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1．Introduction:  

In a matrix form, the symplectic group Sp(2n, q) = {g  GL(2n, q): g
t 
P g = P, where g

t
 is the 

transpose matrix of the matrix g and
 

n n

n n

0 I 0 1 0 1
P =  or  P = diag ,  ..., 

-I 0 1 0 1 0

      
             

}. Since, the 

determinant of any skew-symmetric matrix {A
t
 = –A} of odd size is zero, thus in the symplectic 

case, the dimension must be even. If 1 2

3 4

X X
g = 

X X

 
 
 

, then g  Sp(2n, q) if and only if 

t t t t

1 3 3 1 2 4 4 2X  X   X  X   0  X  X   X  X     and t t

1 4 3 2 nX  X   X  X   I  . Thus, n n

n n

0 I

-I 0

 
 
  , 

t

A 0

0 inv(A )

 
 
  , 

n

n

I B

0 I

 
 
  , 

n

n

Q I -Q

Q-I Q

 
 
   

are in Sp(2n, q), where A is an invertible n×n matrix, B is n × n symmetric 
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matrix, Q is a diagonal matrix of 0’s and 1’s, so that Q
2 
= Q and ( Q - I3 )

2
 = I3 - Q {see [3] and 

[7]}.  

The projective symplectic group PSp(2n, q) is the quotient group PSp(2n, q)  Sp(2n, q) / (Sp(2n, 

q)  Z), where Z is the group of non-zero scalar matrices. The group PSp(2m, q) ( = Sp(2m, q) ) 

is simple, except for   PSp(2, 2), PSp(2, 3) and PSp(4, 2). 

Through this article, G will denote PSp(6, q), q = 2
k
, unless otherwise stated. G is a simple group 

of order 9 6 4 2q (q -1)(q -1)(q -1) and there are two sets which can generate the group Sp(6, q), q even 

by the two elements: 

1

1 . . . . . . 1 . . . .

1 . . . . . . 1 . . .

. . 1 . . . . . 1 . .
 and 

. . . 1 . . . . . 1 .

. . . . 1 . . . . . . 1

. . . . . 1 1 . . . . .









    
    
    
     
    
    
    
       
     

, where α is a generator element of the multiplicative 

group of GF(q) {see [17]}. 

Or by the two elements: 

1

. . . . . . 1 1 1 . .

. 1 . . . . 1 . . . . .

. . . . . . 1 . . . .
 and 

. . . . . . . 1 . 1 .

. . . . 1 . . . . . . 1

. . . . . . . 1 . . .











    
    
    
     
    
    
    
       
     

, where α is a generator element of the multiplicative 

group of GF(q) {see [18]}. 

Inside G, there exist 

1 2 3

4 5 2

6 4 1

1 . .

. 1 .

. . 1

. . . 1 . .

. . . . 1 .

. . . . . 1

x x x

x x x

x x x

  
  
  
   
  
  
  
   
   

 is an elementary group of order q
6 
{see [21]}. G acts 

primitively on the points of the projective space PG(5, q) which is a rank 3 permutation group on 

PG(5, q) and Psp(2n, q) does not 2-transtive on the points of PG(2n-1, q) for all n ≥ 2  {see [2]}.  
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2. The canonical forms for the conjugacy classes of PSp(6, q), q even: 

Each element of Sp(6, q) is an element of GL(6, q) and so there correspond to its characteristic 

polynomial 1 2

1 2 ...n nf f   , where f1 , f2, … are distinct irreducible polynomial over Fq, thus by using 

the method of Bhama Srinivasan {see [16]} that are used for calculating the conjugacy classes 

for Sp(4, q), q is odd,  so, set q = 2
k
 and let α, β and γ be the primitive roots of GF(q), GF(q

2
) and 

GF(q
3
) respectively such that α = β

q+1
 = γ

q2+q+1
. Then, according to the possible factorizations of 

the characteristic polynomial in GF(2
k
), G has the following canonical forms of the conjugacy 

classes: 

Class representative Number of conjugacy classes 

1

1

1

a 0

a

a

a

a

a

a

where





















 
 
 
 
 
 
 
  
 



 

1
( 1)

2
q

 

1

1

1

a

1

1

 0

a

a

a

a

a

a

where





















 
 
 
 
 
 
 
  
 



 

1
( 1)

2
q

 

1

1

1

a

1

1

1

1

 0

a

a

a

a

a

a

where





















 
 
 
 
 
 
 
  
 



 

1
( 1)

2
q
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1

1

1

1 1

a b 0,  0,  , 

a

a

a

a

b

b

a b a bwhere













     







 

 
 
 
 
 
 
 
  
 

   

 

1
( 1)( 3)

4
q q 

 

1

1

1

1 1

a b

1

1

 0,  0,  , 

a

a

a

a

b

b

a b a bwhere













     







 

 
 
 
 
 
 
 
  
 

   

 

1
( 1)( 3)

4
q q 

 

1

1

1

1 1

a b

1 1 1 1

 0,  0,  , 

0,  , , , 

a

a

b

b

c

c

a b a b

c a c a c c b c b

where













     

        







 

   

 
 
 
 
 
 
 
  
 

   

    

 

1
( 1)( 3)( 5)

8
q q q  

 

2

1

1

q \F

a

a

a

a

q

a

q

a

a q
where F





















 
 
 
 
 
 
 
  
 



 

21
( 1)( )

8
q q q 

 



RAUHI I. ELKHATIB*                                                                                                      1273 

2

2

3

1

q \F

a

a

q

a

q

a

q

a

q

a

a q
where F





















 
 
 
 
 
 
 
 
 
 

  

31
( )

6
q q

 

 

3. The maximal subgroups of the symplectic group PSp(6, q), q = 2
k
: 

The main theorem of this section is the following theorem: 

Theorem 3.1: Let G = PSp(6, q), q= 2
k
. If H is a maximal subgroup of G, then H isomorphic to 

one of the following subgroups: 

1. A group G(p), stabilizing a point. This is isomorphic to a group of form  q
5
:(PGL(1, 

q)×PSp(4, q)); 

2. A group G(l), stabilizing a line. This are isomorphic to a group of form   q
7
:(PGL(2, 

q)×PSp(2, q)); 

3. A group G(2-), stabilizing a plane. This are isomorphic to a group of form q
6
:PGL(3, q); 

4. PSp(2, q) × PSp(4, q); 

5. H1 = PSp(2, q):S3 ; 

6. H2 = PSp(2, q
3
).3; 

7. H3 = PSp(6, q), where q = 2
k 

and k is a prime number divides k; 

8. PSGO
+
(6, q)  PSL(4, q), where q = 2

k
; 

9. PSGO
-
(6, q)  PGSU(4, q), where q = 2

k
; 

10. PGSU(3, 3). 

 



1274                                  ON THE SYMPLECTIC GROUP PSp(6, q), where q = 2K 

We will prove this theorem by Aschbacher’s theorem (Result 3.1.9) {see [1]}: 

3.1 Aschbacher’s theorem: 

A classification of the maximal subgroups of GL(n, q) by Aschbacher’s theorem {see [1]}, is a 

very strong tool in the finite groups for finding the maximal subgroups of finite linear groups. 

There are many good works in finite groups which simplify this theorem, see for example {[12] 

and [19]}. But before starting a brief description of this theorem, we will give the following 

definitions: 

 

Definition 3.1.1: A split extension ( a semidirect product ) A:B is a group G with a normal 

subgroup A and a subgroup B such that G = AB and A∩B = 1. A non-split extension A.B is a 

group G with a normal subgroup A and   G/A  B, but with no subgroup B satisfying G = AB 

and A∩B = 1. A group G = A B is a central product of its subgroups A and B if G = AB and [A, 

B], the commutator of A and B = {1}, in this case A and B are normal subgroups of G and A∩B 

≤ Z(G). If A∩B = {1}, then A B = AB. 

 

Definition 3.1.2: Let V be a vector space of  dimensional n over a  finite field q, a subgroup H of 

GL(n, q) is called reducible if it stabilizes a proper nontrivial subspace of  V. If H is not 

reducible, then it is called irreducible. If H is irreducible for all field extension F of Fq, then H is 

absolutely irreducible. An irreducible subgroup H of GL(n, q) is called imprimitive if there are 

subspaces V1, V2, …, Vk, k ≥ 2, of  V  such that  V = V1 … Vk and H permutes the elements 

of the set { V1, V2, …, Vk} among themselves.  When H is not imprimitive then it is called 

primitive. 

 

Definition 3.1.3: A group H ≤ GL(n, q) is a superfield group of degree s if for some s divides n 

with s  1, the group H may be embedded in GL(n/s, q
s 
). 

 

Definition 3.1.4: If the group H ≤ GL(n, q) preserves a decomposition V = V1V2 with dim(V1) 

≠ dim(V2), then H is a tensor product group. 
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Definition 3.1.5: Suppose that n = r
m

 and m  1. If the group H ≤ GL(n, q) preserves a 

decomposition V = V1 … Vm with dim(Vi) = r for 1 ≤  i  ≤  m, then H is a tensor induced 

group. 

 

Definition 3.1.6: A group H ≤ GL(n, q) is a subfield group if there exists a subfield 
oq qF F  such 

that H can be embedded in GL(n, qo).Z, where Z is the centre group of H. 

 

Definition 3.1.7: A p-group H is called a special group if Z(H) = H  and is called an extraspecial 

group if also |Z(H)| = p. 

 

Definition 3.1.8: Let Z denote the centre group of H. Then H is almost simple modulo scalars if 

there is a non-abelian simple group T such that T ≤ H/Z ≤ Aut(T), the automorphism group of T. 

 

A classification of the maximal subgroups of GL(n, q) by Aschbacher’s theorem {see [1]}, can 

be  summarized as follows:  

Result 3.1.9.  ( Aschbacher’s theorem ): 

Let H be a subgroup of GL(n, q), q = p
e
 with the centre Z and let V be the underlying n-

dimensional vector space over a field q. If H is a maximal subgroup of GL(n, q), then one of the 

following holds: 

C1:- H is a reducible group. 

C2:- H is an imprimitive group. 

C3:- H is a superfield group. 

C4:- H is a tensor product group. 

C5:- H is a subfield group. 
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C6:- H normalizes an irreducible extraspecial or symplectic-type group.  

C7:- H is a tensor induced group. 

C8:- H normalizes a classical group in its natural representation. 

C9:- H is absolutely irreducible and H/(HZ) is almost simple.  

 

3.2. Classes C1 – C8 of Result 3.1.9: 

In this section, we will find the maximal subgroups in the classes C1 – C8 of Result 3.1.9: 

Lemma 3.2.1: There are four reducible maximal subgroups of C1 in G which are:  

1. A group G(p), stabilizing a point. This is isomorphic to a group of form q
5
:(PGL(1, 

q)×PSp(4, q)). 

2. A group G(l), stabilizing a line. This are isomorphic to a group of form q
7
:(PGL(2, 

q)×PSp(2, q)).  

3. A group G(2-), stabilizing a plane. This are isomorphic to a group of form q
6
:PGL(3, q). 

4. PSp(2, q)×PSp(4, q). 

Proof:  

Let H be a reducible subgroup of the symplectic group Sp(2n, q) and W be an invariant subspace 

of H. Let r = dim (W), 1 ≤ r ≤ n/2 and let Gr = G(W) denote the subgroup of Sp(2n, q) containing 

all elements fixing W as a whole and H  G(W). with a suitable choice of a basis, G(W) consists of 

all matrices of the form 

A C D

B C

A

 
 
 
 
 

 where n = r + m, C is  elementary abelian groups of order 

q
2rm

 , A is a p- group of upper triangular matrix of  order 
r(r+1)

2q , D∈GL(r, q), B∈Sp(2m, q) such 

that A
t 
P A = P with 

0

0

r r

r r

I
P

I

 
  

 
. Thus the maximal parabolic subgroups are the stabilizers of 

totally isotopic subspaces <e1, e2, …, er> is isomorphic to a group of the form 
r(r+1)

2
2q

rm

:(GL(r, 



RAUHI I. ELKHATIB*                                                                                                      1277 

q)×Sp(2m, q)). 

Thus we have the following reducible maximal subgroups of PSp(6, q): 

1. If r = 1 and m = 2, then we get a group G(p) stabilizing a point is isomorphic to a group of 

the form q
5
:(PGL(1, q)×PSp(4, q)). 

2. If r = 2 and m = 1, then we get a group G(l) stabilizing a line is isomorphic to a group of 

the form q
7
:(PGL(2, q)×PSp(2, q)). 

3. If r = 3 and m = 0, then we get a group G(2-π) stabilizing a plane is isomorphic to a group 

of the form q
6
:PGL(3, q). 

 

Also, H is a maximal reducible subgroup of the unitary group Sp(2n, q) which stabilizers of non-

singular subspaces of dimension d have the shape H = Sp(2d, q) ×Sp(2b, q) where n = d + b and 

d < b. Thus, we have the following reducible maximal subgroups of PSp(6, q): 

4. If d = 1 and b = 2, then we get a group PSp(2, q) ×PSp(4, q). 

Which prove the points (1), (2), (3), and (4) of the main theorem 1.1. 

 

Note: To find the Sylow’s q-subgroup of the group Sp(6, q), substitute the Sylow’s q-subgroup 

for GL(3, q) in place of GL(3, q) in the group G(2-) which stabilizing a plane of Sp(6, q), then we 

have  

1 2 3 1 2

4 5 3

6

1 2 3

4 5

6

1

0 0 1

0 0 0 0 1

0 0 0

0 0 0 0

0 0 0 0 0

y y y x x

y y x

y

y y y

y y

y

  
  
  
   
  
  
  
   
     

is the Sylow’s q-subgroup of order q
9

 for the symplectic group Sp(6, 

q). 

 

Lemma 3.2.2: There is one imprimitive group of C2 in G which is H1 = PSp(2, q):S3 

Proof:  
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If H is imprimitive of the symplectic group Sp(2n, q), then H preserves a decomposition of V as 

a direct sum V = V1…Vt,   t  ≥ 2, into subspaces of V, each of dimension m = n/t, which are 

permuted transitively by H, thus H are isomorphic to Sp(2m, q):St with 0  m  n = mt, t ≥ 2. 

Consequently, there are one imprimitive group of C2 in PSp(6, q) which is H1 = PSp(2, q):S3, a 

group preserving three mutually skew lines of projective plane PG(5, q) and H1 interchanges 

them. This proves the point (5) of the main theorem 3.1. 

 

Lemma 3.2.3: There is one semilinear group of C3 in G which is H2 = PSp(2, q
3
).3 

Proof:  

Let H is (superfield group) a semilinear groups of PSp(2n, q) over extension field Fr of GF(q) of 

prime degree r  1 where r prime number divide n. Thus V is an Fr-vector space in a natural way, 

so there is an F-vector space isomorphism between 2n-dimensional vector space over F and the 

m-dimensional vector space over Fr, where m=n/r, thus H embeds in PSp(2m, q
r
).r. 

Consequently, there is one C3 group in PSp(6, q) which is H2 = PSp(2, q
3
).3.  

This proves the point (6) of the main theorem 3.1. 

 

Note:  From [14], PSp(2, q
n
) with n odd and q even is a maximal subgroup of PSp(2n, q) and 

PSp(4, q
n
) with q even, is a maximal subgroup of PSp(4n, q) which also prove that H2 is 

maximal subgroup of G. 

 

Lemma 3.2.4: There is no a tensor product group of C4 in G. 

Proof:  

If H is a tensor product group of Sp(2n, q), then H preserves a decomposition of V as a tensor 

product V1 V2, where dim(V1) ≠ dim(V2) of spaces of dimensions 2k and 2m over GF(q) and 

2n = 4km, k ≠ m. So, H stabilize the tensor product decomposition F
2k
F

2m
. Thus, H is a 

subgroup of the central product of Sp(2k, q) Sp(2m, q). Consequently, there are no C4 groups in 

PSp(6, q) since n = 3 is an odd number. 
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Lemma 3.2.5: There are subfield groups of C5 in G which are H3 = PSp(6, q), where q = 2
k
 and 

k is a prime number divides k.. 

Proof:  

If H is a subfield group of the symplectic group Sp(2n, q) and q = p
k
, then H is the symplectic 

group over subfield of GF(q) of prime index. Thus H can be embedded in Sp(2n, p
f
), where f is 

prime number  divides k. Consequently, since q = 2
k
, then there are subfield groups in PSp(6, q) 

which are H3 = PSp(6, q), where q = 2
k

 and k is a prime number divides k. This proves the 

point (7) of the main theorem 3.1. 

 

 

Lemma 3.2.6: There are no C6 groups in G. 

Proof:  

For the dimension 2n = r 
m

, if r = 2 and 4 divides q-1, then H = 2
2m+1

.O
-
(2m, 2) normalizes a 2-

group of symplectic type of order 2
2m+2

 {see [12]}, consequently, there are no C6 groups in 

PSp(6, q) since 6 is not prime power. 

 

Lemma 3.2.7: There is no tensor induced group of C7 in G. 

Proof:  

If H is a tensor induced of the symplectic group Sp(2n, q), then H preserves a decomposition of 

V as V1 V2 …  Vr, where Vi are isomorphic, each Vi has dimension 2m, dim V =2n =(2m)
r
 , 

and the set of Vi  is permuted by H, so H stabilize the tensor product decomposition 

F
2m
F

2m
 … F

2m
, where F = Fq. Thus, H/Z ≤ PSp(2m, q):Sr. Consequently, there are no C7 

groups in PSp(6, q) since 6 is not a proper power. 

 

Lemma 3.2.8: There are two maximal C8 groups in G which are PSGO
+
(6, q) and PSGO

-
(6, q).   
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Proof:  

The groups in this class are stabilizers of forms, this means H is the normalizers of one classical 

groups PSL(2n, q), PO

(2n, q) or PSU(2n, q) as a subgroup of PSp(2n, q). But from  [5] and [10], 

if q is even, then the normalizers of PO
+
(2n, q)  and PO

-
(2n, q) are maximal subgroups of  

PSp(2n, q) except when n = 2 and  = -. Consequently, In C8, there are two irreducible maximal 

subgroups in PSp(6, q) that are PSGO
+
(6, q) and PSGO

-
(6, q). Which prove the points (8) and (9) 

of theorem 3.1.  

 

In the following, we will find the maximal subgroups of class C9 of Result 3.1.9: 

4. The maximal subgroups of C9:  

In Corollary 4.1, we will find the primitive non abelian simple subgroups of G. In Theorem 4.2, 

we will find the maximal primitive subgroups H of G which have the property that the minimal 

normal subgroup M of H is not abelian group and simple. We will prove this Theorem 4.2 by 

finding the normalizers of the groups of Corollary 4.1 and determine which of them are maximal.  

 

Corollary 4.1: If M is a non abelian simple group of a primitive subgroup H of G, then M is 

isomorphic to one of the following groups: 

 PSp(6, 2); 

 PSO
-
(6, q), where q = 2

k
; 

 PSO
+
(6, q), where q = 2

k
; 

 PΩ
-
(6, q)  PSU(4, q), where q = 2

k
; 

 PΩ
-
(6, 2)  PSU(4, 2); 

 PΩ
+
(6, 2)  PSL(4, 2), 

 PSU(3, 3); 

Proof:  
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Let H be a primitive subgroup of G with a minimal normal subgroup M of H which is not abelian 

and simple. So, we will discuss the possibilities of M of H according to: 

(I) M contains transvections, {section 4.1}. 

(II) M is a finite primitive subgroup of rank three, {section 4.2}. 

 

4.1 Primitive subgroups H of G which have the property that a minimal normal subgroup 

of H is not abelian is generated by transvections: 

 

Definition 4.1.1:  An element TGL(n, q) is called a transvection if  T satisfies rank(T – In) = 1 

and (T – In)
 2  

= 0. The collineation of projective space induced by a transvection is called elation. 

The axis of the transvection is the hyperplane Ker(T – In); this subspace is fixed elementwise by 

T, Dually, the centre of T is the image of  (T - In).  

 

To find the primitive subgroups H of G which have the property that a minimal normal subgroup 

of H is not abelian and is generated by transvections, we will use the following result of Kantor 

{see [9]}: 

Result 4.1.2: 

Let H be a proper irreducible subgroup of Sp(2n, q
i 
) generated by transvections. Then H is one 

of: 

1. Sp(2n, q); 

2. O

(n, q

i
) for q even; 

3. S2n or S2n+1; 

4. SL(2, 5)  Sp(2, 9
i
); 

5. Dihedral subgroups of Sp(2, 2
i
). 
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In the following Corollary, we will find the primitive subgroups of PSp(6, q) which generated by 

transvections:  

Corollary 4.1.3: If M is a non abelian simple group and contains some transvections, then M is 

isomorphic to one of the groups:  

(i) PSp(6, q), where q = 2
k 

and k is a prime number divides k; 

(ii) PSO
-
(6, q); 

(iii) PSO
+
(6, q). 

Proof:  

We will prove this Corollary by discussing the different possibilities of Result (4.1.2), thus M is 

isomorphic to one of the following groups:  

1. From Lemma 3.2.5, PSp(6, q) G, where q = 2
k 

and k is a prime number divides k; 

2. From Lemma 3.2.8, PSO
-
(6, q) and PSO

+
(6, q) are maximal subgroups of  PSp(6, q). 

3. S6  G, since, the irreducible 2-modular characters for S6 by GAP are: 

[ [ 1, 1 ], [ 4, 2 ], [ 16, 1 ] ]  

(gap>  CharacterDegrees(CharacterTable("S6")mod 2); ) 

 And none of these characters of degree 6. 

4. S7  G, since the irreducible 2-modular characters for S7 by GAP are: 

[ [ 1, 1 ], [ 6, 1 ], [ 8, 1 ], [ 14, 1 ], [ 20, 1 ] ] 

  (gap>  CharacterDegrees(CharacterTable("S7")mod 2); ) 

Thus there is one irreducible character of degree 6 but the symmetric group S7 is not a simple 

group. 

5. SL(2, 5)  G, since the irreducible 2-modular characters for SL(2, 5) by GAP are: 

[ [ 1, 1 ], [ 2, 2 ], [ 4, 1 ] ] 
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(gap> CharacterDegrees(CharacterTable("L2(5)") mod 2);) 

 And none of these characters of degree 6. 

6. If M is a Dihedral subgroups of Sp(2, 2
i
), then M  G, since M is not a simple group. 

 

4.2 Primitive subgroups H of G which have the property that a minimal normal subgroup 

M of H which is not abelian is a finite primitive subgroup of rank three: 

A group G has rank 3 in its permutation representation on the cosets of a subgroup K if there are 

exactly 3  (K, K )-double cosets. Indeed, the rank of a transitive permutation group is the number 

of orbits of the stabilizer of a point, thus if we consider PSp(2m, q), m ≥ 2 and q is of a prime 

power, as group of permutations of the absolute points of the corresponding projective space, 

then PSp(2m, q) is a transitive group of rank 3. Indeed, the pointwise stabilizer of PSp(2m, q) 

has 3 orbits of lengths 1, q(q
2m-2

 - l)/(q - 1) and q
2m-1

 {see [8] and [22]}.  

In this section, we will consider the minimal normal subgroup M of H is not abelian and a finite 

primitive subgroup of rank three, so will use the classification of Kantor and Liebler {Result 

4.2.2} for the primitive groups of rank three {see [8]}. The following Corollary is the main result 

of this section: 

Corollary 4.2.1: If M is a non abelian simple group which is a finite primitive subgroup of rank 

three group of H, then M is isomorphic to one of the following groups: 

1. PΩ
-
(6, q)  PSU(4, q), where q = 2

k
; 

2. PΩ
+
(6, 2)  PSL(4, 2); 

3. PΩ
-
(6, 2)  PSU(4, 2), 

4. PSU(3, 3); 

5. PSp(6, 2); 

Proof: 

Let M is not an abelian finite primitive subgroup of rank three of H, and will use the 
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classification of Kantor and Liebler {Result 4.2.2} for the primitive groups of rank three {see 

[8]}. So, we will prove Corollary 4.2.1 by series of Lemmas 4.2.3 through Lemmas 4.2.18 and 

Result 4.2.2. 

 

Result 4.2.2:  

If Y acts as a primitive rank 3 permutation group on the set X of cosets of a subgroup K of 

Sp(2n-2, q), Ω
±
(2n, q), Ω(2n-1, q) or SU(n, q). Then for n 3, Y has a simple normal subgroup 

M
*
, and M

* 
 Y Aut(M

*
), where M

*
 as follows: 

(i) M = Sp(4, q), SU(4, q), SU(5, q), Ω
-
(6, q), Ω

+
(8, q) or Ω

+
(10, q).  

(ii) M = SU(n, 2), Ω
±
(2n, 2), Ω

±
(2n, 3) or Ω(2n-1, 3). 

(iii) M = Ω(2n-1, 4) or Ω(2n-1, 8); 

(iv) M = SU(3, 3);  

(v) SU(3, 5);  

(vi) SU(4, 3);  

(vii) Sp(6, 2);   

(viii) Ω(7, 3);  

(ix) SU(6, 2); 

 

In the following, we will discuss the different possibilities of Result 4.2.2; 

Lemma 4.2.3: If M = PSp(4, q), then M  G. 

Proof: 

PSp(2n, q), n ≥ 2, has no projective representation in G of degree less than ½(q
n
-1), if q is odd, 

and ½(q
n-1

)(q
n-1

-1)(q-1) if q is even, {see [13] and [15]}, thus PSp(4, q), has no projective 

representation in G for all n ≥ 2, thus M  G. 

 

Lemma 4.2.4: PSU(4, q)  PΩ
-
(6, q)  G. 
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Proof: 

From Lemma 3.2.8, PΩ
-
(6, q) is irreducible subgroup of G, consequentially PSU(4, q)  PΩ

-
(6, q) 

 G. Which prove the point (1) of Corollary 4.2.1. 

 

Lemma 4.2.5: PSU(5, q)  G. 

Proof: 

PSU(n, q), n ≥ 3, has no projective representation in G of degree less than q(q
n-1

-1)/(q+1), if n is 

odd, and (q
n 

-1)/(q+1), if n is even, {see [13] and [15]}, thus PSU(5, q), has no projective 

representation in G for all q ≥ 2, thus PSU(5, q) G. 

 

Lemma 4.2.6: PΩ
+
 (8, q)  G, PΩ

+
 (10, q)  G. 

Proof: 

PΩ
+
(2n, q), n ≥ 4, q ≠2, 3, 5, has no projective representation in G of degree less than (q

n-1
 -

1 )( q
n-2

 + 1), and PΩ
+
(2n, q), n ≥ 4, q = 2, 3 or 5, has no projective representation in G of degree 

less than q
n-2

( q
n-1

-1), {see [13] and [15]}, but these bounds are greater than 6 for all n ≥ 4, thus 

PΩ
+
(8, q) G and PΩ

+
(10, q) G. 

 

Lemma 4.2.7: if M = PSU(n, 2), then  PSU(4, 2)  G  

Proof: 

In our case, 2n-2 = 6, thus n = 4 and, the irreducible 2-modular characters for PSU(4, 2) by GAP 

are:  

[ [ 1, 1 ], [ 4, 2 ], [ 6, 1 ], [ 14, 1 ], [ 20, 2 ], [ 64, 1 ] ] 

{ gap> CharacterDegrees(CharacterTable("U4(2)")mod 2); } 

Thus, there is one irreducible character of degree 6, so PSU(4, 2)  G. Which prove the point (3) 
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of Corollary 4.2.1.  

 

Lemma 4.2.8: If M = PΩ
±
(2n, 2), then M  G. 

Proof: 

In our case n = 4, thus we need to consider PΩ
±
(8, 2): 

 PΩ
+
(2n, q), n ≥ 4, q = 2 has no projective representation in G of degree less than q

n-2
( q

n-

1
-1), {see [13] and [15]}, but this bound is greater than 6 for all n ≥ 4 and q = 2, thus PΩ

+
(8, 2) 

G. 

 PΩ
-
(2n, q), n ≥ 4, has no projective representation in G of degree less than (q

n-1
 + 1)( q

n-2
 

- 1), {see [13] and [15]}, but this bound is greater than 6 for all n ≥ 4 and q = 2, thus PΩ
-
(8, 2) 

G. 

 

Lemma 4.2.9: If M = PΩ
±
(2n, 3), then M  G. 

Proof: 

In our case n = 4, thus we need to consider PΩ
±
(8, 3): 

 PΩ
+
(2n, q), n ≥ 4, q = 2 has no projective representation in G of degree less than q

n-2
( q

n-

1
-1), {see [13] and [15]}, but this bound is greater than 6 for all n ≥ 4 and q = 3, thus PΩ

+
(8, 3) 

G. 

 PΩ
-
(2n, q), n ≥ 4, has no projective representation in G of degree less than (q

n-1
 + 1)( q

n-2
 

- 1), {see [13] and [15]}, but this bound is greater than 6 for all n ≥ 4 and q = 3, thus PΩ
-
(8, 3) 

G. 

 

Lemma 4.2.10: If M = PΩ(2n-1, 3), then M  G. 

Proof: 
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In our case n = 4, thus, we have PΩ(7, 3)  G, since PΩ(2n+1, q), n ≥ 3, q = 3, has no projective 

representation in G of degree less than q
n-1

(q
n-1

- 1), {see [13] and [15]}, which is greater than 6 

for all n ≥ 3 and q = 3. 

 

Lemma 4.2.11: If M = PΩ(2n-1, 4), then M  G. 

Proof: 

In our case n = 4, thus we have PΩ(7, 4)  G. since, PΩ(2n+1, q)  PSp(2n, q) for q even, then 

PΩ(7, 4)  PSp(7, 4), and PSp(2n, q), n ≥ 2, has no projective representation in G of degree less 

than ½(q
n-1

)(q
n-1

-1)(q-1) if q is even {see [13] and [15]}, which is greater than 6 for all n ≥ 2 and 

q = 4. 

 

Lemma 4.2.12: If M = PΩ(2n-1, 8), then M  G. 

Proof: 

In our case n=4, thus we have PΩ(7, 8)  G. since, PΩ(2n+1, q)  PSp(2n, q) for q even, then 

PΩ(7, 8)  PSp(7, 8), and PSp(2n, q), n ≥ 2, has no projective representation in G of degree less 

than ½(q
n-1

)(q
n-1

-1)(q-1) if q is even {see [13] and [15]}, which is greater than 6 for all n ≥ 2 and 

q = 8. 

 

Lemma 4.2.13: PSU(3, 3)  G. 

Proof: 

The irreducible 2-modular characters for PSU(3, 3) by GAP are: 

[ [ 1, 1 ], [ 6, 1 ], [ 14, 1 ], [ 32, 2 ] ], 

{gap> CharacterDegrees(CharacterTable("U3(3)")mod 2);} 

Then there is one irreducible character of degree 6, thus PSU(3, 3)  G. Which prove the point 

(4) of Corollary 4.2.1. 
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Lemma 4.2.14: PSU(3, 5)  G. 

Proof: 

Since the irreducible 2-modular characters for PSU(3, 5) by GAP are: 

[ [ 1, 1 ], [ 20, 1 ], [ 28, 3 ], [ 104, 1 ], [ 144, 2 ] ] 

( gap> CharacterDegrees(CharacterTable("U3(5)")mod 2); ) 

And none of these characters of degree 6. 

 

Lemma 4.2.15: PSU(4, 3)  G. 

Proof: 

Since the irreducible 2-modular characters for PSU(3, 5) by GAP are: 

[ [ 1, 1 ], [ 20, 1 ], [ 34, 2 ], [ 70, 4 ], [ 120, 1 ], [ 640, 2 ],[ 896, 1 ] ] 

( gap> CharacterDegrees(CharacterTable("U4(3)")mod 2); ) 

And none of these characters of degree 6. 

 

Lemma 4.2.16: PSp(6, 2)  G. 

Proof: 

From Corollary 4.1.3 PSp(6, 2)  G which prove the point (5) of Corollary 4.2.1. 

 

Lemma 4.2.17: PΩ(7, 3)  G. 

Proof: 

See the proof of Lemma 4.2.110. 

 

 

Lemma 4.2.18: PSU(6, 2)  G. 
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Proof: 

Since the irreducible 2-modular characters for PSU(6, 2) by GAP are: 

[ [ 1, 1 ], [ 20, 1 ], [ 34, 1 ], [ 70, 2 ], [ 154, 1 ], [ 400, 1 ], [ 896, 2 ], [ 1960, 1 ], [ 3114, 1 ], 

[ 32768, 1 ] ] 

( gap> CharacterDegrees(CharacterTable("U6(2)")mod 2); ) 

And none of these characters of degree 6. 

 

Now, we will determine the maximal primitive group of C9: 

Theorem 4.2: If H is a maximal primitive subgroup of G which has the property that a minimal 

normal subgroup M of H is not abelian group, then H is isomorphic to one of the following 

subgroups of G: 

(i) PΩ
-
(6, q)  PSU(4, q), where q = 2

k
; 

(ii) PSGO
+
(6, q), where q = 2

k
; 

(iii) PGSU(3, 3); 

Proof: 

We will prove this theorem by finding the normalizers N of the groups of Corollary 4.1 and 

determine which of them are maximal:  

From [4], the normalizer of Sp(2n, k ) in SL(2n, k) is SGSp(2n, k) = GSp(2n, k)  SL(2n, k). 

From [11], the normalizer of SU(n, k) in SL(n, k) is SGU(n, k) = GU(n, k)  SL(n, k). From [10], 

the normalizer of SO(n, k ) in SL(n, k) is SGO(n, k) = GO(n, k)  SL(n, k). Thus,  

 If Y = PSp(6, 2), then N = PSGSp(6, 2) but in PSp(6, q), PSGSp(6, 2) = PSp(6, 2), in this 

case Y is a subgroup of PSp(6, q), where q = 2
k

 and k is a prime number divides k, thus Y is 

not a maximal subgroup of G. 

 If Y = PSO
-
(6, q), then N = PSGO

-
(6, q), which prove the point (9) of theorem 3.1. 

 If Y = PSO
+
(6, q), then N = PSGO

+
(6, q), which prove the point (8) of theorem 3.1. 
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 If Y = PΩ
-
(6, q)  PSU(4, q), where q = 2

k
, then N = PSGO

-
(6, q)  PSGU(4, q), which 

prove the point (8) of theorem 3.1. 

 If Y = PΩ
+
(6, 2)  PSL(4, 2), then N = PSGO

+
(6, 2), but PSGO

+
(6, 2)  PSGO

+
(6, q) 

where q = 2
k
, thus Y is not a maximal subgroup of G. 

 If Y = PSU(3, 3), then N = PSGU(3, 3). Which prove the point (10) of theorem 3.1. 

This completes the proof of theorem 3.1. 
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