝐴(𝑧) ≠1 then 𝑧𝐴(𝑧) ∈ 𝐴 and 𝑥𝐴(𝑧), 𝑦𝐴(𝑧) ∈ 𝑆. Since 𝐴 is a left ideal of 𝑆, 

we have  𝑥𝐴(𝑧) ∗ 𝑦𝐴(𝑧) ∗ 𝑧𝐴(𝑧) = (𝑥𝑦𝑧)𝐴(𝑧) ∈ 𝑆 ∗ 𝑆 ∗ 𝐴 ⊆ 𝐴 . This implies that  𝐴(𝑥𝑦𝑧) ≤ 𝐴(𝑧), 

and hence A is an anti fuzzy left ideal of S. By a similar argument, one can prove the other cases. 

□ 

 

Lemma 3.5. Let 𝐴 and 𝐵 be any anti fuzzy interior ideals of a ternary semigroup 𝑆.Then 

a) 𝐴 ∪ 𝐵 is also an anti fuzzy interior ideal of S ( provided 𝐴 ∪ 𝐵 ≠ ∅) . 

b) 𝐴 ∪ 𝐵 is also an interior ideal of  𝑆. 

 



 676                                                                    ESSAM. H. HAMOUDA 

Proof. a) Since 𝐴 and 𝐵 are anti fuzzy ternary subsemigroups of S, 𝐴 ∪ 𝐵 is an anti fuzzy ternary 

subsemigroup of S [13]. Let 𝑥, 𝑎, 𝑟, 𝑠, 𝑦 ∈ 𝑆  be arbitrary elements of S. Since 𝐴 and 𝐵 are anti 

fuzzy interior ideals of  𝑆, then 

(𝐴 ∪ 𝐵)(𝑥𝑠𝑎𝑟𝑦) = 𝐴(𝑥𝑠𝑎𝑟𝑦) ∨ 𝐵(𝑥𝑠𝑎𝑟𝑦) 

≥ 𝐴(𝑎) ∨  𝐵(𝑎) = (𝐴 ∪ 𝐵)(𝑎). 

Hence 𝐴 ∪ 𝐵 is an anti fuzzy interior ideal of 𝑆  . 

b) At first, it is an easy exercise to show that: 𝐴 is an anti fuzzy ternary subsemigroup of S if and 

only if  𝐴 is a ternary subsemigroup of  𝑆. From lemma 3.3, we have  𝐴 ∪ 𝐵 = 𝐴 ∪ 𝐵 and so it is 

a ternary subsemigroup of 𝑆. Let 𝑎𝛼 ∈ 𝐴 ∪ 𝐵 and 𝑥𝑝, 𝑥�́� , 𝑦�́� , 𝑦𝑞 ∈ 𝑆, then 

(𝑥�́�𝑎�́�𝑦)𝑝∨𝑟∨𝛼∨𝑠∨𝑞 = 𝑥𝑝 ∗ 𝑥�́� ∗ 𝑎𝛼 ∗ 𝑦𝑠́ ∗ 𝑦𝑞 ∈ 𝑆 ∗ 𝑆 ∗ 𝐴 ∪ 𝐵 ∗ 𝑆 ∗ 𝑆. 

Since A ∪ B is a fuzzy interior ideal of  S, then 

(𝐴 ∪ 𝐵)(𝑥�́�𝑎�́�𝑦) ≤ (𝐴 ∪ 𝐵)(𝑎) = 𝐴(𝑎) ∧ 𝐵(𝑎) ≤ 𝛼 ∧  𝛼 = 𝛼 

≤ 𝑝 ∨ 𝑟 ∨ 𝛼 ∨ 𝑠 ∨ 𝑞. 

This implies that 

𝑥𝑝 ∗ 𝑥�́� ∗ 𝑎𝛼 ∗ 𝑦𝑠́ ∗ 𝑦𝑞 = (𝑥�́�𝑎�́�𝑦)𝑝∨𝑟∨𝛼∨𝑠∨𝑞 ∈ 𝐴 ∪ 𝐵. 

Therefore,  A ∪ B is also an interior deal of  S. □ 

 

Theorem 3.6. Let A be a fuzzy set in a ternary semigroup S. Then 𝐴  is an interior ideal of 𝑆 if 

and only if  A is an anti fuzzy interior ideal of S. 

 

Proof. Let A is an anti fuzzy interior ideal of S, then 𝐴 is a ternary subsemigroup of 𝑆. Suppose 

that 𝑥𝑝, 𝑥�́� , 𝑦�́�, 𝑦𝑞 ∈ 𝑆 and 𝑧𝛼 ∈ 𝐴. Then 𝐴(𝑧) ≤ 𝛼, and 𝐴(𝑥�́�𝑧�́�𝑦) ≤ 𝐴(𝑧) ≤ 𝛼 ≤ 𝑝 ∨ 𝑟 ∨ 𝛼 ∨ 𝑠 ∨

𝑞.Hence 𝑆 ∗ 𝑆 ∗ 𝐴 ∗ 𝑆 ∗ 𝑆  ∋ (𝑥𝑝 ∗ 𝑥�́� ∗ 𝑎𝛼 ∗ 𝑦𝑠́ ∗ 𝑦𝑞) = (𝑥�́�𝑧�́�𝑦)𝑝∨𝑟∨𝛼∨𝑠∨𝑞 ∈ 𝐴. This implies that 

𝑆 ∗ 𝑆 ∗ 𝐴 ∗ 𝑆 ∗ 𝑆 ⊆ 𝐴, thus 𝐴 is an interior ideal of S. Conversely, suppose that 𝐴 is an interior 

ideal of 𝑆. For all , 𝑦, 𝑧 ∈ 𝑆 , the elements 𝑥𝐴(𝑥), 𝑦𝐴(𝑦), 𝑧𝐴(𝑧) belong to 𝐴 . Since 𝐴 is an interior 

ideal of  𝑆, we have  

𝑥𝐴(𝑥) ∗ 𝑦𝐴(𝑦) ∗ 𝑧𝐴(𝑧) = (𝑥𝑦𝑧)𝐴(𝑥)∨𝐴(𝑦)∨ 𝐴(𝑧)  ∈ 𝐴. 

Thus  𝐴(𝑥𝑦𝑧) ≤  𝐴(𝑥) ∨ 𝐴(𝑦) ∨ 𝐴(𝑧). Therefore  𝐴 is an anti fuzzy ternary subsemigroup in 𝑆. 

Let 𝑥, 𝑥,́ 𝑧, 𝑦,́ 𝑦 ∈ 𝑆,  if  𝐴(𝑧) ≠ 1,  then 𝑧𝐴(𝑧) ∈ 𝐴  and 𝑥𝐴(𝑧), �́�𝐴(𝑧), 𝑦𝐴(𝑧), �́�𝐴(𝑧) ∈ 𝑆.  Since 𝐴  is an 

interior ideal of 𝑆  , we have (𝑥�́�𝑧�́�𝑦)𝐴(𝑧) = (𝑥�́�𝑧�́�𝑦)𝐴(𝑧)∨𝐴(𝑧)∨𝐴(𝑧)∨𝐴(𝑧)∨𝐴(𝑧) = 𝑥𝐴(𝑧) ∗ 𝑥𝐴(𝑧)́ ∗
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𝑧𝐴(𝑧) ∗ 𝑦𝐴(𝑧)́ ∗ 𝑦𝐴(𝑧) ∈ 𝐴. This implies tha  𝐴(𝑥�́�𝑧�́�𝑦) ≤ 𝐴(𝑧), and hence A is an anti  fuzzy 

interior ideal of  S. □ 

 

    Let 𝑆 be a ternary semigroup. An element 𝑥 ∈ 𝑆 is called regular if there exists an element 

𝑎 ∈ 𝑆 such that 𝑥 = 𝑥𝑎𝑥. A ternary semigroup iscalled regular if all its elements are regular [3]. 

 

Theorem 3.8. Let 𝐴  be a fuzzy set in a regular ternary semigroup 𝑆 . Then the following 

conditions are equivalent: 

a) 𝐴 is an anti fuzzy ideal of 𝑆. 

b) 𝐴 is an interior ideal of 𝑆. 

 

Proof. Let  𝐴 be an anti fuzzy ideal of 𝑆. Then  𝐴 is an anti fuzzy ternary subsemigroup of 𝑆, and 

consequently  𝐴  is a ternary subsemigroup of  𝑆. Since any anti fuzzy ideal of 𝑆 is an anti fuzzy 

interior ideal of 𝑆[13], then theorem 3.6 implies that 𝐴 is an interior ideal of 𝑆. Assume that (b) 

holds. Let 𝑥 ∈ 𝑆,  then there exists 𝑎 ∈ 𝑆  such that 𝑥 = 𝑥𝑎𝑥 (since 𝑆  is regular). If 𝐴(𝑥) =

1, 𝐴(𝑥𝑦𝑧) ≤ 1 = 𝐴(𝑥). If 𝐴(𝑥) ≠ 1,  then 𝑥𝐴(𝑥) ∈ 𝐴  and 𝑦𝐴(𝑥), 𝑧𝐴(𝑥) ∈ 𝑆 . Since 𝐴  is an interior 

ideal of 𝑆, then 

(𝑥𝑦𝑧)𝐴(𝑥) = (𝑥𝑎𝑥𝑦𝑧)𝐴(𝑥) = 𝑥𝐴(𝑥) ∗ 𝑎𝐴(𝑥) ∗ 𝑥𝐴(𝑥) ∗ 𝑦𝐴(𝑥) ∗ 𝑧𝐴(𝑥) ∈ 𝐴. 

This implies that 𝐴(𝑥𝑦𝑧) ≤ 𝐴(𝑥), and hence 𝐴 is an anti fuzzy right ideal of 𝑆. In a similar 

argument we prove that 𝐴 is an anti fuzzy left ideal of 𝑆. It remains to show that 𝐴 is an anti 

fuzzy lateral ideal of 𝑆. For this purpose, assume that  𝑦, 𝑎 ∈ 𝑆 such that  𝑦 = 𝑦𝑎𝑦 (since 𝑆 is 

regular). Since 𝐴(𝑦) = 𝐴(𝑦𝑎𝑦) ≤ 𝐴(𝑦) ∨ 𝐴(𝑎) ∨  𝐴(𝑦) , 𝐴(𝑎) ≤ 𝐴(𝑦) . If   𝐴(𝑦) ≠ 1  , then  

𝑦𝐴(𝑦), 𝑎𝐴(𝑦) ∈ 𝐴  and 𝑥𝐴(𝑦), 𝑧𝐴(𝑦) ∈ 𝑆 . Since 𝐴  is an interior ideal of 𝑆,  we have (𝑥𝑦𝑧)𝐴(𝑦) =

(𝑥𝑦𝑎𝑦𝑧)𝐴(𝑦) = 𝑥𝐴(𝑦) ∗ 𝑦𝐴(𝑦) ∗ 𝑎𝐴(𝑦) ∗ 𝑦𝐴(𝑦) ∗ 𝑧𝐴(𝑦) ∈ 𝐴.  This implies that 𝐴(𝑥𝑦𝑧) ≤ 𝐴(𝑦),  and 

hence 𝐴 is an anti fuzzy lateral ideal of 𝑆.This completes that 𝐴 is an anti fuzzy ideal of  .□ 

 

     A ternary semigroup 𝑆 is called intra-regular if for each element 𝑎 ∈ 𝑆, there exist elements 

𝑥, 𝑦 ∈ 𝑆 such that 𝑎 = 𝑥𝑎3𝑦 [3].For example, let  𝑆 = {𝑖, 0, −𝑖}. Then 𝑆  is a ternary semigroup 

under the multiplication over complex numbers. In 𝑆, we have(−𝑖)(𝑖3)(−𝑖) = 𝑖, (𝑖)(03)(−𝑖) =

0 and (𝑖)(−𝑖)3(𝑖) = −𝑖. Therefore, 𝑆 = {𝑖, 0, −𝑖} is intra-regular. 
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Theorem 3.9.  A ternary semigroup 𝑆 is intra-regular if and only if  𝑆 is intra-regular. 

 

Proof.(⇒)Let 𝑎𝛼 be an element in 𝑆. Since 𝑆 is intra-regular and 𝑎 ∈ 𝑆, there exist 𝑥, 𝑦 ∈ 𝑆 such 

that  𝑎 = 𝑥𝑎3𝑦.Thus 𝑥𝛼  , 𝑦𝛼 ∈ 𝑆 and 𝑥𝛼 ∗ 𝑎𝛼 ∗ 𝑎𝛼 ∗ 𝑎𝛼 ∗ 𝑦𝛼 = (𝑥𝑎3𝑦)𝛼 = 𝑎𝛼. Hence 𝑆 is intra-

regular. 

(⇐) Assume 𝑆 is intra-regular and 𝑎 ∈ 𝑆. Then for any 𝛼 ∈ [0,1), there exist 𝑥𝛽 , 𝑦𝛾 ∈ 𝑆 such that 

𝑎𝛼 = 𝑥𝛽 ∗ 𝑎𝛼 ∗ 𝑎𝛼 ∗ 𝑎𝛼 ∗ 𝑦𝛾 = (𝑥𝑎3𝑦)𝛽∨𝛼∨𝛾. This implies that 𝑎 = 𝑥𝑎3𝑦 for 𝑥, 𝑦 ∈ 𝑆, hence  𝑆 

is intra-regular. 

 

    An anti fuzzy ternary subsemigroup 𝐴 of a ternary semigroup S is called an anti fuzzy bi-ideal 

of S if 𝐴(𝑥𝑎𝑦𝑏𝑧) ≤ 𝐴(𝑥) ∨ 𝐴(𝑦) ∨ 𝐴(𝑧) for all 𝑥; 𝑎; 𝑦; 𝑏; 𝑦 ∈ 𝑆[10]. 

 

Theorem 3.10 An anti fuzzy ternary subsemigroup B of a ternary semigroup S is an anti fuzzy bi-

ideal of S if and only if  (𝐵 ∗ 𝛩 ∗ 𝐵 ∗ 𝛩 ∗ 𝐵) ⊇ 𝐵. 

    Where 𝛩 is the fuzzy subset of  𝑆 mapping every element of  𝑆 on 0. 

 

Proof. Let 𝐵 be an anti fuzzy bi-ideal of a ternary semigroup S and 𝑥 ∈ 𝑆. If 𝑥 ≠ 𝑎𝑏𝑐  for any 

𝑎, 𝑏, 𝑐 ∈ 𝑆 , then (𝐵 ∗ 𝛩 ∗ 𝐵 ∗ 𝛩 ∗ 𝐵)(𝑥) = 1 ≥ 𝐵(𝑥) . If such exists, let  𝑥 ≠ 𝑎𝑏𝑐   for some  

𝑎, 𝑏, 𝑐 ∈ 𝑆 , then  

(𝐵 ∗ 𝛩 ∗ 𝐵 ∗ 𝛩 ∗ 𝐵)(𝑥)

= ⋀ {(𝐵 ∗ 𝛩 ∗ 𝐵)(𝑎) ∨ 𝛩(𝑏) ∨ 𝐵(𝑐)}

𝑥=𝑎𝑏𝑐

= ⋀ {{ ⋀ 𝐵(𝑝)

𝑎=𝑝𝑞𝑟

∨ 𝛩(𝑞) ∨ 𝐵(𝑟)}𝛩(𝑏) ∨ 𝐵(𝑐)}

𝑥=𝑎𝑏𝑐

 

= ⋀ {{ ⋀ 𝐵(𝑝)

𝑎=𝑝𝑞𝑟

∨ 𝐵(𝑟)} ∨ 𝐵(𝑐)} ≥ ⋀ {𝐵(𝑝) ∨ 𝐵(𝑟)} ∨ 𝐵(𝑐)}

𝑥=𝑝𝑞𝑟𝑏𝑐𝑥=𝑎𝑏𝑐

≥ ⋀ {𝐵(𝑝𝑞𝑟𝑏𝑐)} = ⋀ {𝐵(𝑥)} = 𝐵(𝑥)

𝑥=𝑝𝑞𝑟𝑏𝑐𝑥=𝑝𝑞𝑟𝑏𝑐

. 

This implies that (𝐵 ∗ 𝛩 ∗ 𝐵 ∗ 𝛩 ∗ 𝐵) ⊇ 𝐵. 
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Conversely, let 𝐵 be an anti fuzzy ternary subsemigroup of S such that (𝐵 ∗ 𝛩 ∗ 𝐵 ∗ 𝛩 ∗ 𝐵) ⊇ 𝐵. 

Let 𝑢, 𝑣, 𝑤, 𝑥, 𝑦 ∈  𝑆 . Then  

𝐵(𝑢𝑣𝑤𝑥𝑦) ≤ (𝐵 ∗ 𝛩 ∗ 𝐵 ∗ 𝛩 ∗ 𝐵)(𝑢𝑣𝑤𝑥𝑦)

= ⋀ {(𝐵 ∗ 𝛩 ∗ 𝐵)(𝑎) ∨ 𝛩(𝑏) ∨ 𝐵(𝑐)}

𝑢𝑣𝑤𝑥𝑦=𝑎𝑏𝑐

≤ (𝐵 ∗ 𝛩 ∗ 𝐵)(𝑢𝑣𝑤) ∨ 𝛩(𝑥) ∨ 𝐵(𝑦) = ⋀ {𝐵(𝑝) ∨ 𝛩(𝑞) ∨ 𝐵(𝑟)} ∨ 𝐵(𝑦)

𝑢𝑣𝑤=𝑝𝑞𝑟

≤ 𝐵(𝑢) ∨ 𝛩(𝑣) ∨ 𝐵(𝑤) ∨ 𝐵(𝑦) = 𝐵(𝑢) ∨ 𝐵(𝑤) ∨ 𝐵(𝑦). 

 Hence  𝐵 is an anti fuzzy bi-ideal of 𝑆. □ 

 

Theorem 3.11.(see [13, Theorem 3.8]). An anti fuzzy ternary subsemigroup𝑓 of a semigroup 𝑆 is 

an anti fuzzy bi-ideal of  𝑆 if and only if the anti level set of  𝑓, 𝑓𝑡 is a bi-ideal of  𝑆 for 𝑡 ∈ 𝐼𝑚 𝑓. 

 

Theorem 3.112. Let A  be a fuzzy set in a ternary semigroup S. Then A is an anti fuzzy bi- ideal 

of S if and only if 𝐴 is a bi- ideal of  𝑆. 

 

Proof. Let A be an anti fuzzy bi- ideal of S, then by theorem 3.10,  𝐴 ∗ 𝛩 ∗ 𝐴 ∗ 𝛩 ∗ 𝐴 ⊇ 𝐴.           

From lemma 3.3, we have  𝐴 ∗ 𝛩 ∗ 𝐴 ∗ 𝛩 ∗ 𝐴 ⊆ 𝐴 ∗ 𝛩 ∗ 𝐴 ∗ 𝛩 ∗ 𝐴 ⊆ 𝐴.  Since 𝐴  is a ternary 

subsemigroup of 𝑆, we conclude that 𝐴 is a bi-ideal of 𝑆. Conversely, we assume that  𝐴 is       a 

bi-ideal of 𝑆. In order to prove that A be an anti fuzzy bi- ideal of S , by theorem 3.11, it is 

sufficient to show that the anti level set of  𝐴 ,  𝐴𝑡 = {𝑥 ∈ 𝑆: 𝐴(𝑥) ≤ 𝑡} , is bi-ideal. So, for 

𝑥, 𝑦, 𝑧 ∈ 𝐴𝑡, it is clear that 𝑥𝑡 ,  𝑦𝑡, 𝑧𝑡 ∈ 𝐴. Since 𝐴 is a bi-ideal of  𝑆,  then 𝑤𝑡 = (𝑥𝑎𝑦𝑏𝑧)𝑡 = 𝑥𝑡 ∗

𝑎𝑡 ∗ 𝑦𝑡 ∗ 𝑏𝑡 ∗ 𝑧𝑡 ∈ 𝐴 ∗ 𝛩 ∗ 𝐴 ∗ 𝛩 ∗ 𝐴 ⊆ 𝐴. Hence 𝐴(𝑥𝑎𝑦𝑏𝑧) ≤ 𝑡 and consequently (𝑥𝑎𝑦𝑏𝑧) ∈ 𝐴𝑡 

for 𝑎, 𝑏 ∈ 𝑆. this means that  𝐴𝑡𝑆𝐴𝑡𝑆𝐴𝑡 ⊆ 𝐴𝑡 , that is, 𝐴𝑡 is a bi-ideal of  𝑆. Now, and by  the fact 

that A is an anti fuzzy ternary semigroup of S , it follows  that A is an anti fuzzy bi- ideal of S. □ 
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