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Abstract. In this paper, we construct generalized Tschebyscheff-type weighted orthogonal polynomials U(γ,M,N)
n,r (u,v,w),

γ > −1, in the Bernstein-Bézer form over the simplicial domain. We show that U(γ,M,N)
n,r (u,v,w), r = 0,1, . . . ,n;

n= 0,1,2, . . . , form an orthogonal system over a triangular domain with respect to the generalized weight function.
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1. Introduction

Orthogonal polynomials have been studied thoroughly, the Tschebyscheff orthogonal poly-

nomials of the second kind (Tschebyscheff-II), Un(x), are among these orthogonal polynomials.

Although the main definitions and basic properties for univariate case were defined many years

ago, the cases of the generalized, bivariate or more variables are limited. For M,N ≥ 0, the

generalized Tschebyscheff-type polynomials of the second type
{

U
(M,N)

n (x)
}∞

n=0
(generalized

Tschebyscheff-II) were characterized in [3], these polynomials are orthogonal on the interval

[−1,1] with respect to the generalized weight function

W(γ,M,N)(x) =
2
π
(1− x)

1
2 (1+ x)

1
2 +Mδ (x+1)+Nδ (x−1). (1.1)
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In addition, a closed form for the matrix transformation of the generalized Tschebyscheff-II

polynomial basis into Bernstein polynomial basis, and for Bernstein polynomial basis into gen-

eralized Tschebyscheff-II polynomial basis were provided in [2].

The generalized bivariate Tschebyscheff-II polynomials U
(γ,M,N)

n,r,d (u,v,w) are orthogonal to

each polynomial of degree≤ n−1, with respect to the generalized weight function (1.1). How-

ever, for r 6= s, d 6= m, U
(γ,M,N)

n,r,d (u,v,w) and U
(γ,M,N)

n,s,m (u,v,w) are not orthogonal with respect

to the weight function.

A construction of bivariate orthogonal polynomials U (γ)
n,r (u,v,w), r = 0,1, . . . ,n; n= 0,1,2, . . . ,

with respect to the weight function u
1
2 v

1
2 (1−w)γ , γ > −1, on a triangular domain were intro-

duced in [1]. They showed that U (γ)
n,r (u,v,w) form an orthogonal system.

In this paper, for M,N≥ 0, we construct generalized bivariate orthogonal polynomials U(γ,M,N)
n,r,d

(u,v,w), d = 0, . . . ,k; k = 0, . . . ,n, r = 0,1, . . . ,n; n = 0,1,2, . . . , with respect to the generalized

Tschebyscheff-II weight function (1.1) on triangular domain. We show that U(γ,M,N)
n,r,d (u,v,w)

form an orthogonal system over the domain T with respect to (1.1). Worth to mention that these

generalized Tschebyscheff-II weighted orthogonal polynomials are given in the Bernstein basis

form; which preserve many geometric properties of the Bernstein polynomial basis.

The construction of generalized bivariate orthogonal polynomials on the square G = {(x,y) :

−1 ≤ x ≤ 1,−1 ≤ y ≤ 1} is straightforward [11]. It can be done by considering the ten-

sor product of the set of orthogonal polynomials over G. Let {U (M,N)
n (x)} be the general-

ized Tschebyscheff-II polynomials over [−1,1] with respect to the weight function W(M,N)
1 (x),

and {Q(M,N)
m (y)} be the generalized Tschebyscheff-II polynomials over [−1,1] with respect

to the weight function W(M,N)
2 (y). The generalized bivariate polynomials {R(M,N)

nm (x,y)} on G

formed by the tensor products of the Tschebyscheff-II polynomials defined as R
(M,N)
nm (x,y) =

U
(M,N)

n−m (x)Q(M,N)
m (y),n = 0,1,2, . . . ,m = 0,1, . . . ,n.

The generalized bivariate polynomials {R(M,N)
nm (x,y)} are orthogonal on the square G with

respect to the weight function W(M,N)(x,y) = W(M,N)
1 (x)W(M,N)

2 (y). However, the construction

of orthogonal polynomials over a triangular domains are not straightforward like the tensor

product over the square G.
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1.1. Bernstein and orthogonal polynomials. Consider a triangle T defined by its three vertices

pk = (xk,yk), k = 1,2,3, where p1,p2,p3 are not collinear. For each point p located inside the

triangle, there is a sequence of three numbers u,v,w ≥ 0 such that p can be written uniquely

as a convex combination of the three vertices, p = up1 + vp2 + wp3, where u + v + w = 1.

The three numbers u =
area(p,p2,p3)
area(p1,p2,p3)

, v = area(p1,p,p3)
area(p1,p2,p3)

, w = area(p1,p2,p)
area(p1,p2,p3)

indicate the barycentric

coordinates of the point p with respect to the triangle.

Although there are three coordinates, there are only two degrees of freedom, since u+v+w=

1. Thus every point is uniquely defined by any two of the barycentric coordinates. That is, the

triangular domain defined as T = {(u,v,w) : u,v,w≥ 0,u+ v+w = 1}.

Definition 1.1. The n+1 Bernstein polynomials of degree n are defined by

Bn
i (u) =

(
n
i

)
ui(1−u)n−i, for i = 0,1, . . . ,n, (1.2)

where
(n

i

)
is the binomial coefficients. For ζ = (i, j,k) denote triples of non-negative integers

such that |ζ |= i+ j+k, then the generalized Bernstein polynomials of degree n are defined by

the formula Bn
ζ
(u,v,w) =

(n
ζ

)
uiv jwk, |ζ |= n, where

(n
ζ

)
= n!

i! j!k! .

The generalized Bernstein polynomials have a number of useful analytical and elegant geo-

metric properties [5]. Note that the generalized Bernstein polynomials are nonnegative over T

and form a partition of unity,

1 = (u+ v+w)n = ∑
0≤i, j,k≤n
i+ j+k=n

n!
i! j!k!

uiv jwk. (1.3)

These polynomials define the Bernstein basis for the space Πn, the space of all polynomials of

degree at most n.

A basis of linearly independent and mutually orthogonal polynomials in the barycentric coor-

dinates (u,v,w) are represented in a triangular table, the kth row of this table contains k+1 poly-

nomials. Thus, there are (n+1)(n+2)
2 polynomials in a basis of linearly independent polynomials

of total degree n. Therefore, the sum (1.3) involves a total of (n+1)(n+2)
2 linearly independent

polynomials.
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Thus, with the revolt of computer graphics, Bernstein polynomials on [0,1] became important

in the form of Bézier curves, and the polynomials determined in the Bernstein (Bézier) basis

enjoy considerable popularity in Computer Aided Geometric Design applications.

Degree elevation is a common situation in these applications, where polynomials given in

the basis of degree n have to be represented in the basis of higher degree. For any polynomial

p(u,v,w) of degree n can be written using Bézier coefficients dζ in the Bernstein form

p(u,v,w) = ∑
|ζ |=n

dζ Bn
ζ
(u,v,w). (1.4)

With the use of degree elevation algorithm for the Bernstein representation [7],

Br
k(x) =

n−r+k

∑
i=k

(r
k

)(n−r
i−k

)(n
i

) Bn
i (x), k = 0,1, . . . ,r,

the polynomial p(u,v,w) in (1.4) can be written (multiplying both sides by 1 = u+ v+w) as

p(u,v,w) = ∑
|ζ |=n+1

d(1)
ζ

Bn+1
ζ

(u,v,w).

The new coefficients defined by Hoschek et al. [8] as d(1)
ζ

= 1
n+1(idi−1, j,k+ jdi, j−1,k+kdi, j,k−1)

where |ζ |= n+1. Moreover, the next integration is one of the interesting analytical properties

of the Bernstein polynomials Bn
ζ
(u,v,w).

Lemma 1.1. [6] The Bernstein polynomials Bn
ζ
(u,v,w), |ζ |= n, on T satisfy∫∫

T
Bn

ζ
(u,v,w)dA =

∆(n+2
2

) ,
where ∆ is the double the area of T and

(n+2
2

)
is the dimension of Bernstein polynomials over

the triangle.

This means that the Bernstein polynomials partition the unity with equal integrals over the

domain; in other words, they are equally weighted as basis functions.

Definition 1.2. Let p(u,v,w) and q(u,v,w) be two bivariate polynomials over T, then we define

their inner product over T by 〈p,q〉 = 1
∆

∫∫
T pqdA. With the inner product defined, we say that

the two polynomials p(u,v,w) and q(u,v,w) are orthogonal if 〈p,q〉= 0.

For m ≥ 1, let Lm denote the space of polynomials of degree m that are orthogonal to all

polynomials of degree ≤ m over a triangular domain T, i.e., Lm = {p ∈Πm : p⊥Πm−1}.



GENERALIZED TSCHEBYSCHEFF POLYNOMIALS ON SIMPLICIAL DOMAIN 741

For an integrable function f (u,v,w) over T, consider the operator Sn( f ) defined in [4] as

Sn( f ) = (n+1)(n+2)∑|ζ |=n

〈
f ,Bn

ζ

〉
Bn

ζ
. For n≥m, λm,n =

(n+2)!n!
(n+m+2)!(n−m)! is an eigenvalue of

Sn, and Lm is the corresponding eigenspace. The following lemmas will be used in the proof of

the main results.

Lemma 1.2. [6] Let p = ∑|ζ |=n cζ Bn
ζ
∈ Lm and let q = ∑|ζ |=n dζ Bn

ζ
∈ Πn with m ≤ n. Then,

〈p,q〉= (n!)2

(n+m+2)!(n−m)! ∑|ζ |=n cζ dζ .

Lemma 1.3. [6] Let p = ∑|ζ |=n cζ Bn
ζ
∈Πn. Then we have p ∈ Ln ⇐⇒ ∑|ζ |=n cζ dζ = 0 ∀q =

∑|ζ |=n dζ Bn
ζ
∈Πn−1.

1.2. Factorial Minus Half. For the main results simplifications, we present some results con-

cerning factorials, double factorials and some combinatorial identities. The double factorial of

an integer n is given by

(2n−1)!! = (2n−1)(2n−3)(2n−5) . . .(3)(1) if n is odd

n!! = (n)(n−2)(n−4) . . .(4)(2) if n is even,
(1.5)

where 0!! = (−1)!! = 1. From (1.5), we can derive the following relation for factorials

n!! =


2

n
2 (n

2)! if n is even
n!

2
n−1

2 ( n−1
2 )!

if n is odd
. (1.6)

From (1.6) we obtain

(2n)!! = [2(n)][2(n−1)] . . . [2.1] = 2nn!, (1.7)

and

(2n)! = [(2n−1)(2n−3) . . .(1)] ([2(n)][2(n−1)][2(n−2)] . . . [2(1)]) = (2n−1)!!2nn!. (1.8)

It is easy to derive the factorial of an integer plus half as(
n+

1
2

)
! =
√

π

2n+1 (2n+1)!!.

By combining (1.7) and (1.8), we get
(2n

n

)
= 22n(2n−1)!!

(2n)!! . In addition, using (1.8) with some

simplifications we obtain (2n
2k

)(n
k

) =
(2n−1)!!

(2k−1)!!(2n−2k−1)!!
.
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2. The generalized Tschebyscheff-II polynomials

For M,N ≥ 0, the generalized Tschebyscheff-II polynomials
{

U
(M,N)

n (x)
}∞

n=0
are orthog-

onal on the interval [−1,1] with respect to the weight function (1.1) defined in [9], and been

characterized in [3],

U
(M,N)

n (x) =
(2n+1)!!
2n(n+1)!

Un(x)+
n

∑
k=0

λk
(2k+1)!!
2k(k+1)!

Uk(x), (2.1)

where

λk =
k(k+1)(2k+1)(M+N)

6
+

(k+2)(k+1)2k2(k−1)MN
9

, (2.2)

and Un(x) is the Tschebyscheff-II polynomial of degree n in x, Szegö [12]:

Un(x) :=
(n+1)(2n)!!
(2n+1)!!

n

∑
k=0

(
n+ 1

2
n− k

)(
n+ 1

2
k

)(
x+1

2

)n−k(x−1
2

)k

.

The univariate Tschebyscheff-II polynomials of degree n in x can be transformed in terms of

Bernstein basis on x ∈ [0,1], as

Un(2x−1) :=
(n+1)(2n)!!
(2n+1)!!

n

∑
k=0

(−1)n+1

(n+ 1
2

k

)(n+ 1
2

n−k

)(n
k

) Bn
k(x).

and can be represented in terms of Gauss hypergeometric series as follows [10],

Un(x) := (n+1)2F1

(
−n,n+2,

3
2

;
1− x

2

)
.

The next theorem, see [3] for the proof, provides a closed form for generalized Tschebyscheff-

II polynomial U
(M,N)

r (x) of degree r as a linear combination of the Bernstein polynomials

Br
i (x), i = 0,1, . . . ,r of degree r.

Theorem 2.1. [3] For M,N ≥ 0, the generalized Tschebyscheff-II polynomials U
(M,N)

r (x) of

degree r have the following Bernstein representation,

U
(M,N)

r (x) =
(2r+1)!!
2r(r+1)!

r

∑
i=0

(−1)r−i
ϑi,rBr

i (x)+
r

∑
k=0

λk
(2k+1)!!
2k(k+1)!

k

∑
i=0

(−1)k−i
ϑi,kBk

i (x)

where λk defined by (2.2), ϑ0,r =
(2r+1)

22r

(2r
r

)
, and

ϑi,r =
(2r+1)2

22r(2r−2i+1)(2i+1)

(2r
r

)(2r
2i

)(r
i

) , i = 0,1, . . . ,r. (2.3)

The coefficients ϑi,r satisfy the recurrence relation ϑi,r =
(2r−2i+3)
(2i+1) ϑi−1,r, i = 1, . . . ,r.
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The following theorem used to combine the superior performance of the least-squares of the

generalized Tschebyscheff-II polynomials with the geometric insights of the Bernstein polyno-

mials basis.

Theorem 2.2. [2] The entries Mn
i,r, i,r = 0,1, . . . ,n of the matrix transformation of the gener-

alized Tschebyscheff-II polynomial basis into Bernstein polynomial basis of degree n are given

by

Mn
i,r = Φ

r
i,n +

r

∑
k=0

λkΦ
k
i,n, (2.4)

where λk defined in (2.2) and

Φ
r
i,n =

(2r+1)!!
2r(r+1)!

min(i,r)

∑
k=max(0,i+r−n)

(−1)r−k

(n−r
i−k

)(r+ 1
2

k

)(r+ 1
2

r−k

)(n
i

) .

Now, we have the following corollary which enables us to write Tschebyscheff-II polynomi-

als of degree r where r ≤ n in terms of Bernstein polynomials of degree n.

Corollary 2.3. [2] The generalized Tschebyscheff-II polynomials of degree less than or equal

to n, U (M,N)
0 (x), . . . ,U (M,N)

n (x), can be expressed in the Bernstein basis of fixed degree n by the

following formula U
(M,N)

r (x) =
n
∑

i=0
Nn

r,iB
n
i (x), r = 0,1, . . . ,n where

Nn
r,i =

(2r+1)!!
2r(r+1)!

min(i,r)

∑
k=max(0,i+r−n)

(−1)r−k(2r+1)2

22r(2r−2k+1)(2k+1)

(n−r
i−k

)(2r
r

)(2r
2k

)(n
i

)
+

r

∑
k=0

λk
(2k+1)!!
2k(k+1)!

min(i,k)

∑
j=max(0,i+k−n)

(−1)k− j(2k+1)2

22k(2k−2 j+1)(2 j+1)

(n−k
i− j

)(2k
k

)(2k
2 j

)(n
i

) .

3. Generalized bivariate Tschebyscheff-II-weighted polynomials

In this section, we generalize the construction in [1] to formulate a simple closed-form repre-

sentation of degree-ordered system of generalized orthogonal polynomials U(γ,M,N)
n,r,d (u,v,w) on

a triangular domain T.

The basic idea in this construction is to make U(γ,M,N)
n,r,d (u,v,w) coincide with the univeriate

Tschebyscheff-II polynomial along one edge of T, and to make its variation along each chord
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parallel to that edge a scaled version of this Tschebyscheff-II polynomial. The variation of

U(γ,M,N)
n,r,d (u,v,w) with w can then be arranged so as to ensure its orthogonality on T with every

polynomial of degree < n, and with other basis polynomials U(γ,M,N)
n,s,d (u,v,w) of degree n for

r 6= s, d 6= m.

Now, for M,N ≥ 0, γ >−1, n = 0,1,2, . . . , k = 0, . . . ,n, r = 0,1, . . . ,n and d = 0,1, . . . ,k, we

define the generalized bivariate polynomials

U(γ,M,N)
n,r,d (u,v,w) =

r

∑
i=0

(−1)r−i
ϑi,rBr

i (u,v)
n−r

∑
j=0

(−1) j
(

n+ r+1
j

)
Bn−r

j (w,u+ v)

+
n

∑
k=0

λk

d

∑
i=0

(−1)d−i
ϑi,dBd

i (u,v)
k−d

∑
j=0

(−1) j
(

k+d +1
j

)
Bk−d

j (w,u+ v),

(3.1)

where Br
i (u,v) defined in (1.2), λk defined in (2.2), and ϑi,r defined in (2.3).

Furthermore, the next theorem, Farouki [6], will be used in the simplification and the con-

struction of the generalized orthogonal bivariate polynomials and the proof of the main results.

Lemma 3.1. [6] For r = 0, . . . ,n; n = 0,1, . . . define the polynomials

Gn,r(w) =
n−r

∑
j=0

(−1) j
(

n+ r+1
j

)
Bn−r

j (w), (3.2)

then Gn,r(w) are scalar multiple of 2F1 (−n+ r,n+2r+2,2r+2;1−w) , and for i= 0,1, . . . ,n−

r−1, Gn,r(w) is orthogonal to (1−w)2r+i+1on [0,1], and hence
∫ 1

0 Gn,r(w)p(w)(1−w)2r+1dw=

0 for every polynomial p(w) of degree less than or equal n− r−1.

Using Theorem 2.1, and Br
i (u,v) = (u+ v)rBr

i (
u

1−w), the polynomials in (3.1) can be written

using the univariate Tschebyscheff-II polynomials form as

U(γ,M,N)
n,r,d (u,v,w)=

(r+ 1
2

r

)
(r+1)

Ur(
u

1−w
)(1−w)rGn,r(w)+

(d+ 1
2

d

)
(d +1)

Ud(
u

1−w
)(1−w)d

n

∑
k=0

λkGk,d(w),

where Ur(t) is the univariate Tschebyscheff-II polynomial of degree r in t and Gn,r(w) defined

by (3.2).

To show that the generalized bivariate polynomials U(γ,M,N)
n,r,d (u,v,w) form an orthogonal sys-

tem over the triangular domain T with respect to the generalized weight function (1.1), we prove

U(γ,M,N)
n,r,d (u,v,w) ∈Ln, r = 0,1, . . . ,n; n = 1,2 . . . , and U(γ,M,N)

n,r,d ⊥ U(γ,M,N)
n,s,m for r 6= s, d 6= m.
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Choose U(γ,M,N)
0,0,0 = 1, then the polynomials U(γ,M,N)

n,r,d (u,v,w) for r = 0,1, . . . ,n; n = 0,1,2, . . .

form a degree-ordered orthogonal sequence over the triangular domain T. First, we show that

the polynomials U(γ,M,N)
n,r,d (u,v,w), r = 0, . . . ,n, are orthogonal to all polynomials of degree less

than n over T.

Theorem 3.2. Let M,N ≥ 0, γ > −1, and the generalized weight function W(γ,M,N)(u,v,w),

defined in (1.1), then for each n = 1,2, . . . , r = 0,1, . . . ,n, U(γ,M,N)
n,r,d (u,v,w) ∈Ln.

Proof. For each l = 0, . . . ,m; m = 0, . . . ,n−1; we define the bivariate polynomials

Hl,m(u,v,w) = (1−w)mwn−m−1
l

∑
j=0

(−1)l− j
ϑ j,lBl

j(
u

1−w
). (3.3)

The span of Hl,m(u,v,w) in (3.3) includes the set of Bernstein polynomials Bm
j (u,v)w

n−m−1,

j = 0, . . . ,m; m = 0, . . . ,n− 1, which span Πn−1. So, it is sufficient to show that for each l =

0, . . . ,m; m = 0, . . . ,n−1,

I =
∫∫
T

U(γ,M,N)
n,r,d (u,v,w)Hl,m(u,v,w)W(γ,M,N)(u,v,w)dA = 0.

The integral I can be simplified and rearranged as

I
∆
=

(r+ 1
2

r

)
(r+1)

∫ 1

0

∫ 1−w

0
Ur(

u
1−w

)Ul(
u

1−w
)(1−w)r+mwn−m−1Gn,r(w)

×
[

2
π

u
1
2 v

1
2 (1−w)γ +Mδv−Nδu

]
dudw

+

(d+ 1
2

d

)
(d +1)

n

∑
k=0

λk

∫ 1

0

∫ 1−w

0
Ud(

u
1−w

)Ul(
u

1−w
)(1−w)d+mwn−m−1Gk,d(w)

×
[

2
π

u
1
2 v

1
2 (1−w)γ +Mδv−Nδu

]
dudw.
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By making the substitution t(1−w) = u, we get

I
∆
=

2
π

(r+ 1
2

r

)
(r+1)

∫ 1

0
Ur(t)Ul(t)t

1
2 (1− t)

1
2 dt
∫ 1

0
Gn,r(w)(1−w)γ+r+m+2wn−m−1dw

−Nδ

(r+ 1
2

r

)
(r+1)

∫ 1

0
Ur(t)Ul(t)tdt

∫ 1

0
Gn,r(w)(1−w)r+m+2wn−m−1dw

+Mδ

(r+ 1
2

r

)
(r+1)

∫ 1

0
Ur(t)Ul(t)(1− t)dt

∫ 1

0
Gn,r(w)(1−w)r+m+2wn−m−1dw

+
2
π

(d+ 1
2

d

)
(d +1)

n

∑
k=0

λk

∫ 1

0
Ud(t)Ul(t)t

1
2 (1− t)

1
2 dt
∫ 1

0
Gk,d(w)(1−w)γ+d+m+2wn−m−1dw

−Nδ

(d+ 1
2

d

)
(d +1)

n

∑
k=0

λk

∫ 1

0
Ud(t)Ul(t)tdt

∫ 1

0
Gk,d(w)(1−w)d+m+2wn−m−1dw

+Mδ

(d+ 1
2

d

)
(d +1)

n

∑
k=0

λk

∫ 1

0
Ud(t)Ul(t)(1− t)dt

∫ 1

0
Gk,d(w)(1−w)d+m+2wn−m−1dw.

If m < d < r, then we have l < d < r, and the first integral of the of each term is zero by the

orthogonality property of the Tschebyscheff-II polynomials. If r ≤ d ≤ m ≤ n− 1, we have

by Lemma 3.1 the second integral of each term equals zero. Thus the theorem follows. This

completes the proof.

Note that taking W(γ,M,N)(u,v,w) = u
1
2 v

1
2 (1−w)γ +Mδv−Nδu enables us to separate the

integrand in the proof of Theorem 3.2. Also note that taking γ >−1 enables us to use Lemma

3.1 in the proof of Theorem 3.2.

Using equation (2.1) with simple calculations, and for γ > −1, n = 0,1,2, . . . , k = 0, . . . ,n,

r = 0,1, . . . ,n and d = 0,1, . . . ,k, we can rewrite the generalized bivariate polynomials (3.1) as

U(γ,M,N)
n,r,d (u,v,w) =(1+λn)

(r+ 1
2

r

)
(r+1)

Ur(
u

1−w
)(1−w)rGn,r(w)

+

(d+ 1
2

d

)
(d +1)

Ud(
u

1−w
)(1−w)d

n−1

∑
k=0

λkGk,d(w),

(3.4)

where λk defined in equations (1.2), Gn,r(w) defined in (3.2), and Ud(t)is the univariate Tschebyscheff-

II polynomials of degree d in t.

In the following theorem, we show that U(γ,M,N)
n,r,d (u,v,w) is orthogonal to each polynomial

U(γ,M,N)
n,s,m (u,v,w) where r 6= s, d 6= m.
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Theorem 3.3. Let M,N ≥ 0, γ > −1, for r 6= s and d 6= m, we have U(γ,M,N)
n,r,d (u,v,w) ⊥

U(γ,M,N)
n,s,m (u,v,w) with respect to the generalized weight function W(γ,M,N)(u,v,w).

Proof. For r 6= s and d 6= m, and using the equation (3.4), we have

I =
∫∫

T
U(γ,M,N)

n,r,d (u,v,w)U(γ,M,N)
n,s,m (u,v,w)W(γ,M,N)(u,v,w)dA.

Substitute the polynomials, where r,s = 0, . . . ,n, m = 0, . . . , j, and d = 0, . . . , i, and with the

substitution t(1−w) = u, we obtain

I
∆
=

2
π
(1+λn)

2
Λr,s

∫ 1

0
Ur(t)Us(t)t

1
2 (1− t)

1
2 dt
∫ 1

0
Gn,r(w)Gn,s(w)(1−w)γ+r+s+2dw

− (1+λn)
2NδΛr,s

∫ 1

0
Ur(t)Us(t)tdt

∫ 1

0
Gn,r(w)Gn,s(w)(1−w)r+s+2dw

+(1+λn)
2MδΛr,s

∫ 1

0
Ur(t)Us(t)(1− t)dt

∫ 1

0
Gn,r(w)Gn,s(w)(1−w)r+s+2dw

+
2
π
(1+λn)Λs,d

n−1

∑
i=0

λi

∫ 1

0
Us(t)Ud(t)t

1
2 (1− t)

1
2 dt
∫ 1

0
Gn,s(w)Gi,d(w)(1−w)γ+s+d+2dw

− (1+λn)NδΛs,d

n−1

∑
i=0

λi

∫ 1

0
Us(t)Ud(t)tdt

∫ 1

0
Gn,s(w)Gi,d(w)(1−w)s+d+2dw

+(1+λn)MδΛs,d

n−1

∑
i=0

λi

∫ 1

0
Us(t)Ud(t)(1− t)dt

∫ 1

0
Gn,s(w)Gi,d(w)(1−w)s+d+2dw

+
2
π
(1+λn)Λr,m

n−1

∑
j=0

λ j

∫ 1

0
Ur(t)Um(t)t

1
2 (1− t)

1
2 dt
∫ 1

0
Gn,r(w)G j,m(w)(1−w)γ+r+m+2dw

− (1+λn)NδΛr,m

n−1

∑
j=0

λ j

∫ 1

0
Ur(t)Um(t)tdt

∫ 1

0
Gn,r(w)G j,m(w)(1−w)r+m+2dw

+(1+λn)MδΛr,m

n−1

∑
j=0

λ j

∫ 1

0
Ur(t)Um(t)(1− t)dt

∫ 1

0
Gn,r(w)G j,m(w)(1−w)r+m+2dw

+
2
π

Λd,m

n−1

∑
i=0

n−1

∑
j=0

λiλ j

∫ 1

0
Ud(t)Um(t)t

1
2 (1− t)

1
2 dt
∫ 1

0
Gi,d(w)G j,m(w)(1−w)γ+m+d+3dw

−NδΛd,m

n−1

∑
i=0

n−1

∑
j=0

λiλ j

∫ 1

0
Ud(t)Um(t)dt

∫ 1

0
Gi,d(w)G j,m(w)t(1−w)m+d+2dw

+MδΛd,m

n−1

∑
i=0

n−1

∑
j=0

λiλ j

∫ 1

0
Ud(t)Um(t)dt

∫ 1

0
Gi,d(w)G j,m(w)(1− t)(1−w)m+d+2dw,
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where Λi, j =
(i+ 1

2
i )

(i+1)
( j+ 1

2
j )

( j+1) . Since d 6= r, and m 6= s, the first integral in all terms equals zero by

Tschebyscheff-II polynomials orthogonality property, and this completes the proof.

4. Applications: Recurrence relation and recursion

The Bernstein-Bézier form of curves and surfaces exhibits some interesting geometric prop-

erties, see [5, 8]. So, for computational purposes, we are interested in finding a closed form of

the Bernstein coefficients an,r,d
ζ

, and the recursion relation that allow us to compute the coeffi-

cients efficiently.

We write the orthogonal polynomials U(γ,M,N)
n,r,d (u,v,w), r = 0,1, . . . ,n, d = 0, . . . ,k, and n =

0,1,2, . . . in the following Bernstein-Bézier form,

U(γ,M,N)
n,r,d (u,v,w) = ∑

|ζ |=n
an,r,d

ζ
Bn

ζ
(u,v,w). (4.1)

The following theorem provides a closed explicit form of the Bernstein coefficients an,r,d
ζ

.

Theorem 4.1. The Bernstein coefficients an,r,d
ζ

of equation (4.1) are given explicitly by

an,r,d
i jk =


(−1)k(n+r+1

k

)(n−r
k

)
Mn−k

i,r +λk(−1) j(k+d+1
j

)(k−d
j

)
Mk− j

i,d if 0≤ k ≤ n− r

0 if k > n− r.

where Mn
i,r given in (2.4).

Proof. From equation (3.1), it is clear that U(γ,M,N)
n,r,d (u,v,w) has degree ≤ n− r in the variable

w, and thus an,r
i jk = 0 for k > n− r. For 0≤ k ≤ n− r, the remaining coefficients are determined

by equating (3.1) and (4.1) as follows

∑
i+ j=n−k

an,r
i jkBn

i jk(u,v,w) = (−1)k
(

n+ r+1
k

)
Bn−r

k (w,u+ v)
r

∑
i=0

(−1)r−i
ϑi,rBr

i (u,v)

+λk

k−d

∑
j=0

(−1) j
(

k+d +1
j

)
Bk−d

j (w,u+ v)
d

∑
i=0

(−1)d−i
ϑi,dBd

i (u,v),
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where γ >−1, Br
i (u,v), i = 0,1, . . . ,r, defined in equation (1.2), and λk defined in (2.2). Com-

paring powers of w on both sides, we have

n−k

∑
i=0

an,r
i jk

n!
i! j!k!

uiv j = (−1)k
(

n+ r+1
k

)(
n− r

k

)
(u+ v)n−r−k

r

∑
i=0

(−1)r−i
ϑi,rBr

i (u,v)

+λk

k−d

∑
j=0

(−1) j
(

k+d +1
j

)(
k−d

j

)
(u+ v)k−d− j

d

∑
i=0

(−1)d−i
ϑi,dBd

i (u,v).

The left hand side of the last equation can be written in the form

n−k

∑
i=0

an,r
i jk

n!(n− k)!
i! j!k!(n− k)!

uiv j =
n−k

∑
i=0

an,r
i jk

n!(n− k)!
i!(n− k− i)!k!(n− k)!

uiv j =
n−k

∑
i=0

an,r
i jk

(
n
k

)
Bn−k

i (u,v).

Now, we have

n−k

∑
i=0

an,r
i jk

(
n
k

)
Bn−k

i (u,v) = (−1)k
(

n+ r+1
k

)(
n− r

k

)
(u+ v)n−r−k

r

∑
i=0

(−1)r−i
ϑi,rBr

i (u,v)

+λk

k−d

∑
j=0

(−1) j
(

k+d +1
j

)(
k−d

j

)
(u+ v)k−d− j

d

∑
i=0

(−1)d−i
ϑi,dBd

i (u,v),

With some binomial simplifications, and using Corollary 2.3, we get

n−k

∑
i=0

an,r
i jk

(
n
k

)
Bn−k

i (u,v) = (−1)k
(

n+ r+1
k

)(
n− r

k

) r

∑
i=0

Mn−k
i,r Bn−k

i (u,v)

+λk

k−d

∑
j=0

(−1) j
(

k+d +1
j

)(
k−d

j

) d

∑
i=0

Mk− j
i,d Bk− j

i (u,v),

where Mn−k
i,r are the coefficients resulting from writing Tschebyscheff-II polynomial of degree

r in the Bernstein basis of degree n− k, as defined by expression (2.4). Thus, the required

Bernstein-Bézier coefficients are given by

an,r,d
i jk =


(−1)k(n+r+1

k

)(n−r
k

)
Mn−k

i,r +λk(−1) j(k+d+1
j

)(k−d
j

)
Mk− j

i,d if 0≤ k ≤ n− r

0 if k > n− r,

which completes the proof.
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4.1. Recurrence relation. To derive a recurrence relation for the coefficients an,r
i jk of U(γ,M,N)

n,r,d (u,v,w),

we consider the generalized Bernstein polynomial of degree n−1;

Bn−1
i jk (u,v,w) =

(n−1)!
i! j!k!

uiv jwk(u+ v+w)

=
(i+1)

n
Bn

i+1, j,k(u,v,w)+
( j+1)

n
Bn

i, j+1,k(u,v,w)+
(k+1)

n
Bn

i, j,k+1(u,v,w).

From the construction of U(γ,M,N)
n,r,d (u,v,w), we have 〈Bn−1

i jk (u,v,w),U(γ,M,N)
n,r,d (u,v,w)〉= 0, i+ j+

k = n−1. By using Lemma 1.3, we have

(i+1)an,r
i+1, j,k +( j+1)an,r

i, j+1,k +(k+1)an,r
i, j,k+1 = 0. (4.2)

But, by Theorem 4.1 we have an,r
i,n−i,0 = Mn

i,r for i = 0,1, . . . ,n; and thus we can use (4.2) to

generate an,r
i, j,k recursively on k.
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