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Abstract. In this paper, we obtain some new coincidence and common fixed point theorems for two mappings in

the N-cone metric space, introduced by Malviya and Fisher [4]. The results presented in this paper improve and

generalize the corresponding results in the literature.
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1. Introduction

In 2007, Huang and Zhang [1] have replaced the real numbers by ordering Banach space and

defining cone metric space. They have proved some fixed point theorems of contractive map-

pings on cone metric spaces. The study of fixed point theorems in such spaces is followed by

some other mathematicians;see [6-14]. In 2010, Aage and Salunke [2]introduced a generalized

D∗-metric space which generalized cone metric space. And Beg et al. [3] introduced G-cone

metric space.

Very recently, Malviya and Fisher [4] introduced the notion of N-cone metric space and

proved fixed point theorems for asymptotically regular maps. This new notion generalized the
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notion of G-cone metric space and generalized D∗-metric space. In 2015, Jerolina, Geeta and

Neeraj [5] proved unique fixed point theorems for contractive maps in N-cone metric spaces.

In this paper, we prove some new fixed point theorems for two mappings in N-cone metric

spaces. And our results also extend and improve recent related results.

2. Preliminaries

Consistent with Huang and Zhang [1], the following definitions and results will be needed in

the sequel.

Let E be a real Banach space. A subset P of E is called a cone if and only if:

(a) P is closed,non-empty and P 6= {0};

(b) ∀a,b ∈ R,a,b≥ 0,∀x,y ∈ P imply that ax+by ∈ P;

(C) P∩ (−P) = {0}.

Given a cone P⊂ E, we define a partial ordering ≤ with respect to P by x ≤ y if and only if

y−x∈ P. A cone P is said to be normal if there exists a constant K > 0 such that for all x,y∈ E,

0 ≤ x ≤ y implies ‖ x ‖≤ K ‖ y ‖. The least position number satisfying the above inequality is

called the normal constant of P. We shall write x < y to indicate that x ≤ y but x 6= y, while

x� y stand for y− x ∈ intP, intP denotes the interior of P.

Definition 1.1. [4] Let X be a nonempty set. An N-cone metric on X is a function N : X3→ E

satisfies the following conditions: for all x,y,z,a ∈ X ,

(1) N(x,y,z)≥ 0 ;

(2) N(x,y,z) = 0 if and only if x = y = z;

(3) N(x,y,z)≤ N(x,x,a)+N(y,y,a)+N(z,z,a).

Then N is called an N-cone metric and (X ,N) is called an N-cone metric space.

Remark 1.2. [4] It is easy to see that every generalized-D∗-metric space is an N-cone metric

space but in general, the converse is not true, see the following example.

Example Let E = R3,P = {(x,y,z) ∈ E,x,y,z≥ 0},X = R and N : X ×X ×X −→ E is defined

by

N(x,y,z) = (α(| y+ z−2x |+ | y− z |),β (| y+ z−2x |+ | y− z |),γ(| y+ z−2x |+ | y− z |)),
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where α,β ,γ are positive constants. Then (X ,N) is an N-cone metric space but not a generalized-

D∗-metric space,because N is not symmetric.

Lemma 1.3. [4] If (X ,N) be an N-cone metric space, then for all x,y ∈ X, we have

N(x,x,y) = N(y,y,x)

Proof. By the third condition of N-cone metric, we get

N(x,x,y)≤ N(x,x,x)+N(x,x,x)+N(y,y,x) = N(y,y,x)

and similarly

N(y,y,x)≤ N(y,y,y)+N(y,y,y)+N(x,x,y) = N(x,x,y).

Hence we obtain N(x,x,y) = N(y,y,x).

Definition 1.4. [4] Let (X ,N) be an N-cone metric space, {xn} be a sequence in X and x ∈ X .

If for every c ∈ E with 0� c, there is an N such that for all n > N, N(xn,xn,x)� c, then {xn}

is said to be convergent. If {xn} converges to x and x is the limit of {xn}. We denote this by

{xn}→ x as n→ ∞.

Lemma 1.5. [4] Let (X ,N) be an N-cone metric space and P be a normal cone with normal

constant K. Let {xn} be a sequence in X. If {xn} converges to x and {xn} also converges to y,

then x = y.

Definition 1.6. [5] Let (X ,N) be an N-cone metric space and {xn} be a sequence in X .If for any

c ∈ E with 0� c, there is an N such that for all n,m > N,N(xn,xn,xm)� c, then {xn} is called

a cauchy sequence in X .

Definition 1.7. [5] Let (X ,N) be an N-cone metric space. If every cauchy sequence in X is

convergent in X , then X is called a complete N-cone metric space.

Lemma 1.8. [5] Let (X ,N) be an N-cone metric space and P be a normal cone with normal

constant K. Let {xn} and {yn} be two sequence in X and that xn→ x,yn→ y as n→ ∞, then

N(xn,xn,yn)→ N(x,x,y) as n→ ∞.

Definition 1.9. [2] Let f and g be self maps on a set X . If w = f x = gx for some x in X , then x

is called a coincidence point of f and g, and w is called a point of coincidence of f and g.
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Definition 1.10. [14] Let f and g be self maps on a set X . Then f and g are said to be weakiy

compatible if they commute at every coincidence point.

Proposition 1.11. [2] Let f and g be weakly compatible self maps of a set X. If f and g have a

unique point of coincidence w = f x = gx, then w is the unique common fixed point of f and g.

3. Main results

Lemma 3.1. If (X ,N) be an N-cone metric space, then for all x,y ∈ X, we have

N(x,y,y)≤ 2N(y,y,x) and N(x,y,y)≤ N(x,x,y) .

Proof. By the third condition of N-cone metric, we get

N(x,y,y)≤ N(x,x,x)+N(y,y,x)+N(y,y,x) = 2N(y,y,x)

and similarly

N(x,y,y)≤ N(x,x,y)+N(y,y,y)+N(y,y,y) = N(x,x,y).

Hence we obtain N(x,y,y)≤ 2N(y,y,x) and N(x,y,y)≤ N(x,x,y).

Theorem 3.2. Let (X ,N) be an N-cone metric space, P be a normal cone with normal constant

K and f ,g : X → X be two mappings which satisfy the following conditions:

(i) f (X)⊂ g(X);

(ii) f (X) or g(X) is complete;

(iii) N( f x, f y, f z)≤ aN(gx,gy,gz)+bN(gx, f x, f x)+ cN(gy, f y, f y)+dN(gz, f z, f z)

for all x,y,z ∈ X, where a,b,c,d ≥ 0, a+ 4b+ 4c+ 2d < 1, then f and g have a unique point

of coincidence in X. Moreover if f and g are weakly compatible,then f and g have a unique

common fixed point.
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Proof. Taking x0 ∈ X , we see that there exist x1 ∈ X such that f x0 = gx1. In this way, we

construct sequences {gxn} with f xn−1 = gxn. From Condition (iii) and Lemma 3.1, we have

N(gxn+1,gxn+1,gxn) = N( f xn, f xn, f xn−1)

≤ aN(gxn,gxn,gxn−1)+bN(gxn, f xn, f xn)

+ cN(gxn, f xn, f xn)+dN(gxn−1, f xn−1, f xn−1)

= aN(gxn,gxn,gxn−1)+bN(gxn,gxn+1,gxn+1)

+ cN(gxn,gxn+1,gxn+1)+dN(gxn−1,gxn,gxn)

≤ aN(gxn,gxn,gxn−1)+2bN(gxn+1,gxn+1,gxn)

+2cN(gxn+1,gxn+1,gxn)+2dN(gxn,gxn,gxn−1)

= (a+2d)N(gxn,gxn,gxn−1)+2(b+ c)N(gxn+1,gxn+1,gxn).

This implies N(gxn+1,gxn+1,gxn) ≤ qN(gxn,gxn,gxn−1), where q = a+2d
1−2(b+c) and 0 < q < 1.

By repeated application of above inequality, we have

N(gxn+1,gxn+1,gxn) ≤ qnN(gx1,gx1,gx0).

For all n,m ∈ N,n < m, we see that

N(gxn,gxn,gxm) ≤ 2N(gxn,gxn,gxn+1)+N(gxm,gxm,gxn+1)

= 2N(gxn,gxn,gxn+1)+N(gxn+1,gxn+1,gxm)

≤ 2N(gxn,gxn,gxn+1)+2N(gxn+1,gxn+1,gxn+2)+N(gxm,gxm,gxn+2)

≤ 2N(gxn,gxn,gxn+1)+ ...+2N(gxm−2,gxm−2,gxm−1)

+N(gxm,gxm,gxm−1)

≤ 2N(gxn,gxn,gxn+1)+ ...+2N(gxm−2,gxm−2,gxm−1)

+2N(gxm,gxm,gxm−1)

≤ 2qnN(gx1,gx1,gx0)+ ...+2qm−1N(gx1,gx1,gx0)

= 2qn(1+q+ ...+qm−n−1)N(gx1,gx1,gx0)

≤ 2qn

1−q
N(gx1,gx1,gx0).
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Since 2qn

1−qN(gx1,gx1,gx0)→ 0 as n,m→ ∞, we have N(gxn,gxn,gxm)→ 0 as n,m→ ∞. Thus

{gxn} is a Cauchy sequence.

Case I: If g(X) is complete, there exists u ∈ g(X) such that gxn→ u as n→∞, so exist p ∈ X

such that gp = u.

Case II: If f (X) is complete, then there exists u ∈ f (X) such that gxn = f xn−1 → u, since

f (X)⊂ g(X) we have u ∈ g(X), so there exist p ∈ X such that gp = u.

We claim that f p = u. Note that

N( f p, f p,u) ≤ 2N( f p, f p, f xn)+N(u,u, f xn)

≤ 2[aN(gp,gp,gxn)+bN(gp, f p, f p)+ cN(gp, f p, f p)

+dN(gxn, f xn, f xn)]+N(u,u,gxn+1)

= 2aN(u,u,gxn)+2(b+ c)N(u, f p, f p)

+2dN(gxn,gxn+1,gxn+1)+N(u,u,gxn+1)

as n→ ∞. From Lemma 3.1, it shows that

N( f p, f p,u) ≤ 2(b+ c)N(u, f p, f p)

≤ 4(b+ c)N( f p, f p,u).

Hence N( f p, f p,u) = 0 and f p = u. So f p = gp = u and u is a point of coincidence of f and

g.

Now we show that f and g have a unique point of coincidence. To this end, let us assume

that there exists a point q in X such that f q = gq.

N( f p, f p, f q) ≤ aN(gp,gp,gq)+bN(gp, f p, f p)

+cN(gp, f p, f p)+dN(gq, f q, f q)

= aN(gp,gp,gq)

= aN( f p, f p, f q).

Since a < 1, so N( f p, f p, f q) = 0. Tthus f p = f q. Therefore f and g have a unique point of

coincidence. By Proposition 1.11, f and g have a unique common fixed point.
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Corollary 3.3. Let (X ,N) be an N-cone metric space, P be a normal cone with normal constant

K and f ,g : X → X be two mappings which satisfy the following conditions:

(i) f (X)⊂ g(X);

(ii) f (X) or g(X) is complete;

(iii) N( f x, f y, f z)≤ kN(gx,gy,gz)

for all x,y,z ∈ X, where 0 < k < 1, then f and g have a unique point of coincidence in X.

Moreover if f and g are weakly compatible,then f and g have a unique common fixed point.

Corollary 3.4. Let (X ,N) be an N-cone metric space, P be a normal cone with normal constant

K and f : X → X be a mapping which satisfy the following conditions:

(i) f (X) is complete;

(ii) N( f x, f y, f z)≤ aN(x,y,z)+bN(x, f x, f x)+ cN(y, f y, f y)+dN(z, f z, f z)

for all x,y,z ∈ X, where a,b,c,d ≥ 0, a+4b+4c+d < 1, then f has a unique fixed point.

Theorem 3.5. Let (X ,N) be an N-cone metric space, P be a normal cone with normal constant

K and f ,g : X → X be two mappings which satisfy the following conditions:

(i) f (X)⊂ g(X);

(ii) f (X) or g(X) is complete;

(iii) N( f x, f y, f z)≤ a[N(gx, f y, f y)+N(gy, f x, f x)]+b[N(gy, f z, f z)+N(gz, f y, f y)]

+c[N(gx, f z, f z)+N(gz, f x, f x)] for all x,y,z ∈ X, where a,b,c ≥ 0, 8a+ 4b+ 4c < 1, then f

and g have a unique point of coincidence in X. Moreover if f and g are weakly compatible,then

f and g have a unique common fixed point.

Proof. Take x0 ∈ X , there exist x1 ∈ X such that f x0 = gx1, in this way we construct sequences

{gxn} with f xn−1 = gxn, then from the condition(iii), we have

N(gxn+1,gxn+1,gxn) = N( f xn, f xn, f xn−1)

≤ a[N(gxn, f xn, f xn)+N(gxn, f xn, f xn)]

+b[N(gxn, f xn−1, f xn−1)+N(gxn−1, f xn, f xn)]

+c[N(gxn, f xn−1, f xn−1)+N(gxn−1, f xn, f xn)]
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= a[N(gxn,gxn+1,gxn+1)+N(gxn,gxn+1,gxn+1)]

+b[N(gxn,gxn,gxn)+N(gxn−1,gxn+1,gxn+1)]

+c[N(gxn,gxn,gxn)+N(gxn−1,gxn+1,gxn+1)]

= 2aN(gxn,gxn+1,gxn+1)+(b+ c)N(gxn−1,gxn+1,gxn+1)

≤ 4aN(gxn+1,gxn+1,gxn)+(b+ c)N(gxn−1,gxn−1,gxn)

+2(b+ c)N(gxn+1,gxn+1,gxn).

So (1−4a−2b−2c)N(gxn+1,gxn+1,gxn)≤ (b+ c)N(gxn,gxn,gxn−1), which implies

N(gxn+1,gxn+1,gxn)≤ qN(gxn,gxn,gxn−1),

where q = (b+c)
1−(4a+2b+2c) and 0 < q < 1. By repeated application of above inequality, we have

N(gxn+1,gxn+1,gxn) ≤ qnN(gx1,gx1,gx0).

For all n,m ∈ N,n < m, we see that

N(gxn,gxn,gxm) ≤ 2N(gxn,gxn,gxn+1)+N(gxm,gxm,gxn+1)

= 2N(gxn,gxn,gxn+1)+N(gxn+1,gxn+1,gxm)

≤ 2N(gxn,gxn,gxn+1)+2N(gxn+1,gxn+1,gxn+2)+N(gxm,gxm,gxn+2)

≤ 2N(gxn,gxn,gxn+1)+ ...+2N(gxm−2,gxm−2,gxm−1)

+N(gxm,gxm,gxm−1)

≤ 2N(gxn,gxn,gxn+1)+ ...+2N(gxm−2,gxm−2,gxm−1)

+2N(gxm,gxm,gxm−1)

≤ 2qnN(gx1,gx1,gx0)+ ...+2qm−1N(gx1,gx1,gx0)

= 2qn(1+q+ ...+qm−n−1)N(gx1,gx1,gx0)

≤ 2qn

1−q
N(gx1,gx1,gx0).

Since 2qn

1−qN(gx1,gx1,gx0)→ 0 as n,m→∞, we see implies that N(gxn,gxn,gxm)→ 0 as n,m→

∞. Thus {gxn} is a Cauchy sequence.
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Case I: If g(X) is complete, there exists u ∈ g(X) such that gxn→ u as n→∞, so exist p ∈ X

such that gp = u.

Case II:If f (X) is complete, then there exists u ∈ f (X) such that gxn = f xn−1 → u, since

f (X)⊂ g(X) we have u ∈ g(X), so there exist p ∈ X such that gp = u.

We claim that f p = u. Note that

N( f p, f p,u) ≤ 2N( f p, f p, f xn)+N(u,u, f xn)

≤ 2a[N(gp, f p, f p)+N(gp, f p, f p)]

+2b[N(gp, f xn, f xn)+N(gxn, f p, f p)]

+2c[N(gp, f xn, f xn)+N(gxn, f p, f p)]+N(u,u,gxn+1)

= 4aN(gp, f p, f p)+2(b+ c)N(gp,gxn+1,gxn+1)

+2(b+ c)N(gxn, f p, f p)+N(u,u,gxn+1)

as n→ ∞. From Lemma 3.1, it shows that

N( f p, f p,u) ≤ (4a+2b+2c)N(u, f p, f p)

≤ (8a+4b+4c)N( f p, f p,u).

Hence N( f p, f p,u) = 0 and f p = u. So f p = gp = u and u is a point of coincidence of f and

g.

Now we show that f and g have a unique point of coincidence. To this end, assume that there

exists a point q in X such that f q = gq.

N( f p, f p, f q) ≤ a[N(gp, f p, f p)+N(gp, f p, f p)]

+b[N(gp, f q, f q)+N(gq, f p, f p)]

+c[N(gp, f q, f q)+N(gq, f p, f p)]

= (b+ c)[N( f p, f q, f q)+N( f q, f p, f p)]

≤ (b+ c)[N( f p, f p, f q)+2N( f p, f p, f q)]

= 3(b+ c)N( f p, f q, f q).
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In view of 3(b+ c) < 1, one has N( f p, f p, f q) = 0. Thus f p = f q. Therefore f and g have a

unique point of coincidence. By Proposition 1.11, f and g have a unique common fixed point.

Corollary 3.6. Let (X ,N) be an N-cone metric space, P be a normal cone with normal constant

K and f : X → X be a mapping which satisfy the following conditions:

(i) f (X) is complete;

(ii)

N( f x, f y, f z) ≤ a[N(x, f y, f y)+N(y, f x, f x)]+b[N(y, f z, f z)

+N(z, f y, f y)]+ c[N(x, f z, f z)+N(z, f x, f x)]

for all x,y,z ∈ X, where a,b,c≥ 0, 8a+4b+4c < 1, then f has a unique fixed point.
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