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Abstract: In this paper, we investigate the Hyers -Ulam -Rassias stability of cubic type functional equation f(2x±y) 
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1. INTRODUCTION AND PRELIMINARIES 

The first problem on the stability of group homomorphism was given by S. M. Ulam [22] 

in 1940. He discussed the number of unsolved problems before the Mathematics club of the 

University of Wiscosin. One of the interesting problem related to homomorphism was as follows: 

Let  1, *G  be a group and let  2 , ,G d be a metric group with the metric ‘d’. Given  ˃ 

0, does there exists a δ ˃ 0 such that if a mapping h: 1 2G G  satisfies the following inequality 

d(h(x*y),h(x) h(y))  ˂ δ, for all x, y  1G  , then there is a homomorphism H: 1 2G G  with   

d(h(x), H(x))˂ɛ,  for all x 1G ?  If the answer is affirmative, we would say that equations of 

homomorphism H(x y) = H(x) H(y) is stable.  

In 1941, D. H. Hyers [2] gave the first affirmative answer of the Ulam's problem for 

additive mapping f(x+y) = f(x)+f(y) on Banach space. A generalized version of Hyers [2] was 

given by Th. M. Rassias [24]. In 1978, he allows Cauchy difference to be unbounded .The 

generalizations given by Th. M. Rassias [24] is called the Hyers-Ulam-Rassias stability. In 1994, 
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P. Gavruta   [16] provided a further generalization of Th. M. Rassias [24] theorem in which he 

replaced the bound ɛ(
p p

x y ) by a general function ( , )x y  for the existence of unique linear 

mapping. The Hyers-Ulam-Rassias stability of various functional equations have been 

extensively introduced by a number of Mathematicians. 

 In 1975, the orthogonally additive functional equation   f(x+y) = f(x)+f(y) , x ⟘  y, Where   

⟘ is the orthogonality symbol was investigated by S. Gudder and D. Strawther [23]. Later on,         

Ger and Sikorska [21] established the orthogonal stability of above additive functional equations 

in the sense of J. Ratz [8] for the mapping f : X Y , where X is orthogonal  linear space and Y 

is a Banach space. This result was also generalized by M. S. Moslehian [13] in the framework of 

Banach modules. The orthogonal quadratic functional equations  f(x + y) = 2f(x) + 2f(y) , where   

x ⟘ y  means the Hilbert space . Orthogonality was first investigated by F. Vajzovice [5] .Later 

on, the result of  Vajzovice [5] was generalized by F. Drljevice [3], M. Fochi [11] and G. Szabo 

[7]. For further detailed study   of stability of orthogonal functional equations one may also refer 

to [4, 9, 12, 14, 15, 17, 19]. The functional equations  

                                          D(f (x, y)) f (2x y) 2f (x y) 12f (x)                              (1.0) 

is called Cubic functional equation. In 2008, W. Townanlong and P. Nakmahalasiant [25] 

established the general solution and proved the Hyers -Ulam -Rassias stability of the above 

functional equation. In this paper, We investigate the orthogonal stability of Cubic funtional 

equations (1.0). There are several orthogonality concepts on a arbitrary real normed space given 

by many famous mathematicians such as G. Birkhoff [6], R. C. James [18], C. R. Diminni [1], G. 

Szabo [7], J. Ratz [8]. Further, Ashish et. al. [10, 20] also studied the orthogonality of cubic and 

quadratic functional equations. In 1985 J. Ratz [8] presented the following definitions of 

orthogonality: 

Definition 1.1.  Suppose X is a real vector space with dim≥2 and ⟘ is a binary relation on X 

with the following properties: 

(O1) totality of ⟘ for zero:  x ⟘0, 0⟘ x  for all xX  .   

(O2) independence: if   x, yX - 0 , x⟘y , then x, y are linearly independent. 

(O3) homogeneity if , x, y ∊X , x⟘y, then 𝛼𝑥⟘𝛽y  for  𝛼, 𝛽  𝑋 

(O4) the Thalesian property: if P is a 2- dimensional subspace of X and 𝜆 ∊ 𝑅,  then there exists 

𝑦0 ∊  𝑃 such that   x⟘ 𝑦0and  x +𝑦0 ⟘ λx -𝑦0 .  The pair (X , ⟘)  is called an orthogonality space. 
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By an orthogonality space we mean an orthogonality space equipped with a norm. The relation ⟘ 

is called symmetric if x⟘y  and y⟘x  for all x,  y X  .  

Definition 1.2. Let X be an orthogonality normed space and Y be a real Banach space. A 

mapping f :  X →Y  is said to orthogonally quadratic if it satisfies the so-called orthogonally 

quadratic functional equation (1.0) for all x, y ∊X  with x⟘y.  

 

2. MAIN RESULTS 

Throughout, this section, let (X,  ) denotes an orthogonality normal space with norm 

X Y
. and(Y, . )   is a Banach space. 

Theorem 2.1 Let ɛ and p (p < 3) be non-negative real numbers. Suppose that f : X   Y is a 

cubic mapping satisfying the inequality 

   D f x, y
Y

    p p

X Xx y                                                2.1 

for all x, y  X with x   y. then there exist a unique orthogonally cubic mapping   J : X   Y 

such that 

   
 

p

Y X3 p
f x J x  x

2 2 2


 


                                                              2.2 

for all x  X     .                          

Proof. To prove this theorem, we have to solve the following steps : 

a)           n 3nf 2 x / 2  is a Cauchy sequence for every fixed x  X such that x 0  

b) There exist a cubic mapping J: XY defined by   n 3nJ(x) Lim  f 2 x / 2
n




 

c) The mapping J: XY satisfies    
p

X
f x J x  x

Y p32 2 2


 

  
 

 for  p <3 

d) The mapping J : X   Y is unique. 

 To prove (a) Let us take y = 0 in (2.1), we have  

        p p

Y X X2f 2x 4f x 12f x   x y      

      p

X
2f 2x 16f x   x

Y
    
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 

   p

Y X3 3

f 2x
f x   x

2 2.2


                                                                2.3 

 For all x, y  X with x   0. Now replacing x with 2x and diving by 23 in (2.3) and then 

adding the resulting equation with (2.3) we get 

 
     

2

p p

X X6 4 7

f 2 x
f x   x 2x

2 2 2

 
    

 
 

2

p p

X6 4 3

f 2 x
f x   1 .2 x

2 2 2

  
   

 
 

 
 

2

p p

X6 3 3

f 2 x
f x   1 .2 x

2 2.2 2

  
   

 
                                      2.4 

 By using induction on n, we get 

 
 

 
n pkn 1

p

X3n 3 3kk 0

f 2 x 2
f x      x

2 2.2 2






                                                 2.5 

For all x, y   X with x   0 and n   1. To show that   n 3nf 2 x / 2  is a Cauchy 

sequence, replacing x with 
m2 x  and dividing by 

3m2  in equation (2.5), we get for n, m > 0 

   n m m pkn 1
m p

X3n 3m 3m 3 3m 3kk 0

f 2 x f 2 x 2
2 x

2 2 2.2 .2 2




 


    

 
     

 

n m m p k mn 1
p

X3n 3m 3m 3 3 k mk 0

f 2 x f 2 x 2
x

2 2 2.2 2

 

 


    

 
 

n m pkn 1
m p

X3m 3m 3 3m pm 3kk 0

f 2 x1 2
f 2 x x

2 2 2.2 2 2




 


                  2.6 

As we obtain for p < 3 and m   than equation (2.6) tends to zero for all x  X. 

Thus the sequence   n 3nf 2 x / 2  is convergent in Y. Since Y is complete normed liner space 

where the sequence   n 3nf 2 x / 2  is a cauchy sequence for every x  X then there exists a 

othogonality cubic  mapping J : X   Y such that 

     n 3n

n
J x lim f 2 x / 2


  for all x  X                                                         2.7 
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(b) Now, we claim that the mapping J : X   Y is cubic  that is it satisfies the equation (1.0). 

Substituting  2𝑛𝑥 and 2𝑛y at the place of x and y in (2.1) respectively and dividing by 

23𝑛. We have 

 
  

 
n n

n p n p

X X3n 3n

D f 2 x,2 y
2 x 2 y

2 2


                                        2.8 

 Taking n   in (2.8), we find 

       yJ 2x y 2J x y 12J x 0      

      J 2x y  2J x y 12J x     

 for all x, y  X with x   y. Which proves that the mapping J : X  Y is orthogonally 

cubic  mapping. 

(c)       By taking n  in the equation (2.5) we obtain the following 

 
 

p

Y X2 p
f (x) J(x) x

2 2 2


 


 for all x  X. 

(d) Now, we shall prove the uniqeness of orthogonally cubic mapping   J : X   Y. We 

consider another orthogonally cubic mapping J': X   y satisfying the equation (1.0). 

 Hence,  n n n ' n

Y 3n Y Y

1
J(x) J (x) J(2 x) f (2 x) f (2 x) J (2 x)

2
      

   
 

p

Y X3 p n(3 p)
J(x) J (x) x

2 2 2 2 


 


  0 as n   for all x X. 

Which proves that J(x) = J' (x) that means the orthogonally cubic mapping J is unique. 

This complete the proof of theorem. 

Theorem 2.2 Let    and p (p < 3) be non-negative real numbers. Suppose that f : X   Y is a 

cubic mapping satisfying the inequality (2.2) for all x, y  x with x  y. Then there exist a 

unique orthogonally cubic mapping J : X   Y such that 

    Yf x J x    
 

p

Xp 3
x

2 2 2




 for all x  X.            2.9 

Proof. Replacing x with x/2 and multiplying 23in (2.3), we have 

 
3 p

Y X

x x
f (x) 2 f

2 2 2

 
  

 
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3 p

Y Yp

x x
f (x) 2 f

2 2.2 2

 
  

 
                                                                      2.10 

 for all x  X with x   0. Again replacing x with x/2 and multiplying by 23 in (2.10) 

and then adding the resulting equation with (2.10), we have 

 
3

6 p

Y X2 p p

x 2
f (x) 2 f 1 x

2 2.2 2

  
    

   
                                                  2.11 

By using induction on n, we find 

3kn 1
3n p

Y Xn p pk
k 0

x 2
f (x) 2 f x

2 2.2 2





 
   

 
                                                     2.12 

for all x  X with x   0 and n   1 . Now to show that convergence of   n 3nf 2 x / 2

replacing x with mx 2  and multiplying by 23𝑚 in (2.12) we obtain for n, m > 0. 

3m 3m 3n

Ym n m

x x
2 f 2 f

2 2





   
   

   
   

3k
p

Xm p 3 p k 1
k 0

2
x

2.2 2



 



 

                           

2.13 

For p > 3 the right hand side of (2.13) tends to zero as m   0 for all x∊X. Thus the 

sequence   3n n2 f x 2  is convergent in Y. Since Y is complete normed space, hence the 

sequence   3n n2 f x 2  is a Cauchy sequence for every x  X. Then there exist a orthogonal 

cubic mapping J : X   Y such that 

    3n n

x
J x Lim 2 f x 2


  for all x X                                                                  2.14 

By making n     in the equation (2.13) and using (2.14), we obtain the required result. 

Further, to prove the orthogonal cubic mapping is unique the proof is similar to that of 

Theorem 2.1. 
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