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Abstract. In this paper, we solve d’Alembert’s functional equation where the function to be determined are defined

on the quaternion group Q8 and take their values in the complex n×n−matrices.
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1. Introduction

The cosine equation, also called classical d’Alembert’s equation has the form:

f (x+ y)+ f (x− y) = 2 f (x) f (y), x, y ∈ G, (1.1)

where G is an abelian group and the unknown function f is defined on G and assumes values in

the complex field C. The theory of d’Alembert’s equation is extensively developed (see [1-20]).

The basic result for the study of (1.1) in the scalar case is a result obtained by Kannappan [8].
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It says that every solution f 6= 0 of d’Alembert’s equation (1.1) has the form

f (x) =
m(x)+m(−x)

2
, x ∈ G,

where m is a homomorphism of (G ,+) into the multiplicative group of non-zero complex

numbers.

In the case where G is an arbitrary group, not necessarily abelian, Davison [6] proved the

following result

Let G be a topological group and f : G→ C a continuous function with f (e) = 1 satisfying

f (xy)+ f (xy−1) = 2 f (x) f (y), x,y ∈ G. (1.2)

Then there is a continuous (group) homomorphism h : G−→ SL2(C) such that

f (x) =
1
2

tr(h(x)), x ∈ G.

Giving solutions of equation (1.2) the theory of representations is introduced by H. Stetkær

in [16]. Precisely, he proved that

Let S be a semigroup, the non-zero continuous solutions f of (1.2) on S are the functions of

the form

f =
1
2

trπ

where π ranges over the 2-dimensional continuous representations of S for which

π(x) ∈ SL2(C) for all x ∈ S.

The operator valued version of (1.1) was studied by Chojnacki [3], Badora [1] and Stetkær

[14,15]. In [17] Székelyhidi determined the matrix valued solution of (1.1), and in [14] the

author studied the continuous solutions f : G−→M2(C) of (1.1).

Let Q8 = {±1,±i,± j,±k} be the quaternion group and Mn(C) the algebra of complex

n×n−matrices. In the present paper we examine the following functional equation

Φ(xy)+Φ(xy−1) = 2Φ(x)Φ(y), x,y ∈ Q8, (1.3)

where Φ is defined on the quaternion group Q8 with values in Mn(C). We will here still call

(1.3) d’Alembert’s functional equation. The main results, Theorem 3.1 and 3.4 are formulated
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for the quaternion group. Generally, a form of solution of Eq. (1.3) in the non-commutative

case is not known.

2. Properties of solution of d’Alembert’s equation

Let n ≥ 1 be an integer and Φ : Q8 → Mn(C) be a solution of the following d’Alembert’s

equation:

Φ(xy)+Φ(xy−1) = 2Φ(x)Φ(y); x,y ∈ Q8. (2.1)

In this section we stabled some properties the solutions of (2.1).

Proposition 2.1. Let Φ be a solution of the equation (2.1). Then

a) Φ(1) is a projection and satisfies Φ(x) = Φ(x)Φ(1) for all x ∈ Q8.

b) Φ is even modulo Φ(1), that is Φ(1)Φ(x) = Φ(1)Φ(x−1) for all x ∈ Q8.

c) Φ is central modulo Φ(1), that is Φ(1)Φ(xy) = Φ(1)Φ(yx) for all x,y ∈ Q8.

d) For all x,y ∈ Q8, Φ(x) and Φ(y) are commutating modulo Φ(1), that is

Φ(1)Φ(x)Φ(y) = Φ(1)Φ(y)Φ(x) .

e) For all P ∈ GLn(C), the function f defined by

f (x) = P−1
Φ(x)P,

is a solution of (2.1).

Proof. a) Putting y = 1 in equation (2.1), we obtain

Φ(x) = Φ(x)Φ(1),

for all x ∈ Q8. In particular, if x = 1, then Φ(1) = Φ(1)2, that is, Φ(1) is a projection.

b) Replacing x by 1 in equation (2.1), we obtain

Φ(y)+Φ(y−1) = 2Φ(1)Φ(y), (2.2)
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multiplying the two members of (2.2) on the left by Φ(1), we see that

Φ(1)Φ(y)+Φ(1)Φ(y−1) = 2Φ(1)Φ(y),

for all y ∈ Q8. Then

Φ(1)Φ(y−1) = Φ(1)Φ(y), f or all y ∈ Q8.

c) If x =±1 or y =±1, then Φ(1)Φ(xy) = Φ(1)Φ(yx). Assume that x, y∈ {±i,± j,±k}, then

xy = (yx)−1 which gives Φ(1)Φ(xy) = Φ(1)Φ((yx)−1). Using b), we get that

Φ(1)Φ(xy) = Φ(1)Φ(yx), f or all x,y ∈ Q8.

d) We multiply equation (2.1) on the left by Φ(1) yielding that

Φ(1)Φ(xy)+Φ(1)Φ(xy−1) = 2Φ(1)Φ(x)Φ(y), x,y ∈ Q8, (2.3)

and interchanging x and y in (2.3) we obtain

Φ(1)Φ(yx)+Φ(1)Φ(yx−1) = 2Φ(1)Φ(y)Φ(x), x,y ∈ Q8. (2.4)

Comparing (2.3) and (2.4) and using b) and c) we infer that

Φ(1)Φ(x)Φ(y) = Φ(1)Φ(y)Φ(x),

for all x,y ∈ Q8.

e) If we multiply the both sides of (2.1) on the left by P−1 and on the right by P, then we get

that

P−1
Φ(xy)P+P−1

Φ(xy−1)P = 2P−1
Φ(x)PP−1

Φ(y)P,

then the function f defined by f (x) = P−1Φ(x)P, x ∈ Q8 is a solution of (2.1).

In particulary, if Φ(1) = In where In is the matrix identity we have the following result.

Corollary 2.2. Let Φ : Q8→Mn(C) be a solution of (2.1), such that Φ(1) = In. Then

b) Φ is even.

c) Φ is central.

d) For all x,y ∈ Q8, we have Φ(x)Φ(y) = Φ(y)Φ(x).
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Proof. The proof of the others assumptions proceeds along the same lines as the one just given,

so we leave it out.

3. Matrix solution of d’Alembert’s equation

Let n be a non-negative integer. First, we determine the solutions Φ of (2.1) such that Φ(1) =

In.

Theorem 3.1. Let Φ : Q8→Mn(C) be a function satisfying Φ(xy)+Φ(xy−1) = 2Φ(x)Φ(y); x,y ∈ Q8,

Φ(1) = In.

Then Φ(−1) = A is a matrix involution, that is A2 = In and

Φ(±i) = Φ(± j) = Φ(±k) =
1√
2
(A+ In)

2.

Proof. In (2.1), we replace x and y by −1 into equation (2.1) yielding that

Φ(1)+Φ(1) = 2Φ(−1)2.

Then Φ(−1)2 = In, that is, Φ(−1) is a matrix involution. Put Φ(−1) = A. Replacing x and y

by ±i in (2.1), we obtain Φ(−1)+Φ(1) = 2Φ(±i)2. Then

Φ(±i)2 =
1
2
(A+ In).

Changing x and y by ± j in (2.1), we get Φ(−1)+Φ(1) = 2Φ(± j)2. Then

Φ(± j)2 =
1
2
(A+ In)

and if x = y =±k, (2.1) implies that Φ(−1)+Φ(1) = 2Φ(±k)2. Then

Φ(±k)2 =
1
2
(A+ In).

We conclude that Φ(±i),Φ(± j) and Φ(±k) are square root of 1
2(A + In), i.e. Φ(±i)2 =

Φ(± j)2 = Φ(±k)2 = 1
2(A+ In)

In the following result, we give the explicit form of solutions of (2.1).
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Theorem 3.2. Let g : Q8→Mn(C) be a function satisfying Φ(xy)+Φ(xy−1) = 2Φ(x)Φ(y), x,y ∈ Q8,

Φ(1) = In.

Then there is P ∈ GLn(C) such that

Φ(−1) = P

Ip 0

0 −Iq

P−1, p+q = n,

and

Φ(±i) = Φ(± j) = Φ(±k) = P

A 0

0 0

P−1,

where 0 is a zero matrix and A ∈Mp(C).

Proof. By Theorem 3.1, Φ(−1) is a matrix involution which implies that there exists P ∈

GLn(C) such that Φ(−1) = P

Ip 0

0 −Iq

P−1, where p+q = n. For all x ∈ {±i,± j,±k} we

find from Theorem 3.1 Φ(x)2 = 1
2(Φ(−1)+ In). Then

Φ(x)2 =
1
2
(Φ(−1)+ In)

=
1
2
(P

Ip 0

0 −Iq

P−1 +PP−1)

=
1
2

P

2Ip 0

0 0

P−1

= P

Ip 0

0 0

P−1,

which shows that for all x ∈ {±i,± j,±k}, Φ(x) is the square root of P

Ip 0

0 0

P−1. Conse-

quently, for all x ∈ {±i,± j,±k} Φ(x) = P

A 0

0 0

P−1, where A ∈Mp(C).
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Remark 3.3. Let 1 ≤ p ≤ n be an integer and A ∈ Mp(C) be a matrix involution, Theorem

3.2 and Proposition 2.1 e) implies that the function f defined by f (x) =

A 0

0 0

 for all x ∈

{±i,± j,±k}, f (1) = In and f (−1) =

Ip 0

0 −Iq

 is solution of (2.1).

In the next theorem, we determine the solutions of the d’Alembert’s functional equation (2.1).

Theorem 3.4. Let Φ : Q8→Mn(C) be a solution of the d’Alembert’s equation

Φ(xy)+Φ(xy−1) = 2Φ(x)Φ(y), x,y ∈ Q8.

Then Φ(1) = P is a matrix projection, Φ(−1) is a square root of P and

Φ(±i)2 = Φ(± j)2 = Φ(±k)2 =
1
2
(Φ(−1)+P).

Proof. According to Proposition 2.1, a) Φ(1) = P is a matrix projection. Substitute x =−1,y =

−1 into equation (2.1), we get Φ(1)+Φ(1) = 2Φ(−1)2. Then Φ(−1)2 = P. Taking y = x in

(2.1), we find that

Φ(x2)+Φ(1) = 2Φ(x)2,

which implies that Φ(x)2 = 1
2(Φ(x2)+P). Then

Φ(x)2 =
1
2
(Φ(−1)+P),

for all x ∈ {±i,± j,±k}.

In the following result, we give the explicit form of solutions of (2.1) such that Φ(1) = P is a

matrix projection.

Theorem 3.5. Let Φ : Q8→Mn(C) be a function satisfying

Φ(xy)+Φ(xy−1) = 2Φ(x)Φ(y), x,y ∈ Q8.
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Then there exist P ∈ GLn(C) such that

Φ(−1) = P.

A 0

0 0

 .P−1, A ∈ GLp(C) and p≤ n

and for all x ∈ {±i,± j,±k}

Φ(x) = P

B 0

0 0

P−1 where B2 =
1
2
(A+ Ip).

Proof. By Proposition 2.1, Φ(1) = P is a matrix projection of rank 1≤ p≤ n. Then there exists

P∈GLn(C) such that Φ(1) = P

Ip 0

0 0

P−1. Or Φ(−1)2 = P. Then there exists p× p-matrix

involution A such that Φ(−1) = P

A 0

0 0

P−1. For all x ∈ {±i,± j,±k}, we from Theorem

3.4 that Φ(x)2 = 1
2(Φ(−1)+P). Then

Φ(x)2 =
1
2
(Φ(−1)+P)

=
1
2
(P

A 0

0 0

P−1 +P

Ip 0

0 0

P−1)

=
1
2

P

A+ Ip 0

0 0

P−1.

The matrix

1
2(A+ Ip) 0

0 0

 is a projection. Indeed,

1
2(A+ Ip) 0

0 0

2

=

1
4(A

2 +2A+ Ip) 0

0 0

2

=

1
4(2A+2Ip) 0

0 0

2

=

1
2(A+ Ip) 0

0 0

 .
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Then Φ(x) = P

B 0

0 0

P−1 where B2 = 1
2(A+ Ip) for all x ∈ {±i,± j,±k}.

Remark 3.6. Let 1≤ p≤ n be an integer and B∈Mp(C) be a matrix involution, From Theorem

3.5 and Proposition 2.1, e) the function f defined by f (x) =

B 0

0 0

 where B2 = 1
2(A+ Ip) for

all x ∈ {±i,± j,±k}, f (1) = In and f (−1) =

A 0

0 0

 is solution of (2.1).
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