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Abstract. The main aim of this paper is to define k-gamma and k-beta matrix functions, and derive the conditions

for matrices M,N so that the k-beta matrix function Bk(M,N) satisfies the relations Bk(M,N) = Bk(N,M) and

Bk(M,N) = Γk(M)Γk(N)Γ−1
k (M+N) in the form of k-symbol, where k > 0. A limit expression for the k-gamma

function of a matrix is also established.
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1. Introduction

Many of the ordinary special functions of mathematical physics and most of their useful

properties can be obtained from the theory of group representations. James [4] discussed that

the special functions of a matrix argument appear in the study of spherical functions on certain

symmetric spaces and multivariate analysis in statistics. Special functions of two diagonal

matrix argument have been used in [5]. In [6], some properties of gamma and beta matrix

functions are proved and analogue of the expression of the scalar gamma function as a limit is
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given for the gamma function of a matrix and it is also shown that the conditions for matrices

M,N in Cr×r so that B(M,N) is well defined and satisfy B(M,N) = B(N,M), and B(M,N) =

Γ(M)Γ(N)Γ−1(M+N) are established.

2. Preliminaries

Definition 2.1. The factorial function is denoted and defined by, (a)n = a(a+1)(a+2) · · ·(a+

n−1); for n≥ 1,a 6= 0 and (a)0 = 1. The function (a)n is called the factorial function. It is

also known as Pochhmmer’s symbol.

Note that n ∈ N, where N is the set of natural numbers. It is an immediate generalization of

the elementary factorial i.e., n! = (1)n. In manipulations with (a)n, it is important to keep in

mind that (a)n is a product of n factors, starting with a and with each factor large by unity than

the preceding factor.

Definition 2.2. Let z ∈ C (C is a set of complex numbers), the gamma function is defined by

Γ(z) =
∞∫

0

tz−1e−tdt, Re(z)> 0.

In another way, it is defined as

Γ(z) = lim
n→∞

n!nz−1

(z)n
.

The relation between Pochhammer’s symbol and gamma function is given below

(z)n =
Γ(z+n)

Γ(z)
,

see [3].

Definition 2.3. Let k > 0 , then the Pochhammer k-symbol is defined by (a)n,k = a(a+ k)(a+

2k) · · ·(a+(n−1)k) for n≥ 1,a 6= 0 and(a)0,k = 0.

Definition 2.4. For k > 0 and z ∈ C, the k-gamma function Γk is defined by

Γk(z) = lim
n→∞

n!kn(nk)
z
k−1

(z)n,k
.
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Its integral representation is also given by,

Γk(z) =
∞∫

0

tz−1e
−tk

k dt.

The relation between Pochhammer k-symbol and k-gamma function is given as

(z)n,k =
Γk(z+nk)

Γk(z)
,

see [1].

Definition 2.5. If P is a matrix in Cr×r then by application of the matrix functional calculus, we

define the pochhammar symbol for any matrix P in Cr×r as;

(P)n = P(P+ I)(P+2I) · · ·(P+(n−1)I), n > 0, (P)0 = I.(1)

Definition 2.6. If P is a matrix in Cr×r and k > 0 then by application of the matrix functional

calculus, we define the pochhammar k-symbol for any matrix P in Cr×r as;

(P)n = P(P+ kI)(P+2kI) · · ·(P+(n−1)kI), n > 0, (P)0,k = I.(2)

If P lies in Cr×r, using decomposition and denoting α(P) = maxz∈σ(P)R(z) ( where σ(P) is the

set of all eigenvalue of P ) for t ∈ R, it follows that [7, pp. 336-556]:

‖etP‖ ≤ etα(P)[

(
r−1
∑
j=0
‖P‖
√

rt) j

j!
].(3)

Definition 2.7. Let M be a matrix and let n≥ 1, then Γ(M) is defined by

Γ(M) = lim
n→∞

(n−1)!(M)−1
n nM,(4)

where (M)n = M(M+ I) · · ·(M+(n−1)I).

Definition 2.8. Let M and N be two matrices in Cr×r such that Re(z) > 0, Re(w) > 0, for all

z ∈ σ(M) and w ∈ σ(N), then

B(M,N) =

∞∫
0

tM−I(1− t)N−Idt
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and

B(M,N) = Γk(M)Γk(N)Γ−1
k (M+N),

see [6].

Lemma 2.1. If 0≤ α < 1 and k > 0, then

1+α ≤ eα ≤ (1−α)−1.

Lemma 2.2. If 0≤ α < 1, n is a positive integer, then

(1−α)n ≥ 1−nα.

Lemma 2.3. If 0≤ t < n, n is a positive integer, then

0≤ e−t− (1− t
n
)≤ te−t

n
,

see [3].

3. Derivation of k-gamma and k-beta matrix functions

To derive the k-gamma matrix function, first we have to prove the above Lemma 2.3 in terms

of k, which is given by

Lemma 3.1. If 0≤ t < n, n is a positive integer and k > 0, then

0≤ e−
tk
k − (1− tk

nk
)≤ t2ke−tk

nk2 .

Proof. Using α = tk

nk in Lemma 2.1, we get

1+
tk

nk
≤ e

tk
nk ≤ (1− tk

nk
)−1,

from which it follows that

(1+
tk

nk
)n ≤ e

tk
k ≤ (1− tk

nk
)−n

⇒ (1+
tk

nk
)−n ≥ e−

tk
k ≥ (1− tk

nk
)n.
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Hence, we have e−
tk
k − (1− tk

nk)
n ≥ 0 and

e−
tk
k − (1− tk

n
)n = e−

tk
k [1− e

tk
k (1− tk

nk
)n].

Since e
tk
k ≥ (1+ tk

nk)
n, we have

e−
tk
k − (1− tk

nk
)n ≤ e−

tk
k [1− (1− t2k

n2k2 )
n].(5)

Now using α = t2k

n2k2 in Lemma 2.2, we obtain

(1− t2k

n2k2 )
n ≥ 1− t2k

nk2 .

Using this result in equation (5), we get

e−
tk
k − (1− tk

nk
)n ≤ e

−tk
k [1−1+

t2k

nk2 )
n] =

t2k

nk2 e−
tk
k ,

which is the required result.

Lemma 3.2. If M is a matrix in Cr×r, k > 0 and Re(z)> 0 for all z∈ σ(M), then by application

of matrix calculus, we have

Γk(M) = lim
n→∞

(nk)
1
k∫

0

(1− tk

nk
)ntM−Idt = lim

n→∞
n!kn(nk)

M
k −1(M)−1

n,k .(6)

Proof. In the integral on right hand side in (6) put tk

nk = β , this implies that t = (nkβ )
1
k (where

β is a matrix, so this means that β
1
k = β

I
k ). Thus after simplification we obtain

(nk)
1
k∫

0

(1− tk

nk
)ntM−Idt =

(nk)
M
k

k

1∫
0

(1−β )n
β

M
k −Idβ .(7)

An integrating by parts gives us the reduction formula, we get

1∫
0

(1−β )n
β

M
k −Idβ =

kn−1n(n−1)(n−2) · · ·1
M(M+ kI)(M+2kI) · · ·(M+(n−1)kI)

1∫
0

β
M
k +n−Idβ

=
kn+1n(n−1)(n−2) · · ·1

M(M+ kI)(M+2kI) · · ·(M+(n−1)kI)(M+nkI)
[β

M
k +n]10

=
kn+1n!

M(M+ kI)(M+2kI) · · ·(M+(n−1)kI)(M+nkI)
.
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Therefore, (7) becomes

(nk)
1
k∫

0

(1− tnk

n
)ntM−Idt =

(nk)
M
k knn!

M(M+ kI)(M+2kI) · · ·(M+(n−1)kI)(M+nkI)

so that

lim
n→∞

(nk)
1
k∫

0

(1− tk

nk
)ntM−Idt = lim

n→∞
n!kn(nk)

M
k −I(M)−1

n,k .

Furthermore, we write

Γk(M) = lim
n→∞

n!kn(nk)
M
k −I(M)−1

n,k .

Theorem 3.1. If M is a matrix in Cr×r and k > 0, then by matrix functional calculus gamma

matrix as:

Γk(M) =

∞∫
0

tM−Ie−
tk
k dt.(8)

Proof. The integral on right hand side in (8) converges. With the aid of above (6) and (8), we

write

∞∫
0

e−
tk
k tM−Idt−Γk(M) = lim

n→∞
[

∞∫
0

e−
tk
k tM−Idt−

(nk)
1
k∫

0

(1− tk

nk
)ntM−Idt]

= lim
n→∞

[

n
1
k∫

0

[e−
tk
k − (1− tk

nk
)n]tM−Idt−

∞∫
n

1
k

e−
tk
k tM−Idt].

Since
∞∫
0

e−tk
tz−1dt is convergent, so this implies that

lim
n→∞

∞∫
(nk)

1
k

e−
tk
k tM−Idt = 0.

Hence

∞∫
0

e−
tk
k tM−Idt−Γk(z) = lim

n→∞

(nk)
1
k∫

0

[e−
tk
k − (1− tk

nk
)n]tM−Idt.
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Next, we prove

lim
n→∞

(nk)
1
k∫

0

[e−
tk
k − (1− tk

nk
)n]tM−Idt = 0.(9)

By lemma 3.1, 0≤ e−
tk
k − (1− tk

nk)
n ≤ t2ke−

tk
k

nk2 = t2kIe−
tk
k

nk2 , where 0≤ t ≤ n Hence

‖
(nk)

1
k∫

0

[e−
tk
k − (1− tk

nk
)n]tM−Idt‖ ≤ 1

nk2

(nk)
1
k∫

0

‖tM+I‖e−
tk
k dt.(10)

By equation (3) and using ln t ≤ t for t > 0, we write

‖tM+I‖ ≤ tα(M)+1(

[
r−1
∑
j=0

(‖M‖+1)
√

r ln t] j

j!
)

≤ tα(M)+1{
[
r−1
∑
j=0

(‖M‖+1)
√

rt] j

j!
}.(11)

By (10) and (11), we have

1
nk2

(nk)
1
k∫

0

‖tM+I‖e−
tk
k dt ≤ 1

nk2{
[
r−1
∑
j=0

(‖M‖+1)
√

rt] j

j!
}

(nk)
1
k∫

0

tα(M)+ j+1e−
tk
k dt.(12)

Since for 0 ≤ j ≤ r−1, we have
∞∫
0

tα(M)+ j+1e−
tk
k dt is convergent. Thus

(nk)
1
k∫

0
tα(M)+ j+1e−

tk
k dt

is bounded. Therefore

lim
n→∞

(nk)
1
k∫

0

[e−
tk
k − (1− tk

nk
)n]tM−Idt = 0.(13)

Hence the following result has been established.

Γk(M) =

∞∫
0

tM−Ie−
tk
k dt.

Since the reciprocal k-gamma function denoted by Γ
−1
k (z) = 1

Γk(z)
is an entire function of the

complex variable z. In case of gamma function, for any matrix M in Cr×r the Riesz-Dunford

functional calculus shows that the image of Γ−1(z) acting on M, denoted by Γ−1(M) is a well
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defined matrix, see [4]. Similarly the image of Γ
−1
k (z) acting on M is denoted by Γ

−1
k (M) is

well defined matrix. Furthermore, if M is a matrix such that M + nkI is invertible matrix for

every integer n≥ 0, then Γk(M) is invertible, its inverse coincides with Γ
−1
k (M) and

(14) M(M + kI)(M + 2kI) · · ·(M + (n − 1)kI)Γ−1
k (M + nkI) = Γ

−1
k (M),n ≥ 1,k > 0.

From equation (14), we can write

(15) M(M + kI)(M + 2kI) · · ·(M + (n − 1)kI) = Γk(M + nkI)Γ−1
k (M),n ≥ 1,k > 0.

Theorem 3.2. Let M and N be two matrices in Cr×r such that Re(z) > 0, Re(w) > 0, for all

z ∈ σ(M) and w ∈ σ(N), then

Bk(M,N) =
1
k

∞∫
0

t
M
k −I(1− t)

N
k −Idt(16)

Proof. By equation (3) and using ln t ≤ t and ln(1− t)≤ 1− t for 0 < t < 1, it follows that

1
k
‖

∞∫
0

t
M
k −I(1− t)

N
k −Idt‖

≤ 1
k

∞∫
0

‖t
M
k −I‖‖(1− t)

N
k −I‖dt

≤
r−1

∑
i=0

r−1

∑
j=0

(‖M‖+1)i(‖N‖+ j) j(
√

r)i+ j

i! j!ki+ j+1

∞∫
0

t
α(M)

k −1(1− t)
α(N)

k −1 lni(t) ln j(1− t)dt

≤
r−1

∑
i=0

r−1

∑
j=0

(‖M‖+1)i(‖N‖+ j) j(
√

r)i+ j

i! j!ki+ j+1

∞∫
0

t
α(M)

k −1(1− t)
α(N)

k −1(t)i(1− t) jdt

≤
r−1

∑
i=0

r−1

∑
j=0

(‖M‖+1)i(‖N‖+ j) j(
√

r)i+ j

i! j!ki+ j+1

∞∫
0

t
α(M)

k +i−1(1− t)
α(N)

k + j−1dt

≤
r−1

∑
i=0

r−1

∑
j=0

(‖M‖+1)i(‖N‖+ j) j(
√

r)i+ j

i! j!ki+ j Bk(α(M)+ ik,α(N)+ jk).

Since

r−1

∑
i=0

r−1

∑
j=0

(‖M‖+1)i(‖N‖+ j) j(
√

r)i+ j

i! j!ki+ j Bk(α(M)+ ik,α(N)+ jk)<+∞,
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we see that Bk(M,N) = 1
k

∞∫
0

t
M
k −I(1− t)

N
k −Idt.

Next we prove the following Lemma related to k-beta matrix function.

Lemma 3.3. Let M and N be commuting matrices in Cr×r such that Re(z)> 0, Re(w)> 0, for

all z ∈ σ(M) and w ∈ σ(N), then

Bk(M,N) = Bk(N,M).(17)

Proof. Since M and N are commutable, therefore MN = NM. It follows that

(
M
k
− I)(ln t)(

N
k
− I) ln(1− t) = (

N
k
− I) ln(1− t)(

M
k
− I)(ln t), 0 < t < 1.

Hence, we write

Bk(M,N) =
1
k

1∫
0

t
M
k −I(1− t)

N
k −Idt

=
1
k

1∫
0

e(
M
k −I) ln te(

N
k −I) ln(1−t)dt; t

M
k −I = e(

M
k −I) ln t

=
1
k

1∫
0

e(
N
k −I) ln(1−t)e(

M
k −I) ln tdt

=
1
k

1∫
0

e(
N
k −I) lnue(

M
k −I) ln(1−u)du; 1− t = u

=
1
k

1∫
0

u
N
k −I(1−u)

M
k −Idt

= Bk(N,M).

Lemma 3.4. Let D,E be diagonal matrices in Cr×r such that Re(z) > 0, Re(w) > 0, for all

z ∈ σ(M) and w ∈ σ(N), then

Bk(D,E) = Γk(D)Γk(E)Γ−1
k (D+E).
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Theorem 3.3. Let M and E be diagonalizable matrices in Cr×r such that MN = NM and

Re(z)> 0, Re(w)> 0, for all z ∈ σ(M) and w ∈ σ(N), then

Bk(M,N) = Γk(M)Γk(N)Γ−1
k (M+N).(18)

Proof. Since M,N are diagonalizable and commute by [8], they are simultaneously diagonaliz-

able. Let S be an invertible matrix in Cr×r such that

S−1MS = D, S−1NS = E,(19)

where D and E are diagonal matrices. In order to prove (18), by [8, p. 54], if σ(M) =

{λ1, · · · ,λr} and σ(N) = {µ1, · · · ,µr}, Then σ(M +N) = {λ1 + µi j}r
j=1, for some permuta-

tion i1, i2, · · · , ir of 1,2, · · · ,r. Since matrices M and N satisfy Re(z) > 0, Re(w) > 0, for all

z ∈ σ(M) and w ∈ σ(N), it follows that Re(w)> 0, for all w ∈ σ(M+N). By Lemmas 3.3 and

3.4 and by equation (19), it follows M+N = S(D+E)S−1 and

Γk(M+N) = S[
∞∫

0

e−
tk
k tD+E−Idt]S−1 = SΓk(D+E)S−1,(20)

Γk(M) = S[
∞∫

0

e−
tk
k tD−Idt]S−1 = SΓk(D)S−1,(21)

Γk(N) = S[
∞∫

0

e−
tk
k tE−Idt]S−1 = SΓk(E)S−1,(22)

and

Bk(M,N) = S[
∞∫

0

t
D
k −I(1− t)

E
k−Idt]S−1(23)

= SBk(D,E)S−1(24)

= S[Γk(D)Γk(E)Γ−1
k (D+E)]S−1.(25)
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By (20), we get Γ
−1
k (D+E) = S−1Γ

−1
k (M+N) and by (21), (22) and (23), it follows that

Bk(M,N) = SΓk(D)Γk(E)[SΓ
−1
k (D+E)S−1]S−1

= (SΓk(D)S−1)(SΓk(E)S−1)(SΓ
−1
k (D+E)S−1)

= Γk(M)Γk(N)Γ−1
k (M+N).

This completes the proof.

Remark Apart from the commutativity hypothesis, the diagnalizability condition of Theorem

2.2 guarantees that every eigenvalue z of the matrix M+N lies in the right half plane.
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