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Abstract: In this paper we used reduction method of Arunaye [1] to obtain the symmetries of the McIntosh and 

Cisneros [2]; and Zwanziger [3] (MICZ) problem and present some exact symmetry transformations of the MICZ 

problem on the cone of motion. We note relationship between the symmetries of the Kepler problem and the MICZ 

problem, and we obtain a novel nonlocal scaling symmetry of the MICZ problem.  
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1. Introduction 

Symmetry principles are paramount to understanding the laws of nature. They are known to 

synthesis the regularities of the laws governing phenomenon that are independent of specific 

dynamics. Thus, invariance principles of symmetry provide a structure and coherence to laws of 

nature. Just as the laws of nature structure and coherence to set of events (Arunaye [4], Hill [5]. 

It is worthy to note that without regularities in the laws of nature every other phenomenon would 

have exhibited chaotic behavior. In present day applicable mathematics, we recognized that 

symmetry principles are even more powerful. They dictate the form of the laws of nature (Olver 

[6]; Bluman and Anco [7]; Ibragimov [8], [9]). In pattern formation, symmetry is a grand nun   

and central focus for understanding pattern structures.  It is remarkable that Kepler problem is 

the central vehicle for particle Physics.  Laplace is the first to have obtained seven first integrals 

for the Kepler problem, namely three Cartesian components of Laplace-Runge-Lenz vector J , 

three Cartesian components of the angular momentum L , and what is essentially known as the 
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total energy E . But only five of them are independent, Laplace established a relationship 

between the seven integrals; and show that the conservation of the angular momentum L implied 

that the orbit of the motion is planar , and that the orbit equation could be expressed as a conic 

section (Olver [10], [11]; Leach and Flessas [12]). In 1896, Poincaré identified a conserved 

vector P  with properties reminiscent of angular momentum for the classical monopole problem 

(popularly known as the Poincaré vector).  

However the 21st century researchers found Ermanno-Bernoulli constants, and algebraic 

technique that are more powerful for reducing dynamical systems to coupled harmonic 

oscillators and conservation laws for the calculation of their symmetries (local and nonlocal 

types). The MICZ system is related to the problem of the asymptotic scattering of two self-dual 

monopoles by canonical transformation (Cordani [13], Leach and Flessas [12]) which gives the 

reduced Hamiltonian of a particle in EuclideanTaub-NUT space (Cordani, Fehér, and Horváthy 

[14]). The motion of a spineless test particle in the field of a Dirac monopole plus Coulomb 

potential with an additional centrifugal potential is named MIC problem by Mladenov and 

Tsanov [15] or MICZ problem by Cordani [13], after the studies of this problem by McIntosh 

and Cisneros [2] and also by Zwanziger [3].  It is common knowledge nowadays that many 

problems which are relaxation of the Kepler problem were found to posses vector (first integrals) 

which were sufficient to provide their orbits just as L  and J  provided the orbit of the Kepler 

problem (Leach and Flessas [12], Leach and Nucci [16]). Leach and Flessas [12] considered the 

MICZ-Kepler and Generalization of the Kepler problem with specific equations of motion and 

obtained the symmetry group (local and nonlocal type) using Nucci reduction technique. Section 

2 of this paper presents the preliminaries of this research in which we present the algebraic 

process for reducing the MICZ problem on the cone of motion to coupled oscillator and a 

conservation law. While in section 3 we present the main results and final concluding remarks.   

2.0   Preliminaries 

It is important to bring to the fore required information for the proper understanding of the 

methodology for realizing the objective of the research paper, thus this section presents the basic 

literature results with which we formally obtain the main results of this paper. 

2.1   Reduction of the MICZ problem on the cone 
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In the following we used the algebraic reduction method of Arunaye [1] for the reduction of the 

MICZ problem on the cone of motion into a coupled system of oscillator and a conservation law. 

The general equation of motion for the MICZ dynamical system is given by 
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By setting  22  , Leach and Flessas [12] got the classical equation of motion of the MICZ 

problem as 

                                                  0r
L

r 







 ˆ

3

2

23 rrr


 .            (2.2) 

In which the mass of the particle is taken as unity,   the strength of the monopole and  is the 

strength of the Coulombic field. The radial component equation of the motion (2.2) is  
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where   and  are the respective azimuthal and transverse angles of the motion. Taking 

 sin2rL   as constant and  21)(sin  L , where 1 r , equation (2.3) becomes 
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So we rewrite (2.2) as 
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Thus, we have  
 22  r  and we get by substitution into (2.5) 
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If we let sinS  be a dummy variable, then (2.7) becomes 
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It is hereby noted that the literature had it that magnetic monopoles Poincaré’s vector P  is 

termed the total angular momentum which distinguished it from the mechanical angular 

momentum L , called orbital angular momentum. From the Poincaré vector, the identities 
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                222  LP , rrP ,  cosP  holds. So that the relations 
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So the MICZ problem on the cone of motion is reduced to a system of coupled oscillator and 

conservation law 
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 and L2  is the angular momentum which is constant. 

The Lie symmetries of the reduced Kepler problem (Leach and Flessas [12], Leach and Nucci 

[16]) possess nine point symmetries, they are 
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The corresponding symmetries in original variables for (2.10) (Leach and Flessas [12]) obtained 

via backward transformation 
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2.2   Symmetry group of the MICZ problem on the cone of motion 

We obtain the symmetries of the MICZ problem by adopting the backward transformation 

method of Leach and Flessas [12], Leach and Nucci [16] as follows. The reduced system of the 

MICZ problem on the cone implies symmetry in the original variables ),,( rt  becomes 

symmetry in the reduction variables ),,( 21   accordingly. 

i.e.                                      
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The reduction variables for reducing the MICZ problem to oscillator and conservation law on the 

cone of motion are 
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and utilizing the relations 

                        ),()(  VW  )()(
22

1

1






 

L
rVW  ;                                                       (2.15) 

one obtains the infinitesimals 
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3.0    Main Results 

The backward transformation of Leach and Nucci [16] and exact symmetry computation 

technique of Arunaye [17] and White [18] are adopted to be able to obtain the following results. 

3.1    Symmetries of the MICZ problem on the cone 

If  
2L  is replaced by 22 L in the symmetry representation of the Kepler problem one obtain the 

complete symmetry group representation of the MICZ problem on its cone of motion as follows 

except   the 1X  which is completely different from the scaling symmetry obtained for the Kepler 

problem, this is a novel symmetry. They are 
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where 222

1  LL .  Note that for 0 , we have the symmetries of the Kepler problem, also in 

the Kepler problem; the two nonlocal symmetries to be included to form the complete symmetry 

group are of type 4X . 

3.2   Exact symmetries of the MICZ problem on the cone 

In this section we compute the symmetry transformations generated by the vector fields
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where eC   is a constant and   is a Lie group parameter.                                                   
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When 1C  , the transformation becomes global one, i.e.  

                            xx  , where   is a unit vector, 

                              btCt  1    
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 The flow 3
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where b is a constant.                                                                                                              

3.3.    Concluding remarks  

In Arunaye [17] we exhibited exact symmetry computations of some dynamical systems that are 

reducible to coupled oscillator and conservation law in both 2-dimensions and 3-dimensions. 

There, we noted also that the exact symmetry computations of MICZ problem and host of other 

dynamical systems are much more complicated. This work thus extends that work to include the 

exact symmetry transformation of the MICZ problem on the cone. The report of White [17] on 

the computation of symmetry transformations for dynamical systems with Poincaré vector is 

hereby corroborated as the MICZ problem is one of such dynamical systems referred.  
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