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Abstract: The paper deals with the cost-benefit and reliability analysis of a system model consisting of three non-

identical units- A, B and C. The system functions satisfactorily if at least one unit is operative but if at least two 

units are good then they work in parallel. The priority in operation is being given to unit-A and unit-B over unit-C. 

So that initially unit A and B work in parallel and unit-C is kept into cold standby. A single repairman is always 

available to repair a failed unit and priority in repair is being given to unit-A and B over unit-C. However, the repair 

discipline is FCFS for unit-A and unit-B. The failure and repair times of each unit are correlated having their joint 

distribution as Bivariate Exponentials. By using regenerative point technique various important measures of system 

effectiveness have been obtained. 

Keywords: Transition probabilities, Mean sojourn time, MTSF, Availability, Expected busy period of repairman 

and Net expected profit. 
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1. INTRODUCTION 

  The study of complex reparable system models is of great interest for reliability engineers and 

industry managers due to their wide applicability. Gupta et al. [2] analysed a complex system with two 

physical conditions of repairman. The system consists of two sub-systems A and B arranged in series 

configuration. Subsystem A comprises two identical units in passive redundancy. The repair time 

distributions of the units are taken Inverse-Gaussian, Gupta et al. [3] further analysed a complex system 

model of three non-identical units namely A, B and C. The units are arranged in such a way that the 
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system failure occurs if either unit-A or both the units B and C fail totally. The joint distribution of life 

times of units B and C working in parallel is taken as Bivariate Exponential. 

  The purpose of present paper is to analyse a three unit complex system model using the concept 

of correlation between the failure and repair times of the units. The three non-identical units are named as 

unit-A, B and C and for the successful operation of the system at least one of the units is needed to be 

operative. Initially, unit A and B work in parallel configuration and unit-C is kept into cold standby. 

Moreso, if any two-units are in good condition, they work in parallel configuration and the priority in 

operation is given to units A and B over the unit-C. A single repairman is always available to repair a 

failed unit and joint distributions of failure and repair times of units-A, B and C are taken Bivariate 

Exponential with different parameters. Using regenerative point technique, the following important 

measures of system effectiveness have been obtained: 

i. Transition probabilities and mean sojourn times in various states. 

ii. Reliability and mean time to system failure. 

iii. Pointwise and steady-state availabilities of the system as well as expected up time of the system 

during time interval (0, t). 

iv. The probability that the repairman will be busy at epoch t and in steady-state. 

v. Expected busy period of repairman during time interval. 

vi. Net expected profit earned by the system during time interval (0, t) and in steady-state. 

 

 2.  ASSUMPTIONS AND SYSTEM DESCRIPTION  

i The system comprises of three non-identical units which are named as unit-A, B and C. Initially 

unit-A and B work in parallel configuration and unit-C is kept as cold standby.  

ii Each unit has two modes—good and failed.  

iii If either of the units (A or B) working in parallel configuration fails, the standby unit-C takes its 

place instantaneously with the help of a perfect and instantaneous  switching device and the failed 

unit goes into repair. 

iv A single repairman is always available with the system and the priority in repair is being given to 

unit-A and unit-B over the unit-C. However, the repair discipline is FCFS for unit-A and unit-B. 

v        The priority in operation is being given to unit-A and unit-B over the unit-C i.e. if unit-A/ unit-B is 

repaired while the unit B/unit-A and unit-C are operative in parallel then unit-A and unit-B 

become operative in parallel and the unit-C goes into cold standby. All this process is automatic 

and instantaneous. 
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vi      Whenever the unit-A or unit-B fails during the repair of unit-C, then the later failed unit is taken up 

for repair discontinuing the repair of unit-C. The re-started  repair of unit-C is of pre-emptive 

repeat type i.e. the time already spent in the repair of unit-C goes to waste. 

vii The failure and repair times of each unit are assumed to be correlated random variables having 

their joint distribution as Bivariate Exponential having the density function of the type 

 
j

x y

2
j 0

( rxy)
f (x, y) (1 r)e ; x, y, , 0; 0 r 1

( j!)


 




         

viii Each repaired unit works as good as new. 
 

 
 

 3. NOTATIONS AND STATES OF THE SYSTEM 

  For defining the states of the system we assume the following notations— 

  0 0 0A , B , C         :     Unit A, B and C are good and operative. 

        sC     : Unit C is in cold standby. 

  w w wA , B , C   : Unit A, B and C are failed and waiting for repair. 

  r r rA , B , C         : Unit A, B and C are failed and under repair. 

  Considering the above symbols for three units and taking in view the assumptions stated earlier, 

the possible states of the system model along with transition times is shown in Fig. 1. In the figure the 

states S0 to S7 are the up states whereas the states S8 and S9 are failed states. We observe that the epochs 

of entrance into the states S3 and S4 from S1; S5 and S6 from S2; S8 from S3, S4 and S9 from S6, S5 are non-

regenerative. Further, we define the following notations— 

              E    : Set of regenerative states  ≡ {S0 to S7}. 

                  : Set of non-regenerative states ≡ {S3 to S6, S8, S9}. 

  X (i 1, 2, 3)    : Random variables representing the failure time of unit A,  

         B and C for i = 1, 2, 3. 

  Y (i 1, 2, 3)         :   Random variables representing the repair time of unit A,  

         B and C for i = 1, 2, 3. 

                    ij ij|xp ,p             :      Direct steady state unconditional probability of transition    from state Si  

to Sj and conditional probability of transition from state Si to Sj for given 

that the unit under repair in state Si has failed after working for a duration 

of time x. 
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  if (x, y)    : Joint probability density function of (Xi, Yi); i = 1, 2, 3 

          = i i

2
x y i i i

i i i 2
j 0

( r xy)
(1 r )e

( j!)


 



 
     

  ig ( )     : Marginal p.d.f. of Xi = i i(1 r )x
i i(1 r )e

 
   

  ih (y|x)    : Conditional p.d.f. of Yi given Xi = x  

          = i i i

j
y r x i i i

i 2
j 0

( r xy)
e

( j!)


  



 
   

  iH (y|x)    : Conditional c.d.f. of Yi given Xi = x  
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4. TRANSITION PROBABILITIES 

 (a)  First we obtain the direct conditional and unconditional steady-state transition probabilities as 

follows: 

   01 02 1 1 2 2

a b
p ; p ; where a (1 r ), b (1 r )

a b a b
       

 
  

   
'r x(1 )' '11 1

10|x 1 1 1 1p e ; where /( b c)
 

       , c = λ3 (1-r3) 

   
'

2 2 2r x(1 )' '
20|x 2 2 2 2p e ; where /( a c)

 
        

   
''

1 1 1r x(1 )'' ''
47|x 1 1 1 1p e ; where /( b)

 
       

   
''

2 2 2r x(1 )'' ''
67|x 2 2 2 2p e ; where /( a)

 
       

   
'

3 3 3r x(1 )' '
70|x 3 3 3 3p e ; where /( a b)

 
        

   
'

3 3 3r (1 )x'
74|x 3

a
p 1 e

a b

  
    

 

   
'

3 3 3r (1 )x'
76|x 3

b
p 1 e

a b

  
    

                 (4.1-4.9) 

(b)  Now the indirect conditional steady-state transition probabilities via one or more non-

regenerative states are given by  

   

''' '
1 1 1 1 1 1(3,8) r x(1 ) r x(1 )''' '

1 116|x

'''
1 1 1

c
p 1 e 1 e

b c

where /( c)

    
    

  

    
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                                             '''
2 2 2where /( c)      
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2 2 2 2 2 2(6,9) r x(1 ) r x(1 )'' '
2 224|x

a
p 1 e 1 e

a c

    
    

  
 

   
''' '
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264|x
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   If can be easily verified that, 

 

01 02
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p p 1
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    
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



 





                             (4.20 4.25)   

 (c) From the conditional steady-state transition probabilities, the unconditional steady-state transition 

probabilities can be obtained by using the result— 

    ij ij|xp p g(x)dx    

Thus 

   ' '
10 10|x 1 1 1 1 1p p g (x)dx (1 r ) /(1 r )         

Similarly,   
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 
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                                 (4.26 - 4.42) 

Thus we observe 
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   
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5.  MEAN SOJOURN TIMES 

 Let Ti be the sojourn time in state Si, then mean sojourn time in state Si is given by   

   i iP(U t)dt    

Using it, the mean sojourn times in various states are as follows: 
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   1 1 2 2(1 r )t (1 r )t
0

e e dt 1/(a b)
   

                      (5.1) 

Similarly, 
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So that 
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So that 
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6. ANALYSIS OF CHARACTERISTICS 

 

(a) Reliability of the system and MTSF 

            Let Ri (t) be the probability that the system does not enter into any of the failed state S8 or S9 

during time interval (0, t) when system initially starts from up state iS E . To obtain it we assume these 

failed states as absorbing. Now by using the additive law of probability we have the following set of 

integral equations for Ri (t); i = 0, 1, 2, 4, 6, 7. 

   0 0 01 1 02 2R (t) Z (t) q (t) R (t) q (t) R (t)      

(3) (4)
1 1 10 0 2 712 17R (t)  Z (t) q (t) R (t) q (t) R (t) q (t) R (t)          

(5) (6)
2 2 20 0 1 721 27R (t)  Z (t) q (t) R (t) q (t) R (t) q (t) R (t)          

4 4 47 7R (t)  Z (t) q (t) R (t)                    

6 6 67 7R (t)  Z (t) q (t) R (t)                         

            7 7 70 0 74 4 76 6R (t)  Z (t) q (t) R (t) q (t) R (t) q (t) R (t)                            (6.1-6.6) 

where 

  

(a b)t
0

(b c)t
1 1 1

(a c)t
2 2 2

bt
4 1 1

at
6 2 2

(a b)t
7 3 3

Z (t) e

Z (t) e H (t |x)g (x)dx

Z (t) e H (t |x)g (x)dx

Z (t) e H (t |x)g (x)dx

Z (t) e H (t |x)g (x)dx

Z (t) e H (t |x)g (x)dx

 

 

 





 






















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  Taking Laplace Transforms of equations (6.1-6.6) we get simple algebraic equations in 

*
iR (s); i 0,1,2,4,6,7.  Upon solving these algebraic equations for *

0R (s) , one gets 

  * 1
0

1

N (s)
R (s)

D (s)
                          (6.7) 

where 

  

(3)* (5)* (5)* (3)** * * * * * *
1 0 01 02 1 02 01 212 21 21 12

(3)* (6)** * * * * * * * * *
47 74 67 76 74 4 76 6 7 01 12 27

(4)* (5)* (4)* (6)**
0217 21 17 27

N (s) [(1 q q )Z (q q q )Z (q q q )Z ]

(1 q q q q ) (q Z q Z Z )[q (q q

q ) q (q q q )]

     

     

  

 

and 

 

(3)* (5)* (5)* (3)** * * * * * * * * *
1 01 02 10 02 01 20 47 74 67 7612 21 21 12

(3)* (6)* (4)* (5)* (4)* (6)** * *
70 01 0212 27 17 21 17 27

D (s) [1 q q (q q q )q (q q q )q ](1 q q q q )

q [q (q q q ) q (q q q )]

       

   
 

For brevity, we have omitted the argument‘s’ from * * *
ij i iq (s), Z (s) and R (s) . Taking the inverse Laplace 

Transform of (6.7), we can get the reliability of the system when initially system starts from S0. 

  The mean time to system failure (MTSF) can be obtained using the well known formula 

  * 1
0 0 0

s 0 1

N (0)
E(T ) R (t)dt lim R (s)

D (0)
                       (6.8) 

where 

  

(3) (5) (5) (3)
1 0 01 02 1 02 01 212 21 21 12

(3) (6)
47 74 67 76 74 4 76 6 7 01 12 27

(4) (5) (4) (6)
0217 21 17 27

N (0) [(1 p p ) (p p p ) (p p p ) ]

(1 p p p p ) (p p )[p (p p

p ) p (p p p )]

        

       

  

 

and  

(3) (5) (5) (3)
1 01 02 10 02 01 20 47 74 67 7612 21 21 12

(3) (6) (4) (5) (4) (6)
70 01 0212 27 17 21 17 27

D (0) [1 p p (p p p )p (p p p )p ] (1 p p p p )

p [p (p p p ) p (p p p )]

       

   
 

(b) Availability Analysis 

          Let us define iA (t)  as the probabilities that the system is up (operative) at epoch t when initially 

the system starts from state iS E . By using simple probabilistic arguments in renewal theoretic approach 

as in case of reliability analysis, one can obtain the value of 0A (t)  in terms of its Laplace transform i.e. 

*
0A (s) . 

  The steady-state availability of the system is given by 

   
*

0 0 0 2 2
t s 0

A lim A (t) lim sA (s) N / D
 

                       (6.9) 



704                                            GUPTA, CHAUDHARY AND JAISWAL 

where 

  2 0 0 1 1 2 2 4 4 6 6 7 7N C C W C W C C C           

and 

  2 0 0 1 1 2 2 4 1 6 2 7 7D C C n C n C n C n C         

Also, 

  1 2
1 1 2 2

1 1
n , n

(1 r ) (1 r )
 
   

 

  
'''
1 1

1 4 1'''
1 1

1 (1 r )
W 1

c 1 r

  
     

   

 

  
'''
2 2

2 6 2'''
2 2

1 (1 r )
W 1

c 1 r

  
     

   

 

  

(3) (5) (9) (8) (8)
0 67 76 47 76 74 67 4712 21 64 46 46

(5) (9) (8) (8)
1 01 02 67 76 47 76 74 67 4721 64 46 46

C (1 p p ){(1 p p ) p (p p p ) p (p p p )}

C (p p p ){(1 p p ) p (p p p ) p (p p p )}

      

      
 

             
(3) (9) (8) (8)

2 02 01 67 76 47 76 74 67 4712 64 46 46C (p p p ){(1 p p ) p (p p p ) p (p p p )}        

             

(3) (6) (9)
4 01 02 67 76 24 76 7412 27 64

(5) (4) (9) (4)
02 02 16 76 74 16 6721 17 64 17

C (p p p ){(1 p p )p p (p p p )}

(p p p ){(p p p )p p (p p p )}

    

    
 

  

(5) (4) (8)
6 02 01 47 74 16 74 7621 17 46

(3) (6) (8) (6)
01 02 24 74 76 24 4712 27 46 27

(8) (9) (3) (5)
7 01 0246 64 12 21

(3,8) (4,8) (5,9) (6,9)
16 2416 16 24 24

C (p p p ){(1 p p )p p (p p p )}

(p p p ){(p p p )p p (p p p )}

C (1 p p )(p p p p )

p (p p ), p (p p )

    

    

  

   

 

 

(c)  Busy Period Analysis of Repairman 

Let iB (t)  be the probability that the repair facility is busy at epoch t when system initially starts 

from state iS E . By using the same probabilistic arguments as in case of reliability and availability 

analysis one can develop the recurrence relations in iB (t)  for  i = 0, 1, 2, 4, 6, 7. On taking the Laplace 

Transforms and solving the resulting set of algebraic equations, the value of 0B (t)  in terms of its L.T. i.e. 

*
0B (s)  can be obtained. 

In the long-run, the probability that the repair facility will be busy in the repair of a failed unit is 

given by 
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*
0 0 0 3 2

t s 0
B lim B (t) lim sB (s) N / D

 
                       (6.10) 

Where              

           3 1 4 1 2 6 2 7 7N (C C )n (C C )n C         

(d) Profit Function Analysis 

       The expected profit incurred by the system during time interval (0, t) is given by 

P(t) = Expected total revenue in (0, t) – Expected total repair cost in (0, t) 

  = 0 up 1 b 2K (t) K (t) K t                    (6.11) 

where K0 is the revenue per-unit time by the system when it is operative, K1 is the per-unit time cost 

incurred in repairing a failed unit (excluding repairman charges) and K2 is the per-unit time repairman 

charges during which he is busy or idle as it is assumed that the repairman is full time employed. Also, 

µup(t) and µb(t) are defined as follows— 

µup(t) = Expected up (operative) time of the system during (0, t) 

         = 

t

0

0

A (u)du  

So that             * *
up 0(s) A (s) / s                             (6.12) 

and 

µb (t) = Expected busy period of repairman during (0, t) 

        = 

t

0

0

B (u)du  

So that              * *
b 0(s) B (s) / s                        (6.13) 

Now, the expected total profit per-unit time in steady-state is given by 

  P = 2 *

t s 0

P(t)
lim  lims P (s)

t 
  = 0 0 1 0 2K A  K B  K                                  (6.14) 

 

8.  GRAPHICAL REPRESENTATION 

   

      The curves for MTSF and profit function are drawn in respect of different parameters of the joint p.d.f. 

of failure and repair times of unit-1. Fig. 2 depicts the variations in MTSF with respect to λ1 for three 

different values of μ1 (0.1, 0.3 and 0.5) and two values of r1 (0.1 and 0.3) when the values of other 

parameters are kept fix as 2 0.1,   3 20.3, 0.1,     3 0.4, 
 2 3r 0.4 and r 0.6  . We may clearly 
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observe from this figure that the MTSF decreases uniformly as λ1 increases. More so, MTSF increases 

with the increase in the values of μ1 and r1. 

      Similarly, Fig. 3 reveals the variations in steady state Profit (P) with respect to λ1 for three different 

values of μ1 (0.25, 0.30 and 0.35) and two values of r1 (0.1 and 0.3) when the values of  

2 3 2 3 2 3, , , , r and r      are taken same as in case of MTSF and the values of K0 = 60, K1 = 40  and K3 

= 20 are taken respectively.  From this figure the same trends in profit variation in respect of λ1, μ1 and r1 

have been observed as reported in case of MTSF. Further, it is important to note from dotted curves that 

system goes in loss if λ1 exceeds from 0.019, 0.0202 and 0.0212 respectively for r1 = 0.3.Similarly, from 

smooth curves it is obvious that the system goes in loss if λ1 exceeds from 0.016, 0.017 and 0.0177 

respectively for r1 = 0.1. Thus, the higher correlation between failure and repair times of unit-1 provides 

the better system performances. Similar conclusions may be drawn about the correlation coefficients r2 

and r3 for unit-2 and unit-3.   

 

                        Behavior of MTSF with respect to λ₁, µ₁ and r₁. 

 

 

                                                                      Fig. 2 
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                   Behavior of profit functions with respect to λ₁, µ₁ and r₁ 

                                                                      

 

                                                         Fig. 3 
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